Lògica 2016–2017, (Code 360961)

Practice second partial exam

Lecturer: Joost J. Joosten

Tuesday, December 6, 2016

Exercise 0

Give derivations of the following tautologies

1.
$$(((A \rightarrow B) \rightarrow B) \rightarrow B) \rightarrow (A \rightarrow B);$$

2.
$$\neg (A \land B) \rightarrow \neg A \lor \neg B$$
;

3.
$$\neg A \lor \neg B \to \neg (A \land B)$$
;

4.
$$\neg (A \lor B) \to \neg A \land \neg B$$
;

5.
$$\neg A \land \neg B \rightarrow \neg (A \lor B)$$
;

6.
$$A \lor B \to B \lor A$$
.

Exercise 1

For each of the following statements, say if they are true or not. In case $\varphi \models \psi$ is a logical consequence, give a derivation of the formula

$$\varphi \to \psi$$

and if we do not have logical consequence exhibit a counter-model.

1.
$$\forall x P(x) \to Qc \models \forall x (P(x) \to Qc);$$

2.
$$\forall x \ (P(x) \to Qc) \models \forall x \ P(x) \to Qc;$$

3.
$$\exists x P(x) \to Qc \models \exists x (P(x) \to Qc);$$

4.
$$\exists x \ (P(x) \to Qc) \models \exists x \ P(x) \to Qc;$$

Exercise 1.5

Write each of the following formulas in Prenex Normal form:

- 1. $(\forall x P(x) \to Qc) \to (\forall x (P(x) \to Qc));$
- 2. $(\forall x \ (P(x) \to Qc)) \to (\forall x \ P(x) \to Qc);$
- 3. $(\exists x P(x) \to Qc) \to (\exists x (P(x) \to Qc));$
- 4. $(\exists x \ (P(x) \to Qc)) \to (\exists x \ P(x) \to Qc);$

Exercise 2

Using the language with only a binary relation R, give a finite collection Γ of sentences so that any model A that satisfies all sentences in Γ has to be infinite.

Exercise 3

- 1. State the soundness theorem of our derivation calculus for first order logic.
- 2. State the completeness theorem of our derivation calculus for first order logic.

Exercise 4

Let \mathcal{M} be a model and R and S be a relations on the domain of \mathcal{M} . Show that

- 1. if R is definable on \mathcal{M} , then so is dom(R) (the domain of R);
- 2. if R is definable on \mathcal{M} , then so is ran(R) (the range of R);
- 3. if R is definable on \mathcal{M} , then so is field(R) (the field of R);
- 4. if R is definable on \mathcal{M} , then so is R^{-1} (the converse relation of R);
- 5. if R and S are definable on \mathcal{M} , then so is R; S (the compositional product of R and S);

Exercise 5

We consider the language $\mathcal{L} := \{\overline{0}, S, \prec\}$ where $\overline{0}$ is a constant, and both S and \prec are binary relations. Moreover, we consider two models \mathcal{A} and \mathcal{B} of \mathcal{L} defined by:

$$\mathcal{A} := \langle \mathbb{N}, 0, \{ \langle a, b \rangle \mid b = a+1 \}, \{ \langle a, b \rangle \mid a < b \} \rangle$$

and

$$\mathcal{B} := \langle \mathbb{N} \cup \{\omega\}, 0, \{\langle a, b \rangle \mid b = a + 1\}, \{\langle a, b \rangle \mid a < b\} \cup \{\langle a, \omega \rangle \mid a \in \mathbb{N}\}. \rangle$$

Here, \mathbb{N} stands for the set of natural numbers $\{0,1,2,3,4,\ldots\}$ and < and + denote the regular less-than ordering and addition respectively on \mathbb{N} . Next, we consider $\mathcal{L}' := \mathcal{L} \cup \{P\}$ where P is a predicate. We consider the formulas

$$\varphi := \Big(P(\overline{0}) \wedge \forall x, y \ (\big(P(x) \wedge S(x,y)\big) \to P(y))\Big) \to \forall z \ P(z);$$

and

$$\psi := \forall x \ (\forall y, x \ \big([\prec (y, x) \to P(y)] \to P(x) \big)) \to \forall z \ P(z).$$

- 1. Show that for any model $\mathcal{C} := \langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}}, P^{\mathcal{C}} \rangle$ of \mathcal{L}' we have that if $\langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}} \rangle = \mathcal{A}$, then $\mathcal{C} \models \varphi$.
- 2. Show that for any model $\mathcal{C} := \langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}}, P^{\mathcal{C}} \rangle$ of \mathcal{L}' we have that if $\langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}} \rangle = \mathcal{A}$, then $\mathcal{C} \models \psi$.
- 3. Show that for any model $\mathcal{C} := \langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}}, P^{\mathcal{C}} \rangle$ of \mathcal{L}' we have that if $\langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}} \rangle = \mathcal{B}$, then $\mathcal{C} \models \psi$.
- 4. Show that there is some model $\mathcal{C} := \langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}}, P^{\mathcal{C}} \rangle$ of \mathcal{L}' so that $\langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}} \rangle = \mathcal{B}$, and $\mathcal{C} \models \neg \varphi \wedge \psi$.