Introducció a la lògica 2015–2016, (Code 360906)

Practice second partial exam

Lecturer: Joost J. Joosten Teaching assistant: Tommaso Moraschini

Friday, November 11, 2015

Exercise 0

We consider two sets A and B given by $A:=\{\{0\},1,2\}$ and $B:=\{0,1,\{2\}\}$. Compute the following:

- 1. $A \cap B =$
- 2. $A \cup B =$
- 3. $A \setminus B =$
- 4. $A \setminus B =$

Exercise 1

Give the definition of $\psi \models \varphi$ where ψ and φ are predicate logical sentences.

Exercise 2

What is the scheme of reductio ad absurdum?

Exercise 3

For each of the following statements, say if they are true or not. In case of logical consequence, give an argument, if we do not have logical consequence exhibit a counter-model.

- 1. $\forall x P(x) \rightarrow Qc \models \forall x (P(x) \rightarrow Qc);$
- 2. $\forall x \ (P(x) \to Qc) \models \forall x \ P(x) \to Qc;$

- 3. $\exists x P(x) \to Qc \models \exists x (P(x) \to Qc);$
- 4. $\exists x \ (P(x) \to Qc) \models \exists x \ P(x) \to Qc;$

Exercise 4

Using the language with only a binary relation R, give a finite collection Γ of sentences so that any model A that satisfies all sentences in Γ has to be infinite.

Exercise 5

Consider the predicate logical language with two predicates C and M, two names/constants t and j and one binary predicate R. We consider the following

$$\begin{array}{c|cccc} & Cx & x \text{ is a cat} \\ Mx & x \text{ is a mouse} \\ \text{translation key:} & R x y & x \text{ chases y} \\ & t & Tom \\ & j & Jerry \\ \end{array}$$

- 1. Translate the following sentences to our language of predicate logic using the given translation key.
 - (a) Tom is a cat and Jerry is not a cat but a mouse;
 - (b) Tom chases Jerry;
 - (c) Any cat chases some mouse;
 - (d) Some mouse chases any cat;
 - (e) Any cat chases any mouse that does not chase any cat;
 - (f) Any cat chases any mouse that does not chase some cat;
 - (g) Any cat chases some mouse that does not chase some cat;
 - (h) Some cat chases any mouse that does not chase some cat.
- 2. Of the following statements, say if they are true or not. In case of logical consequence, give an argument, if we do not have logical consequence exhibit a counter-model.
 - (a) Any cat chases any mouse \models Tom chases Jerry;
 - (b) Any cat chases any mouse \models some cat chases some mouse;
 - (c) Any mouse is chased by any cat \models any mouse is chased by some cat.

Exercise 6

We consider the language $\mathcal{L} := \{\overline{0}, S, \prec\}$ where $\overline{0}$ is a constant, and both S and \prec are binary relations. Moreover, we consider two models \mathcal{A} and \mathcal{B} of \mathcal{L} defined by:

$$\mathcal{A} := \langle \mathbb{N}, 0, \{ \langle a, b \rangle \mid b = a + 1 \}, \{ \langle a, b \rangle \mid a < b \} \rangle$$

and

$$\mathcal{B} := \langle \mathbb{N} \cup \{\omega\}, 0, \{\langle a, b \rangle \mid b = a + 1\}, \{\langle a, b \rangle \mid a < b\} \cup \{\langle a, \omega \rangle \mid a \in \mathbb{N}\}. \rangle$$

Here, \mathbb{N} stands for the set of natural numbers $\{0,1,2,3,4,\ldots\}$ and < and + denote the regular less-than ordering and addition respectively on \mathbb{N} . Next, we consider $\mathcal{L}' := \mathcal{L} \cup \{P\}$ where P is a predicate. We consider the formulas

$$\varphi := \Big(P(\overline{0}) \wedge \forall x, y \ \big(\big(P(x) \wedge S(x,y)\big) \to P(y)\big)\Big) \to \forall z \ P(z);$$

and

$$\psi := \forall x \; (\forall y, x \; \big([\prec (y, x) \to P(y)] \to P(x) \big)) \to \forall z \; P(z).$$

- 1. Show that for any model $\mathcal{C} := \langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}}, P^{\mathcal{C}} \rangle$ of \mathcal{L}' we have that if $\langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}} \rangle = \mathcal{A}$, then $\mathcal{C} \models \varphi$.
- 2. Show that for any model $\mathcal{C} := \langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}}, P^{\mathcal{C}} \rangle$ of \mathcal{L}' we have that if $\langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}} \rangle = \mathcal{A}$, then $\mathcal{C} \models \psi$.
- 3. Show that for any model $\mathcal{C} := \langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}}, P^{\mathcal{C}} \rangle$ of \mathcal{L}' we have that if $\langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}} \rangle = \mathcal{B}$, then $\mathcal{C} \models \psi$.
- 4. Show that there is some model $\mathcal{C} := \langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}}, P^{\mathcal{C}} \rangle$ of \mathcal{L}' so that $\langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}} \rangle = \mathcal{B}$, and $\mathcal{C} \models \neg \varphi \wedge \psi$.