Lògica 2015–2016, (Code 360961)

Practice second partial exam

Lecturer: Joost J. Joosten

Friday, November 11, 2015

Exercise 0

Give derivations of the following sequents

1. $\left(\left((A \to B) \to B \right) \right)$	$(\to B) \to (A \to B);$
2. $\neg(A \land B)$	$\neg A \lor \neg B;$
3. $\neg A \lor \neg B$	$\neg (A \land B);$
4. $\neg(A \lor B)$	$\neg A \land \neg B;$
5. $\neg A \land \neg B$	$\neg (A \lor B);$
6. $A \lor B$	$B \lor A.$

Exercise 1

For each of the following statements, say if they are true or not. In case $\varphi \models \psi$ is a logical consequence, give a derivation of the sequent

 ψ

and if we do not have logical consequence exhibit a counter-model.

 φ

1.
$$\forall x P(x) \rightarrow Qc \models \forall x \ (P(x) \rightarrow Qc);$$

2. $\forall x \ (P(x) \rightarrow Qc) \models \forall x P(x) \rightarrow Qc;$
3. $\exists x P(x) \rightarrow Qc \models \exists x \ (P(x) \rightarrow Qc);$
4. $\exists x \ (P(x) \rightarrow Qc) \models \exists x P(x) \rightarrow Qc;$

Exercise 2

Using the language with only a binary relation R, give a finite collection Γ of sentences so that any model A that satisfies all sentences in Γ has to be infinite.

Exercise 3

- 1. State the soundness theorem of our derivation calculus for first order logic.
- 2. State the completeness theorem of our derivation calculus for first order logic.

Exercise 4

We consider the language $\mathcal{L} := \{\overline{0}, S, \prec\}$ where $\overline{0}$ is a constant, and both S and \prec are binary relations. Moreover, we consider two models \mathcal{A} and \mathcal{B} of \mathcal{L} defined by:

$$\mathcal{A} := \langle \mathbb{N}, 0, \{ \langle a, b \rangle \mid b = a + 1 \}, \{ \langle a, b \rangle \mid a < b \} \rangle$$

and

$$\mathcal{B} := \langle \mathbb{N} \cup \{\omega\}, 0, \{\langle a, b \rangle \mid b = a + 1\}, \{\langle a, b \rangle \mid a < b\} \cup \{\langle a, \omega \rangle \mid a \in \mathbb{N}\}. \rangle$$

Here, \mathbb{N} stands for the set of natural numbers $\{0, 1, 2, 3, 4, ...\}$ and < and + denote the regular less-than ordering and addition respectively on \mathbb{N} . Next, we consider $\mathcal{L}' := \mathcal{L} \cup \{P\}$ where P is a predicate. We consider the formulas

$$\varphi := \left(P(\overline{0}) \land \forall x, y \left(\left(P(x) \land S(x, y) \right) \to P(y) \right) \right) \to \forall z \ P(z);$$

and

$$\psi := \forall x \ (\forall y, x \ ([\prec (y, x) \to P(y)] \to P(x))) \to \forall z \ P(z)$$

- 1. Show that for any model $\mathcal{C} := \langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}}, P^{\mathcal{C}} \rangle$ of \mathcal{L}' we have that if $\langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}} \rangle = \mathcal{A}$, then $\mathcal{C} \models \varphi$.
- 2. Show that for any model $\mathcal{C} := \langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}}, P^{\mathcal{C}} \rangle$ of \mathcal{L}' we have that if $\langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}} \rangle = \mathcal{A}$, then $\mathcal{C} \models \psi$.
- 3. Show that for any model $\mathcal{C} := \langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}}, P^{\mathcal{C}} \rangle$ of \mathcal{L}' we have that if $\langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}} \rangle = \mathcal{B}$, then $\mathcal{C} \models \psi$.
- 4. Show that there is some model $\mathcal{C} := \langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}}, P^{\mathcal{C}} \rangle$ of \mathcal{L}' so that $\langle X, \overline{0}^{\mathcal{C}}, S^{\mathcal{C}}, \prec^{\mathcal{C}} \rangle = \mathcal{B}$, and $\mathcal{C} \models \neg \varphi \land \psi$.