AUTOMATED THEOREM PROVING

Herbrand's Theorem

<u>Exercise 1</u>. (a) Let $\phi = Q_1 x_1 \cdots Q_n x_n \psi$ be a firs-order formula in prenex form. Prove that if ψ is a tautology in the propositional sense, then ϕ is a tautology in the first-order sense.

(b) Prove that the implication from right to left in (a) is false.

<u>Exercise 2</u>. Suppose that ϕ is a first-order formula and ψ is a Skolem standard form of $\neg \phi$. Find a sufficient and necessary condition for ϕ such that the Herbrand universe of ψ is finite.

<u>Exercise 3</u>. Consider the set of clauses $\Phi = \{P(x), \neg P(f(y))\}$. We say that a B-interpretation I satisfies Φ , if H_I is a model of α_{Φ} . Then, decide whether there is a B-interpretation that satisfies Φ .

Exercise 4. Let $\Phi = \{P(x), \neg P(x) \lor Q(x,c), \neg Q(y,c)\}$. Then:

(a) Construct the Herbrand base of Φ .

(b) Give a closed semantic tree for Φ .

<u>Exercise 5</u>. Let $\Phi = \{P(x), Q(x, f(x)) \lor \neg P(x), \neg Q(g(y), z)\}$. Prove that the Skolem form α_{Φ} is unsatisfiable by finding an unsatisfiable finite set of ground instances of Φ .

<u>Exercise 6</u>. Explain where the proof of Herbrand's theorem fails if we allow the equality relation in first-order formulas. Give a counterexample.