
Guillermo Errezil Alberdi
Technical director, Formal Vindications S.L. & CEO, Guretruck S.L.

21 OCTOBER 2O2O

2

 What is FVTM?

3

FVTM 2 Formal Vindications Time Manager Behavior

In this section we shall explain the behavior of FVTM. The FVTM provides the following files:

• FVTMnc.ml;

• FVTMnc.mli;

• FVTM.ml;

• timezones.ml;

• Coq Time Library.

FVTMnc.ml

This file contains a version of FVTM which is directly extracted from Coq so that users can operate with it.
In this version, the code shall not perform input validation.irectly extracted code does not perform proper
testing of any input supplied by the user. This is because Coq, as a programming language, is completely pure,
which means that the behavior of a program cannot change at execution time –in particular, it does not accept
input at execution time. The only possible input comes from inside of Coq and it needs to be proven correct.
We shall refer to this version of the FVTM as Pure.

FVTMnc.mli

A *.mli file is an OCaml Interface Source. This file is the exported signature of the module. The compiler
enforces it in order to compile the *.ml code.

FVTM.ml

This OCaml file contains code which is almost directly extracted from Coq. The slight modification of the
original extracted code is done in order to perform input validation. While directly extracted code does
not perform proper testing of any input, when extracted to OCaml, we expect the program to accept input
at execution time, and since input is inherently prompt to mistakes and errors, it needs to be validated, i.e.,
checked correct. The slight modification of the extracted code only does that: it takes an input, uses a function
directly extracted from Coq to check the correctness of the input, and only after that executes the function
over the input. Since this version of the FVTM requires an extra OCaml layer, we shall refer to it as Impure.

timezones.ml

The file timezones.ml is OCaml auxiliary code to communicate the tz database with the FVTM. The
programmers using the manager do not need to use this file directly. This file is directly implemented in
OCaml and thus, part of the Impure version.

Pure version files Impure version files

FVTMnc.ml FVTM.ml

FVTMnc.mli timezones.ml

Coq Time Library

Contains the whole project written in Coq together with its own documentation.

9

2 Formal Vindications Time Manager Behavior

In this section we shall explain the behavior of FVTM. The FVTM provides the following files:

• FVTMnc.ml;

• FVTMnc.mli;

• FVTM.ml;

• timezones.ml;

• Coq Time Library.

FVTMnc.ml

This file contains a version of FVTM which is directly extracted from Coq so that users can operate with it.
In this version, the code shall not perform input validation.irectly extracted code does not perform proper
testing of any input supplied by the user. This is because Coq, as a programming language, is completely pure,
which means that the behavior of a program cannot change at execution time –in particular, it does not accept
input at execution time. The only possible input comes from inside of Coq and it needs to be proven correct.
We shall refer to this version of the FVTM as Pure.

FVTMnc.mli

A *.mli file is an OCaml Interface Source. This file is the exported signature of the module. The compiler
enforces it in order to compile the *.ml code.

FVTM.ml

This OCaml file contains code which is almost directly extracted from Coq. The slight modification of the
original extracted code is done in order to perform input validation. While directly extracted code does
not perform proper testing of any input, when extracted to OCaml, we expect the program to accept input
at execution time, and since input is inherently prompt to mistakes and errors, it needs to be validated, i.e.,
checked correct. The slight modification of the extracted code only does that: it takes an input, uses a function
directly extracted from Coq to check the correctness of the input, and only after that executes the function
over the input. Since this version of the FVTM requires an extra OCaml layer, we shall refer to it as Impure.

timezones.ml

The file timezones.ml is OCaml auxiliary code to communicate the tz database with the FVTM. The
programmers using the manager do not need to use this file directly. This file is directly implemented in
OCaml and thus, part of the Impure version.

Pure version files Impure version files

FVTMnc.ml FVTM.ml

FVTMnc.mli timezones.ml

Coq Time Library

Contains the whole project written in Coq together with its own documentation.

9

FVTM

timezones

FVTMnc

Coq Time Library

Figure 2: Flowchart of FVTM file dependencies.

2.1 The calendar in The Coq Time Library

In this section, we present technical details about the formal specification and implementation of the calendar
in Coq that can be useful to understand the warnings that we give below for the use of the OCaml code.
However, readers that are only interested in using the library and not in the details of how it works can skip
this section.

The core functionalities of the FVTM are the conversions between times and timestamps, in both directions.
The proof of correctness for these two conversions is where the mathematical strength lies – the rest of the proofs
depend on those two. For that reason, a mathematically clean formal definition of the Gregorian calendar was
needed, including the determination of leap years, and that is why we chose to represent the proleptic Gregorian
calendar since 1-1-1 00:00:00 until 9999-12-31 00:00:00.

Since Coq is a mathematical-oriented language, we have types that are not usual in regular programming
languages, for instance nat, which is the type of the natural numbers starting at 0, N = {0, 1, 2, . . .}. In Coq,
the datatype time is roughly defined as six nats (year, month, day, hour, minute, and second) and a proof that
they satisfy the restrictions (i.e., that the date and time make sense and inside of the range from 1-1-1 00:00:00
to 9999-12-31 23:59:59). Then, we have the two core functions:

• timestamp: receives a time and returns a nat which represents the timestamp of the time with epoch
1-1-1 00:00:00. That means that timestamp 0 represents time 1-1-1 00:00:00.

• from timestamp: performs the opposite conversion, receives a nat and returns a time, assuming again
epoch 1-1-1 00:00:00, i.e., timestamp 0 represents time 1-1-1 00:00:00.

To prove correctness, we prove a theorem which says that timestamp behaves exactly as a formal, mathematical
description of what timestamp is. Then, we prove that from timestamp is the inverse function.

Then, since we are interested in extracting these functions with epoch 1970-1-1 00:00:00 because this is the
standard epoch for UTC measured with atomic clocks, the Coq development continues as follows. It defines new
versions, called utc timestamp and from utc timestamp, of the above functions, which have the 1970 epoch
and are defined using the above ones. In particular, utc timestamp over a time t is defined as follows:

utc timestamp(t) = timestamp(t)− timestamp(1970-1-1 00:00:00)

10

Flowchart of FVTM file dependencies.

4

The general public to understand the
evolution of calendars throughout
history to nowadays, with the UTC
calendar with leaps seconds when it
was discovered that the rotation of
the earth is not constant.

Engineers to understand how to use
the functions and their functionalities,
and why it was built this way.

Expert mathematicians in this field
to use as a guideline to understand
the Time Library within the scientific
community context.

1 2

The technical specifications PDF can be used by:

3

5

1 - Fully UTC, Date and Timestamp.

Timestamp: Atomic seconds since UTC start point 1970-01-01 00:00:00, including leap seconds.

Main features FVTM

6

2 - Formal time and formal calendar. Constant ways of measuring time duration.

Since minutes are not constant in UTC atomic clocks, we offer the solution by grouping seconds of any timespan
(duration of an interval), in common unix based timespan the day the maximum group the seconds can be grouped.

THE FORMAL MINUTE
DURATION WILL BE 60

ATOMIC SECONDS

THE FORMAL MONTH
DURATION WILL BE 30

FORMAL DAYS

THE FORMAL YEAR DURATION
WILL BE 365 FORMAL DAYS,

That is 12 formal months duration
plus 5 formal days duration,

which is the same as 31.536.000
seconds = 3,1536 107

THE FORMAL HOUR
DURATION WILL BE 60

FORMAL MINUTES

THE FORMAL DAY
DURATION WILL BE 24

FORMAL HOURS

1
min

1
min

1
hour

1
min

1
min

1
hour

1
min

1
min

1
hour

1
min

1
min

1
hour

1
min

1
min

1
hour

F
O

R
M

A
L

C
A

LE
N

D
A

R

B-A =30-0-7-0-0-21
TIMESPAN

A B

1999-12-31-23:59:59
(946684821) Time stamp(0) Time stamp

C

(1483228826) Time stamp
2016-12-31-23:59:60

D

2020-10-21-16:00:00
(1603296027) Time stamp

B-C=17-0-5-0-0-5
TIMESPAN

D-C= 3-9-24-16-0-1
TIME SPAN

7

3 - Shift function versus addFormal function, critical for the legal world.

Shift functions (shift seconds, shift minutes, shift days…) are widely used in most commercial Time Managers. Due to
their common use, we keep them in UTC. However, they are very risky, terrifying in the legal world.

Our proposal is to substitute them by the addFormal functions.

Let’s check an example:

ShiftUTCMonths AddFormalMonths

2020/03/31/00:00:00 2020/03/31/00:00:00

+ 1 month + 1 formal month

2020/04/30/00:00:00 2020/04/30/00:00:00

-1 month -1 formal month

2020/03/30/00:00:00 2020/03/31/00:00:00

8

4 - The addFormal functions have good arithmetical properties.

Given A1, A2 two time objects (A2 > A1), if D = timeDifference A2 A1,

then our functions addFormal and substractFormal are consistent:

A2 = addFormal A1 D and A1 = subtractFormal A2 D.

9

 5 - Calculations can only be made in UTC, we took the decision not to allow this in local time.

Are they the same? No, not at all and can be very dangerous

Let´s check this example:

activity time kind

Break/Rest 2018/10/27/23:30:00 UTC

Driving 2018/10/28/00:55:00 UTC
Break/Rest 2018/10/28/01:05:00 UTC
Work 2018/10/28/22:00:00 UTC

activity time kind

Break/Rest 28/10/2018/00:30:00 London local
time (UTC+1)

Break/Rest 28/10/2018/01:05:00 London local
time (UTC+0)

Driving 28/10/2018/01:55:00 London local
time (UTC+1)

Work 28/10/2018/22:00:00 London local
time (UTC+0)

round, the position 60 is the same that the 0 starting again the cycle.

We use the number 0 for the first position, where no one movement has been made, identifying the name
of a position with the number of movements needed to reach it from the origin (in the names of the table, we
identify columns A and D). The definition of interval between positions n1 and n2 is the set of all the consecutive
numbers of positions between n1 and n2 including both, and is represented by [n1, n2] = {n1, n1 + 1, . . . , n2}
For the definition of the duration of the interval [n1, n2] we can use the “common sense” or “comon idea” of
duration of the interval [n1, n2], like how many movements the central elements did to reach the position n2

starting from position n1. Hence, since the number of movements until n2 is the number of movements until n1

plus the movements from n1 to n2, the number of movements from n1 to n2 can be calculated as n2 −n1. Note
that in any partition of this kind we also have one space less than sticks, and this coincides with the cardinal
of the set minus one of the elements, then:
Duration[n1, n2] = n2 − n1 =Cardinal(n1, n2]
Duration[0, 60] = 60− 0 =Cardinal(0, 60] = 60. In the calendar-style: [1970/1/1/00:00:00, 1970/1/1/00:01:00]
Duration[60, 120] = 120 − 60 =Cardinal(60, 120] = 60, that is, in the calendar-style: [1970/1/1/00:01:00,
1970/1/1/00:02:00]

In FVTM differences between dates are computed as the cardinal difference instead of the arithmetical
difference of natural values, which means has more “intuitive” approach. However, both are equal, give the
same result (see Table 8 in Appendix 6).

1.3 Local time and time zones

Introduction

Figure 1: Behavior of the FVTM

The Formal Vindications Time Manager (FVTM) is conceived to work in UTC. However there are additional
OCaml modules –thus out of the formal verification setting, i.e. non formally verified– to manage also local

6

Driving time is 10 minutes in UTC

If we do the calculation in Europe/London local Time
(knowing that was hour change that day)

Driving time is 20 h 5 minutes making calculation in London/
Europe timezone

10

6 - The distance that light travels in a formal year could be a consistent unit of length.

If we approximate the light speed by
3.108 m/s.

Light-formal year = 9.1536 • 10 15 m,
the distance that light travels in a
formal year.

11

7 - Formally verified sorting of numbers!

Does anyone know a software where the numbers are sorted and there is a

mathematical proof that it is correct?

Probably for commercial use it is not necessary, however if it is used

by ESA or NASA in a rocket I would do it.

This is only to measure the level of our technology.

12

We could define EAL8 like totally formal verified proccess, no single step not formally verified.

 Issues to reach EAL8

A

B

 Only a specification made in mathematical language can be formally verified; however, it is very complex
to understand with “words”. Then what are we formally verifying?

A specification made in words and understandable cannot be formally verified, because in general we cannot
proof the correspondence of words and consistent mathematics.

1- Interpretation concept

13

 Issues to reach EAL8

2

One of the most problematic parts is that the proof assistants accept the natural numbers, (1,2,3..),

but the software doesn’t accept natural numbers, they only accept integers.

There is no computer powerful enough in the world to do this: 1 million +1 based in natural numbers .

2 - The extraction from the proof assistant (COQ) to the software (OCAML)

should be formally verified

14

 Issues to reach EAL8

Directly extracted code does not perform proper testing of any input.

The input expected to be perfect to have guaranteed results.

This 3 is related to point 2.
Our future work regards the possibility of providing mathematical proof of the equivalence of a bounded
fragment of nat (1,2,3,,) and the non-negative fragment of the integers (1,2,3..) , in such a way that we would
solve two problems at once: first, we would avoid extracting from the unbounded type nat to the bounded
type int4; and second, we would be able to control inside of Coq the behavior of the functions when negative
inputs are given.

3 - The input control

