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The business model of our research lab

Business focussed: from concrete to abstract
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Nice to have or need to have?

Sentence Number: 30/2019, CONTENCIOSO/ADMTVO court N. 4 of
Valladolid
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Law and Code

• Law essentially discretional
powers when applied

• Hence, ambiguity is needed

• Any automated process and in
particular, any automated
process in the legal sector need
unambiguity

• The programmer needs to
disambiguate?

• Can code be law?

• And, what if there’s an error in
the code?
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Doubtful results

• Bonus payment system of the
French Army:
Louvois/SourceSolde

• In 2012: 465 M € incorrect
payments

• It left some soldiers and their
families without any income at
all for months!
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Closer to (my) house: Civio vs Bosco

The Bosco computer program : errors in the computation of the social
welfare bonuses
Least requirement: access to source code
In France it is mandatory to publish source code of software that is used in
public administration.
However, access to source code will not resolve all problems
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Evidencias dudosas

• In three law-suits in the USA, the defence requested to open the
proprietary source code to the jury of DNA sequencing software
since there were some doubts.
• STRmix

• FST
• TrueAllele (not granted)

• In two cases the request was granted

• Again, access to the source code will not solve all problems!
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What is certification?

• Is it just a matter of trust?
(combined with some sanity
checks and experience)

• Certificate =⇒ something is
certain

• Verify =⇒ something is
veridical
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The impossibility of unrestricted certification

• A mathematical theorem:

• Unrestricted certification is
impossible.
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Restricted certification is possible

We call a program P a universal certifier (wrt its language) when P takes
two inputs

1 another program Q in a language compatible with P and,

2 a specification S in a language compatible with P that describes the
behaviour of the program Q;

and, given two inputs Q and S , the program P outputs:

• “YES” if the program Q does what is said by S and, it will ouput

• “NO” if the program Q does something different as that what is
claimed by S .

Theorem

There does not exist a universal certifier.
This holds for any reasonable class of languages.
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Formally verified software

Components of formally verified/certified software

Σ A Specification: a non-ambiguous mathematical description
of the input-output behaviour of the software

Π Implementation: the code, the software, implementing the
algorithm that does the work.

∆ Proof: a mathematical proof that the program Π functions
as claimed by Σ

The specification Σ is written in a formal language (in our case, the
language of dependent types of the Coq proof assistant).
This begs the question: How to make the specification more
accessible to the general/judicial public?
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What is verification?

Slides FV: González Bedmar
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Seven years of research in Barcelona

Covenant between the University of Barcelona (FBG), Formal Vindications
S.L. & Guretruck S.L.
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Three weeks ago in Barcelona
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Time library
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Most important feature: formally verified!
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What is certification?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 21 / 49



On software certification Certification in action Model Checking Looking ahead

Around one-thousand times more expensive!
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A central problem
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Public certification versus formal verification
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Slides Catala: Merigoux
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Can code be the law?
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Further benefits of formalisation

minute labelling
no shift

minute labelling
shift d

second labelling

0 1 2 3

0 1 2 3

d

� Rest
� Driving

We proved that the labelling is not shift-invariant!
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Some regulations regarding weekly rest periods

Regulation (EC) No 561/2006
§8.6. In any two consecutive weeks, a driver shall take at least:

• two regular weekly rest periods [of at least 45 hours], or

• one regular weekly rest period and one reduced weekly rest period of
at least 24 hours. However, the reduction shall be compensated by an
equivalent period of rest taken en bloc before the end of the third
week following the week in question.

A weekly rest period shall start no later than at the end of six 24-hour
periods from the end of the previous weekly rest period.

§8.9. A weekly rest period that falls in two weeks may be counted in either
week, but not in both.
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Let’s break it down...

• Regular weekly rest: ≥ 45 hours

• Reduced weekly rest: ≥ 24 hours

• Each rest period is assigned to only one week it intersects

• Every week must have a regular or reduced weekly rest

• Every other week must have a full weekly rest

• Any reduced rest must be compensated by a continuous block in the
following three weeks
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Combinatorics of rest assignments

Can we assign a week to each rest period so that each week is assigned to
at least one rest period?

A B C D E F G

In principle this is an NP problem (assign 0 or 1 to each rest period
according to whether it should belong to the earlier week or the later
week).
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Non-locality of compensations

A

44 45 45 45 24 45

B

Illegal

A

44 45 44+1 45 24 45+1

Legal

44

A

45 45 24 45

B

This can be iterated indefinitely: non-locality
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Lab activities

• Regulation analysis via logical/mathematical analysis

• Is the regulation consistent?
• Is the implied behaviour of the regulation desirable?

• Shift-invariance of labelling, locality of legality checks, etc.
• But also: if x and y are similar data containers (e.g., formal repr. of

persons) with the only difference that x has one passport and y has
two passports, will the program behave the same for x and y?

• Are the algorithms implied computationally feasible?

• Implement software in a ZERO-ERROR fashion using proof assistants.

• Develop general purpose models with the above considerations taken
into account so that zero-error software scales.

• Provide verified software with a dialogue fragment that enables a
possible rudimentary dialogue between the user and the software
about the software’s behaviour

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 33 / 49
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Lab activities

• Develop explanatory certificates by

• choosing ontologies of the right granularity to define semi-formal
language

• conversion of lambda-terms to ones using in these
ontologies/constructors

• Zero-knowledge certificates for proprietary software!
• Standards and good practices for public certification.
• A formal subset of natural language (domain specific) to bridge the

gap between formal specifications and technical specifications (public
certification)
• Teaching courses on formal verification/certification techniques (and

consulting)
• Adding to Coq development and libraries
• Study impact of techniques on society and ethical/legal principles,

e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc
• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49



On software certification Certification in action Model Checking Looking ahead

Lab activities

• Develop explanatory certificates by
• choosing ontologies of the right granularity to define semi-formal

language

• conversion of lambda-terms to ones using in these
ontologies/constructors

• Zero-knowledge certificates for proprietary software!
• Standards and good practices for public certification.
• A formal subset of natural language (domain specific) to bridge the

gap between formal specifications and technical specifications (public
certification)
• Teaching courses on formal verification/certification techniques (and

consulting)
• Adding to Coq development and libraries
• Study impact of techniques on society and ethical/legal principles,

e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc
• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49



On software certification Certification in action Model Checking Looking ahead

Lab activities

• Develop explanatory certificates by
• choosing ontologies of the right granularity to define semi-formal

language
• conversion of lambda-terms to ones using in these

ontologies/constructors

• Zero-knowledge certificates for proprietary software!
• Standards and good practices for public certification.
• A formal subset of natural language (domain specific) to bridge the

gap between formal specifications and technical specifications (public
certification)
• Teaching courses on formal verification/certification techniques (and

consulting)
• Adding to Coq development and libraries
• Study impact of techniques on society and ethical/legal principles,

e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc
• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49



On software certification Certification in action Model Checking Looking ahead

Lab activities

• Develop explanatory certificates by
• choosing ontologies of the right granularity to define semi-formal

language
• conversion of lambda-terms to ones using in these

ontologies/constructors
• Zero-knowledge certificates for proprietary software!

• Standards and good practices for public certification.
• A formal subset of natural language (domain specific) to bridge the

gap between formal specifications and technical specifications (public
certification)
• Teaching courses on formal verification/certification techniques (and

consulting)
• Adding to Coq development and libraries
• Study impact of techniques on society and ethical/legal principles,

e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc
• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49



On software certification Certification in action Model Checking Looking ahead

Lab activities

• Develop explanatory certificates by
• choosing ontologies of the right granularity to define semi-formal

language
• conversion of lambda-terms to ones using in these

ontologies/constructors
• Zero-knowledge certificates for proprietary software!
• Standards and good practices for public certification.

• A formal subset of natural language (domain specific) to bridge the
gap between formal specifications and technical specifications (public
certification)
• Teaching courses on formal verification/certification techniques (and

consulting)
• Adding to Coq development and libraries
• Study impact of techniques on society and ethical/legal principles,

e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc
• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49



On software certification Certification in action Model Checking Looking ahead

Lab activities

• Develop explanatory certificates by
• choosing ontologies of the right granularity to define semi-formal

language
• conversion of lambda-terms to ones using in these

ontologies/constructors
• Zero-knowledge certificates for proprietary software!
• Standards and good practices for public certification.
• A formal subset of natural language (domain specific) to bridge the

gap between formal specifications and technical specifications (public
certification)

• Teaching courses on formal verification/certification techniques (and
consulting)
• Adding to Coq development and libraries
• Study impact of techniques on society and ethical/legal principles,

e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc
• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49



On software certification Certification in action Model Checking Looking ahead

Lab activities

• Develop explanatory certificates by
• choosing ontologies of the right granularity to define semi-formal

language
• conversion of lambda-terms to ones using in these

ontologies/constructors
• Zero-knowledge certificates for proprietary software!
• Standards and good practices for public certification.
• A formal subset of natural language (domain specific) to bridge the

gap between formal specifications and technical specifications (public
certification)
• Teaching courses on formal verification/certification techniques (and

consulting)

• Adding to Coq development and libraries
• Study impact of techniques on society and ethical/legal principles,

e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc
• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49



On software certification Certification in action Model Checking Looking ahead

Lab activities

• Develop explanatory certificates by
• choosing ontologies of the right granularity to define semi-formal

language
• conversion of lambda-terms to ones using in these

ontologies/constructors
• Zero-knowledge certificates for proprietary software!
• Standards and good practices for public certification.
• A formal subset of natural language (domain specific) to bridge the

gap between formal specifications and technical specifications (public
certification)
• Teaching courses on formal verification/certification techniques (and

consulting)
• Adding to Coq development and libraries

• Study impact of techniques on society and ethical/legal principles,
e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc
• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49



On software certification Certification in action Model Checking Looking ahead

Lab activities

• Develop explanatory certificates by
• choosing ontologies of the right granularity to define semi-formal

language
• conversion of lambda-terms to ones using in these

ontologies/constructors
• Zero-knowledge certificates for proprietary software!
• Standards and good practices for public certification.
• A formal subset of natural language (domain specific) to bridge the

gap between formal specifications and technical specifications (public
certification)
• Teaching courses on formal verification/certification techniques (and

consulting)
• Adding to Coq development and libraries
• Study impact of techniques on society and ethical/legal principles,

e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc

• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49



On software certification Certification in action Model Checking Looking ahead

Lab activities

• Develop explanatory certificates by
• choosing ontologies of the right granularity to define semi-formal

language
• conversion of lambda-terms to ones using in these

ontologies/constructors
• Zero-knowledge certificates for proprietary software!
• Standards and good practices for public certification.
• A formal subset of natural language (domain specific) to bridge the

gap between formal specifications and technical specifications (public
certification)
• Teaching courses on formal verification/certification techniques (and

consulting)
• Adding to Coq development and libraries
• Study impact of techniques on society and ethical/legal principles,

e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc
• etc.J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49



On software certification Certification in action Model Checking Looking ahead

The central computational problem of algorithmic law

(Work and slides with Moritz Müller)
Need to formalize activity sequences and laws

• formalize activity sequences are words w ∈ Σ∗ over a finite alphabet Σ
e.g, dddrrw formalizes 6 minutes of activities in Σ = {d , r ,w}.

• formalize a law by a sentence in a suitable logic L.

Need algorithm that decides the computational problem

MC(Σ∗, L)
Input: a word w ∈ Σ∗ and a sentence ϕ ∈ L
Problem: is w legal according to ϕ, i.e. w |= ϕ ?

MC(Σ∗, L) is a formal model for algorithmic law (on activity sequences).
Question For which L is it good?
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Candidate: monadic second order logic MSO

Starting point
Borges, Conejero, Fernández-Duque, González, Joosten.
To drive or not to drive: A logical and computational analysis of European
transport regulations. Information and Computation 280, 2021.
• naturally formalizes Regulation 561.
• model-checking in time f (|ϕ|) · |w |, Parameterized Complexity

where f : N→ N is some computable function.
• but f grows very fast:

Theorem (Frick, Grohe 04)
Assume P 6= NP. Then MC(Σ∗,MSO) is not decidable in time

f (|ϕ|) · |w |O(1)

for elementary f : N→ N.

Hence MSO is not sufficiently tractable.
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Candidate: linear time temporal logic LTL

Model-checking in time O(|ϕ| · |w |), but not sufficiently expressive and not
sufficiently succinct (BRFB21)
Example Article 6.2: The weekly driving time shall not

exceed 56 hours

Straightforwardly formalized over words of length 1w : disjunction of∧
d≤D

(∧
rd≤i<`d+1

#i¬d ∧
∧

`d≤i<rd
#id

)
for all D ≤ 1w and
all r0 := 0 ≤ `1 < r1 < · · · < `D < rD < `D+1 := 1w with∑
1≤j≤D

(rj − `j) ≤ 56h

This has >
(7·24·60

56·60

)
> 102784 many disjuncts.

Warning
Algorithmic laws could use large constants for time constraints.
Model-checking complexity should scale well with them.
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Which MC(Σ∗, L) are good models for algorithmic law?

Tractability
sufficiently fast model-checkers
fine-grained complexity analysis: parameterized complexity theory
important parameter: large time constants in law

Expressivity
test case: formalize Regulation 561

Naturality
readable sentences
sufficiently succinct
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Stopwatch automata SWA: syntax

Stopwatch automaton A
Q finite set of states including start, accept
X finite set of stopwatches
λ maps q ∈ Q to λ(q) ∈ Σ
β maps x ∈ X to bound β(x) ∈ N
ζ is the set of (x , q) ∈ X × Q such that x is active in q
∆ is the set of transitions (q, g , α, q′)

where q, q′ ∈ Q, g is a guard, α is an action.

Assignment ξ maps x ∈ X to ξ(x) ≤ β(x)
Guard g is a set of assignments
Action α maps assignments to assignments
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Stopwatch automata SWA: semantics

Transition system of A
configurations (q, ξ)

switch edges (q, ξ)
0→ (q′, ξ′)

whenever (q, g , α, q′) ∈ ∆, ξ ∈ g , ξ′ = α(ξ)

stay edges (q, ξ)
t→ (q, ξ′)

where ξ′ increases ξ(x) for x active in q to min{ξ(x)+t, β(x)}

Computation (q0, ξ0)
t0→ (q1, ξ1)

t1→ (q2, ξ2)
t2→ · · · t`−1→ (q`, ξ`)

reads w := λ(q0)t0 λ(q1)t1 · · ·λ(q`−1)t`−1

accepts if q0 = start, ξ0 ≡ 0, q` = accept, qi 6= accept for i < `.
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Example: continuous driving

Article 7 (1st part): After a driving period of four and a

half hours a driver shall take an uninterrupted break of

not less than 45 minutes,...

(drive, 00)
3→ (drive, 30)

0→ (break , 30)
2→ (break , 32)

0→ (work , 32)
0→

(break , 30)
reads dddrr
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Automaton that accepts exactly the legal words according
to Reg. 561

week

xweek, xday

break

xbreak, xday,
xweek

reg daily

xdr, xday,
xweek

red daily

xdr, xday,
xweek

reg weekly

xwr, xday,
xweek

red weekly

xwr, xday,
xweek

r

drive

xcd, xday,
xdd, xweek,
xww, xdw

other work

xww, xday,
xweek

w
d

compensate1

xcr, xday,
xweek

compensate2

xcr, xday,
xweek

r

accept

12 states
> 100 transitions
34 stopwatches
23 are nowhere active:

bits
counters
registers
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> 100 transitions
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Expressivity and model-checking

Theorem
A set of words is accepted by an SWA iff it is definable in MSO.
Theorem
There is an algorithm that decides

Input: stopwatch automaton A and a word w over Σ
Problem: does A accepts w ?

in time
O
(
|A|2 · tx · |w |

)
where

t := largest stopwatch bound of A
x := number of stopwatches of A
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Consistency-checking

Theorem
There is an algorithm that decides

Input: SWAs A,B
Problem: is there a word accepted by both A and B ?

in time
O(|A|3 · |B|3 · tx · sy )

where
t := largest stopwatch bound of A
x := number of stopwatches of A
s := largest stopwatch bound of B
y := number of stopwatches of B
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Scheduling

Theorem
There is an algorithm that decides

Input: SWA A, letter a ∈ Σ, word w over Σ, n ∈ N
Problem: compute length n word v over Σ such that

A accepts wv
v maximizes #a(v)

in time
O
(
|A|2 · tx · (|w |+ n)

)
where

t := largest stopwatch bound of A
x := number of stopwatches of A
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Lower bound

Know: MC(Σ∗, SWA) decidable in time O
(
|A|2 · tx · |w |

)
Doubt: Is tx tolerable? Can it be improved?

Interesting instances have large t and small x .
Question: replace tx by 100100·x · t100 ?

Theorem
Assume FPT 6= W[1]. Let f : N→ N be a computable function.
Then MC(Σ∗, SWA) cannot be decided in time(

|A| · f (x) · t · |w |
)O(1)

.

Question: Can we hardwire large constants in the data structure using
Hybrid Modal Logic?
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Some further development

• Study if data-representation can improve complexity of model
checking;

• Define/carve out a language that corresponds naturally to bounded
stopwatch automata;

• Formally verify the meta-theorems of model checking;

• Write a formally verified implementation of the model checker;

• Provide a front-end interface to build your law yourself;

• Translate automata to semi-natural language description of the
regulation;

• etc.

• etc.
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Thanks
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