
On software certification Certification in action Model Checking Looking ahead

Model checking and formally verified software for
temporal quantitative regulations

Joost J. Joosten

Universitat de Barcelona

Universiteit van Groningen
Groningen, May 18

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 1 / 49

On software certification Certification in action Model Checking Looking ahead

The business model of our research lab

Business focussed: from concrete to abstract

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 2 / 49

On software certification Certification in action Model Checking Looking ahead

Nice to have or need to have?

Sentence Number: 30/2019, CONTENCIOSO/ADMTVO court N. 4 of
Valladolid

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 3 / 49

On software certification Certification in action Model Checking Looking ahead

Law and Code

• Law essentially discretional
powers when applied

• Hence, ambiguity is needed

• Any automated process and in
particular, any automated
process in the legal sector need
unambiguity

• The programmer needs to
disambiguate?

• Can code be law?

• And, what if there’s an error in
the code?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 4 / 49

On software certification Certification in action Model Checking Looking ahead

Law and Code

• Law essentially discretional
powers when applied

• Hence, ambiguity is needed

• Any automated process and in
particular, any automated
process in the legal sector need
unambiguity

• The programmer needs to
disambiguate?

• Can code be law?

• And, what if there’s an error in
the code?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 4 / 49

On software certification Certification in action Model Checking Looking ahead

Law and Code

• Law essentially discretional
powers when applied

• Hence, ambiguity is needed

• Any automated process and in
particular, any automated
process in the legal sector need
unambiguity

• The programmer needs to
disambiguate?

• Can code be law?

• And, what if there’s an error in
the code?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 4 / 49

On software certification Certification in action Model Checking Looking ahead

Law and Code

• Law essentially discretional
powers when applied

• Hence, ambiguity is needed

• Any automated process and in
particular, any automated
process in the legal sector need
unambiguity

• The programmer needs to
disambiguate?

• Can code be law?

• And, what if there’s an error in
the code?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 4 / 49

On software certification Certification in action Model Checking Looking ahead

Law and Code

• Law essentially discretional
powers when applied

• Hence, ambiguity is needed

• Any automated process and in
particular, any automated
process in the legal sector need
unambiguity

• The programmer needs to
disambiguate?

• Can code be law?

• And, what if there’s an error in
the code?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 4 / 49

On software certification Certification in action Model Checking Looking ahead

Law and Code

• Law essentially discretional
powers when applied

• Hence, ambiguity is needed

• Any automated process and in
particular, any automated
process in the legal sector need
unambiguity

• The programmer needs to
disambiguate?

• Can code be law?

• And, what if there’s an error in
the code?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 4 / 49

On software certification Certification in action Model Checking Looking ahead

Doubtful results

• Bonus payment system of the
French Army:
Louvois/SourceSolde

• In 2012: 465 M € incorrect
payments

• It left some soldiers and their
families without any income at
all for months!

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 5 / 49

On software certification Certification in action Model Checking Looking ahead

Doubtful results

• Bonus payment system of the
French Army:
Louvois/SourceSolde

• In 2012: 465 M € incorrect
payments

• It left some soldiers and their
families without any income at
all for months!

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 5 / 49

On software certification Certification in action Model Checking Looking ahead

Doubtful results

• Bonus payment system of the
French Army:
Louvois/SourceSolde

• In 2012: 465 M € incorrect
payments

• It left some soldiers and their
families without any income at
all for months!

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 5 / 49

On software certification Certification in action Model Checking Looking ahead

Closer to (my) house: Civio vs Bosco

The Bosco computer program : errors in the computation of the social
welfare bonuses
Least requirement: access to source code
In France it is mandatory to publish source code of software that is used in
public administration.
However, access to source code will not resolve all problems

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 6 / 49

On software certification Certification in action Model Checking Looking ahead

Evidencias dudosas

• In three law-suits in the USA, the defence requested to open the
proprietary source code to the jury of DNA sequencing software
since there were some doubts.
• STRmix

• FST
• TrueAllele (not granted)

• In two cases the request was granted

• Again, access to the source code will not solve all problems!

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 7 / 49

On software certification Certification in action Model Checking Looking ahead

Evidencias dudosas

• In three law-suits in the USA, the defence requested to open the
proprietary source code to the jury of DNA sequencing software
since there were some doubts.
• STRmix
• FST

• TrueAllele (not granted)

• In two cases the request was granted

• Again, access to the source code will not solve all problems!

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 7 / 49

On software certification Certification in action Model Checking Looking ahead

Evidencias dudosas

• In three law-suits in the USA, the defence requested to open the
proprietary source code to the jury of DNA sequencing software
since there were some doubts.
• STRmix
• FST
• TrueAllele (not granted)

• In two cases the request was granted

• Again, access to the source code will not solve all problems!

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 7 / 49

On software certification Certification in action Model Checking Looking ahead

Evidencias dudosas

• In three law-suits in the USA, the defence requested to open the
proprietary source code to the jury of DNA sequencing software
since there were some doubts.
• STRmix
• FST
• TrueAllele (not granted)

• In two cases the request was granted

• Again, access to the source code will not solve all problems!

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 7 / 49

On software certification Certification in action Model Checking Looking ahead

Evidencias dudosas

• In three law-suits in the USA, the defence requested to open the
proprietary source code to the jury of DNA sequencing software
since there were some doubts.
• STRmix
• FST
• TrueAllele (not granted)

• In two cases the request was granted

• Again, access to the source code will not solve all problems!

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 7 / 49

On software certification Certification in action Model Checking Looking ahead

What is certification?

• Is it just a matter of trust?
(combined with some sanity
checks and experience)

• Certificate =⇒ something is
certain

• Verify =⇒ something is
veridical

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 8 / 49

On software certification Certification in action Model Checking Looking ahead

What is certification?

• Is it just a matter of trust?
(combined with some sanity
checks and experience)

• Certificate =⇒ something is
certain

• Verify =⇒ something is
veridical

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 8 / 49

On software certification Certification in action Model Checking Looking ahead

What is certification?

• Is it just a matter of trust?
(combined with some sanity
checks and experience)

• Certificate =⇒ something is
certain

• Verify =⇒ something is
veridical

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 8 / 49

On software certification Certification in action Model Checking Looking ahead

The impossibility of unrestricted certification

• A mathematical theorem:

• Unrestricted certification is
impossible.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 9 / 49

On software certification Certification in action Model Checking Looking ahead

The impossibility of unrestricted certification

• A mathematical theorem:

• Unrestricted certification is
impossible.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 9 / 49

On software certification Certification in action Model Checking Looking ahead

Restricted certification is possible

We call a program P a universal certifier (wrt its language) when P takes
two inputs

1 another program Q in a language compatible with P and,

2 a specification S in a language compatible with P that describes the
behaviour of the program Q;

and, given two inputs Q and S , the program P outputs:

• “YES” if the program Q does what is said by S and, it will ouput

• “NO” if the program Q does something different as that what is
claimed by S .

Theorem

There does not exist a universal certifier.
This holds for any reasonable class of languages.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 10 / 49

On software certification Certification in action Model Checking Looking ahead

Formally verified software

Components of formally verified/certified software

Σ A Specification: a non-ambiguous mathematical description
of the input-output behaviour of the software

Π Implementation: the code, the software, implementing the
algorithm that does the work.

∆ Proof: a mathematical proof that the program Π functions
as claimed by Σ

The specification Σ is written in a formal language (in our case, the
language of dependent types of the Coq proof assistant).
This begs the question: How to make the specification more
accessible to the general/judicial public?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 11 / 49

On software certification Certification in action Model Checking Looking ahead

What is verification?

Slides FV: González Bedmar

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 12 / 49

On software certification Certification in action Model Checking Looking ahead

What is verification?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 13 / 49

On software certification Certification in action Model Checking Looking ahead

What is verification?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 14 / 49

On software certification Certification in action Model Checking Looking ahead

What is verification?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 15 / 49

On software certification Certification in action Model Checking Looking ahead

What is verification?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 16 / 49

On software certification Certification in action Model Checking Looking ahead

Seven years of research in Barcelona

Covenant between the University of Barcelona (FBG), Formal Vindications
S.L. & Guretruck S.L.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 17 / 49

On software certification Certification in action Model Checking Looking ahead

Three weeks ago in Barcelona

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 18 / 49

On software certification Certification in action Model Checking Looking ahead

Time library

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 19 / 49

On software certification Certification in action Model Checking Looking ahead

Most important feature: formally verified!
J.J. Joosten (UB) Formally Verified Software Groningen, May 18 20 / 49

On software certification Certification in action Model Checking Looking ahead

What is certification?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 21 / 49

On software certification Certification in action Model Checking Looking ahead

Around one-thousand times more expensive!

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 22 / 49

On software certification Certification in action Model Checking Looking ahead

A central problem

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 23 / 49

On software certification Certification in action Model Checking Looking ahead

Public certification versus formal verification

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 24 / 49

On software certification Certification in action Model Checking Looking ahead

Slides Catala: Merigoux

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 25 / 49

On software certification Certification in action Model Checking Looking ahead

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 26 / 49

On software certification Certification in action Model Checking Looking ahead

Can code be the law?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 27 / 49

On software certification Certification in action Model Checking Looking ahead

Further benefits of formalisation

minute labelling
no shift

minute labelling
shift d

second labelling

0 1 2 3

0 1 2 3

d

� Rest
� Driving

We proved that the labelling is not shift-invariant!

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 28 / 49

On software certification Certification in action Model Checking Looking ahead

Some regulations regarding weekly rest periods

Regulation (EC) No 561/2006
§8.6. In any two consecutive weeks, a driver shall take at least:

• two regular weekly rest periods [of at least 45 hours], or

• one regular weekly rest period and one reduced weekly rest period of
at least 24 hours. However, the reduction shall be compensated by an
equivalent period of rest taken en bloc before the end of the third
week following the week in question.

A weekly rest period shall start no later than at the end of six 24-hour
periods from the end of the previous weekly rest period.

§8.9. A weekly rest period that falls in two weeks may be counted in either
week, but not in both.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 29 / 49

On software certification Certification in action Model Checking Looking ahead

Let’s break it down...

• Regular weekly rest: ≥ 45 hours

• Reduced weekly rest: ≥ 24 hours

• Each rest period is assigned to only one week it intersects

• Every week must have a regular or reduced weekly rest

• Every other week must have a full weekly rest

• Any reduced rest must be compensated by a continuous block in the
following three weeks

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 30 / 49

On software certification Certification in action Model Checking Looking ahead

Let’s break it down...

• Regular weekly rest: ≥ 45 hours

• Reduced weekly rest: ≥ 24 hours

• Each rest period is assigned to only one week it intersects

• Every week must have a regular or reduced weekly rest

• Every other week must have a full weekly rest

• Any reduced rest must be compensated by a continuous block in the
following three weeks

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 30 / 49

On software certification Certification in action Model Checking Looking ahead

Let’s break it down...

• Regular weekly rest: ≥ 45 hours

• Reduced weekly rest: ≥ 24 hours

• Each rest period is assigned to only one week it intersects

• Every week must have a regular or reduced weekly rest

• Every other week must have a full weekly rest

• Any reduced rest must be compensated by a continuous block in the
following three weeks

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 30 / 49

On software certification Certification in action Model Checking Looking ahead

Let’s break it down...

• Regular weekly rest: ≥ 45 hours

• Reduced weekly rest: ≥ 24 hours

• Each rest period is assigned to only one week it intersects

• Every week must have a regular or reduced weekly rest

• Every other week must have a full weekly rest

• Any reduced rest must be compensated by a continuous block in the
following three weeks

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 30 / 49

On software certification Certification in action Model Checking Looking ahead

Let’s break it down...

• Regular weekly rest: ≥ 45 hours

• Reduced weekly rest: ≥ 24 hours

• Each rest period is assigned to only one week it intersects

• Every week must have a regular or reduced weekly rest

• Every other week must have a full weekly rest

• Any reduced rest must be compensated by a continuous block in the
following three weeks

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 30 / 49

On software certification Certification in action Model Checking Looking ahead

Let’s break it down...

• Regular weekly rest: ≥ 45 hours

• Reduced weekly rest: ≥ 24 hours

• Each rest period is assigned to only one week it intersects

• Every week must have a regular or reduced weekly rest

• Every other week must have a full weekly rest

• Any reduced rest must be compensated by a continuous block in the
following three weeks

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 30 / 49

On software certification Certification in action Model Checking Looking ahead

Combinatorics of rest assignments

Can we assign a week to each rest period so that each week is assigned to
at least one rest period?

A B C D E F G

In principle this is an NP problem (assign 0 or 1 to each rest period
according to whether it should belong to the earlier week or the later
week).

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 31 / 49

On software certification Certification in action Model Checking Looking ahead

Combinatorics of rest assignments

Can we assign a week to each rest period so that each week is assigned to
at least one rest period?

A B C D E F G

In principle this is an NP problem (assign 0 or 1 to each rest period
according to whether it should belong to the earlier week or the later
week).

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 31 / 49

On software certification Certification in action Model Checking Looking ahead

Non-locality of compensations

A

44 45 45 45 24 45

B

Illegal

A

44 45 44+1 45 24 45+1

Legal

44

A

45 45 24 45

B

This can be iterated indefinitely: non-locality

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 32 / 49

On software certification Certification in action Model Checking Looking ahead

Non-locality of compensations

A

44 45 45 45 24 45

B

Illegal

A

44 45 44+1 45 24 45+1

Legal

44

A

45 45 24 45

B

This can be iterated indefinitely: non-locality

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 32 / 49

On software certification Certification in action Model Checking Looking ahead

Non-locality of compensations

A

44 45 45 45 24 45

B

Illegal

A

44 45 44+1 45 24 45+1

Legal

44

A

45 45 24 45

B

This can be iterated indefinitely: non-locality

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 32 / 49

On software certification Certification in action Model Checking Looking ahead

Lab activities

• Regulation analysis via logical/mathematical analysis

• Is the regulation consistent?
• Is the implied behaviour of the regulation desirable?

• Shift-invariance of labelling, locality of legality checks, etc.
• But also: if x and y are similar data containers (e.g., formal repr. of

persons) with the only difference that x has one passport and y has
two passports, will the program behave the same for x and y?

• Are the algorithms implied computationally feasible?

• Implement software in a ZERO-ERROR fashion using proof assistants.

• Develop general purpose models with the above considerations taken
into account so that zero-error software scales.

• Provide verified software with a dialogue fragment that enables a
possible rudimentary dialogue between the user and the software
about the software’s behaviour

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 33 / 49

On software certification Certification in action Model Checking Looking ahead

Lab activities

• Regulation analysis via logical/mathematical analysis
• Is the regulation consistent?

• Is the implied behaviour of the regulation desirable?

• Shift-invariance of labelling, locality of legality checks, etc.
• But also: if x and y are similar data containers (e.g., formal repr. of

persons) with the only difference that x has one passport and y has
two passports, will the program behave the same for x and y?

• Are the algorithms implied computationally feasible?

• Implement software in a ZERO-ERROR fashion using proof assistants.

• Develop general purpose models with the above considerations taken
into account so that zero-error software scales.

• Provide verified software with a dialogue fragment that enables a
possible rudimentary dialogue between the user and the software
about the software’s behaviour

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 33 / 49

On software certification Certification in action Model Checking Looking ahead

Lab activities

• Regulation analysis via logical/mathematical analysis
• Is the regulation consistent?
• Is the implied behaviour of the regulation desirable?

• Shift-invariance of labelling, locality of legality checks, etc.
• But also: if x and y are similar data containers (e.g., formal repr. of

persons) with the only difference that x has one passport and y has
two passports, will the program behave the same for x and y?

• Are the algorithms implied computationally feasible?

• Implement software in a ZERO-ERROR fashion using proof assistants.

• Develop general purpose models with the above considerations taken
into account so that zero-error software scales.

• Provide verified software with a dialogue fragment that enables a
possible rudimentary dialogue between the user and the software
about the software’s behaviour

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 33 / 49

On software certification Certification in action Model Checking Looking ahead

Lab activities

• Regulation analysis via logical/mathematical analysis
• Is the regulation consistent?
• Is the implied behaviour of the regulation desirable?

• Shift-invariance of labelling, locality of legality checks, etc.

• But also: if x and y are similar data containers (e.g., formal repr. of
persons) with the only difference that x has one passport and y has
two passports, will the program behave the same for x and y?

• Are the algorithms implied computationally feasible?

• Implement software in a ZERO-ERROR fashion using proof assistants.

• Develop general purpose models with the above considerations taken
into account so that zero-error software scales.

• Provide verified software with a dialogue fragment that enables a
possible rudimentary dialogue between the user and the software
about the software’s behaviour

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 33 / 49

On software certification Certification in action Model Checking Looking ahead

Lab activities

• Regulation analysis via logical/mathematical analysis
• Is the regulation consistent?
• Is the implied behaviour of the regulation desirable?

• Shift-invariance of labelling, locality of legality checks, etc.
• But also: if x and y are similar data containers (e.g., formal repr. of

persons) with the only difference that x has one passport and y has
two passports, will the program behave the same for x and y?

• Are the algorithms implied computationally feasible?

• Implement software in a ZERO-ERROR fashion using proof assistants.

• Develop general purpose models with the above considerations taken
into account so that zero-error software scales.

• Provide verified software with a dialogue fragment that enables a
possible rudimentary dialogue between the user and the software
about the software’s behaviour

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 33 / 49

On software certification Certification in action Model Checking Looking ahead

Lab activities

• Regulation analysis via logical/mathematical analysis
• Is the regulation consistent?
• Is the implied behaviour of the regulation desirable?

• Shift-invariance of labelling, locality of legality checks, etc.
• But also: if x and y are similar data containers (e.g., formal repr. of

persons) with the only difference that x has one passport and y has
two passports, will the program behave the same for x and y?

• Are the algorithms implied computationally feasible?

• Implement software in a ZERO-ERROR fashion using proof assistants.

• Develop general purpose models with the above considerations taken
into account so that zero-error software scales.

• Provide verified software with a dialogue fragment that enables a
possible rudimentary dialogue between the user and the software
about the software’s behaviour

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 33 / 49

On software certification Certification in action Model Checking Looking ahead

Lab activities

• Regulation analysis via logical/mathematical analysis
• Is the regulation consistent?
• Is the implied behaviour of the regulation desirable?

• Shift-invariance of labelling, locality of legality checks, etc.
• But also: if x and y are similar data containers (e.g., formal repr. of

persons) with the only difference that x has one passport and y has
two passports, will the program behave the same for x and y?

• Are the algorithms implied computationally feasible?

• Implement software in a ZERO-ERROR fashion using proof assistants.

• Develop general purpose models with the above considerations taken
into account so that zero-error software scales.

• Provide verified software with a dialogue fragment that enables a
possible rudimentary dialogue between the user and the software
about the software’s behaviour

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 33 / 49

On software certification Certification in action Model Checking Looking ahead

Lab activities

• Regulation analysis via logical/mathematical analysis
• Is the regulation consistent?
• Is the implied behaviour of the regulation desirable?

• Shift-invariance of labelling, locality of legality checks, etc.
• But also: if x and y are similar data containers (e.g., formal repr. of

persons) with the only difference that x has one passport and y has
two passports, will the program behave the same for x and y?

• Are the algorithms implied computationally feasible?

• Implement software in a ZERO-ERROR fashion using proof assistants.

• Develop general purpose models with the above considerations taken
into account so that zero-error software scales.

• Provide verified software with a dialogue fragment that enables a
possible rudimentary dialogue between the user and the software
about the software’s behaviour

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 33 / 49

On software certification Certification in action Model Checking Looking ahead

Lab activities

• Regulation analysis via logical/mathematical analysis
• Is the regulation consistent?
• Is the implied behaviour of the regulation desirable?

• Shift-invariance of labelling, locality of legality checks, etc.
• But also: if x and y are similar data containers (e.g., formal repr. of

persons) with the only difference that x has one passport and y has
two passports, will the program behave the same for x and y?

• Are the algorithms implied computationally feasible?

• Implement software in a ZERO-ERROR fashion using proof assistants.

• Develop general purpose models with the above considerations taken
into account so that zero-error software scales.

• Provide verified software with a dialogue fragment that enables a
possible rudimentary dialogue between the user and the software
about the software’s behaviour

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 33 / 49

On software certification Certification in action Model Checking Looking ahead

Lab activities

• Develop explanatory certificates by

• choosing ontologies of the right granularity to define semi-formal
language

• conversion of lambda-terms to ones using in these
ontologies/constructors

• Zero-knowledge certificates for proprietary software!
• Standards and good practices for public certification.
• A formal subset of natural language (domain specific) to bridge the

gap between formal specifications and technical specifications (public
certification)
• Teaching courses on formal verification/certification techniques (and

consulting)
• Adding to Coq development and libraries
• Study impact of techniques on society and ethical/legal principles,

e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc
• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49

On software certification Certification in action Model Checking Looking ahead

Lab activities

• Develop explanatory certificates by
• choosing ontologies of the right granularity to define semi-formal

language

• conversion of lambda-terms to ones using in these
ontologies/constructors

• Zero-knowledge certificates for proprietary software!
• Standards and good practices for public certification.
• A formal subset of natural language (domain specific) to bridge the

gap between formal specifications and technical specifications (public
certification)
• Teaching courses on formal verification/certification techniques (and

consulting)
• Adding to Coq development and libraries
• Study impact of techniques on society and ethical/legal principles,

e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc
• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49

On software certification Certification in action Model Checking Looking ahead

Lab activities

• Develop explanatory certificates by
• choosing ontologies of the right granularity to define semi-formal

language
• conversion of lambda-terms to ones using in these

ontologies/constructors

• Zero-knowledge certificates for proprietary software!
• Standards and good practices for public certification.
• A formal subset of natural language (domain specific) to bridge the

gap between formal specifications and technical specifications (public
certification)
• Teaching courses on formal verification/certification techniques (and

consulting)
• Adding to Coq development and libraries
• Study impact of techniques on society and ethical/legal principles,

e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc
• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49

On software certification Certification in action Model Checking Looking ahead

Lab activities

• Develop explanatory certificates by
• choosing ontologies of the right granularity to define semi-formal

language
• conversion of lambda-terms to ones using in these

ontologies/constructors
• Zero-knowledge certificates for proprietary software!

• Standards and good practices for public certification.
• A formal subset of natural language (domain specific) to bridge the

gap between formal specifications and technical specifications (public
certification)
• Teaching courses on formal verification/certification techniques (and

consulting)
• Adding to Coq development and libraries
• Study impact of techniques on society and ethical/legal principles,

e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc
• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49

On software certification Certification in action Model Checking Looking ahead

Lab activities

• Develop explanatory certificates by
• choosing ontologies of the right granularity to define semi-formal

language
• conversion of lambda-terms to ones using in these

ontologies/constructors
• Zero-knowledge certificates for proprietary software!
• Standards and good practices for public certification.

• A formal subset of natural language (domain specific) to bridge the
gap between formal specifications and technical specifications (public
certification)
• Teaching courses on formal verification/certification techniques (and

consulting)
• Adding to Coq development and libraries
• Study impact of techniques on society and ethical/legal principles,

e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc
• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49

On software certification Certification in action Model Checking Looking ahead

Lab activities

• Develop explanatory certificates by
• choosing ontologies of the right granularity to define semi-formal

language
• conversion of lambda-terms to ones using in these

ontologies/constructors
• Zero-knowledge certificates for proprietary software!
• Standards and good practices for public certification.
• A formal subset of natural language (domain specific) to bridge the

gap between formal specifications and technical specifications (public
certification)

• Teaching courses on formal verification/certification techniques (and
consulting)
• Adding to Coq development and libraries
• Study impact of techniques on society and ethical/legal principles,

e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc
• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49

On software certification Certification in action Model Checking Looking ahead

Lab activities

• Develop explanatory certificates by
• choosing ontologies of the right granularity to define semi-formal

language
• conversion of lambda-terms to ones using in these

ontologies/constructors
• Zero-knowledge certificates for proprietary software!
• Standards and good practices for public certification.
• A formal subset of natural language (domain specific) to bridge the

gap between formal specifications and technical specifications (public
certification)
• Teaching courses on formal verification/certification techniques (and

consulting)

• Adding to Coq development and libraries
• Study impact of techniques on society and ethical/legal principles,

e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc
• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49

On software certification Certification in action Model Checking Looking ahead

Lab activities

• Develop explanatory certificates by
• choosing ontologies of the right granularity to define semi-formal

language
• conversion of lambda-terms to ones using in these

ontologies/constructors
• Zero-knowledge certificates for proprietary software!
• Standards and good practices for public certification.
• A formal subset of natural language (domain specific) to bridge the

gap between formal specifications and technical specifications (public
certification)
• Teaching courses on formal verification/certification techniques (and

consulting)
• Adding to Coq development and libraries

• Study impact of techniques on society and ethical/legal principles,
e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc
• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49

On software certification Certification in action Model Checking Looking ahead

Lab activities

• Develop explanatory certificates by
• choosing ontologies of the right granularity to define semi-formal

language
• conversion of lambda-terms to ones using in these

ontologies/constructors
• Zero-knowledge certificates for proprietary software!
• Standards and good practices for public certification.
• A formal subset of natural language (domain specific) to bridge the

gap between formal specifications and technical specifications (public
certification)
• Teaching courses on formal verification/certification techniques (and

consulting)
• Adding to Coq development and libraries
• Study impact of techniques on society and ethical/legal principles,

e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc

• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49

On software certification Certification in action Model Checking Looking ahead

Lab activities

• Develop explanatory certificates by
• choosing ontologies of the right granularity to define semi-formal

language
• conversion of lambda-terms to ones using in these

ontologies/constructors
• Zero-knowledge certificates for proprietary software!
• Standards and good practices for public certification.
• A formal subset of natural language (domain specific) to bridge the

gap between formal specifications and technical specifications (public
certification)
• Teaching courses on formal verification/certification techniques (and

consulting)
• Adding to Coq development and libraries
• Study impact of techniques on society and ethical/legal principles,

e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc
• etc.J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 / 49

On software certification Certification in action Model Checking Looking ahead

The central computational problem of algorithmic law

(Work and slides with Moritz Müller)
Need to formalize activity sequences and laws

• formalize activity sequences are words w ∈ Σ∗ over a finite alphabet Σ
e.g, dddrrw formalizes 6 minutes of activities in Σ = {d , r ,w}.

• formalize a law by a sentence in a suitable logic L.

Need algorithm that decides the computational problem

MC(Σ∗, L)
Input: a word w ∈ Σ∗ and a sentence ϕ ∈ L
Problem: is w legal according to ϕ, i.e. w |= ϕ ?

MC(Σ∗, L) is a formal model for algorithmic law (on activity sequences).
Question For which L is it good?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 35 / 49

On software certification Certification in action Model Checking Looking ahead

Candidate: monadic second order logic MSO

Starting point
Borges, Conejero, Fernández-Duque, González, Joosten.
To drive or not to drive: A logical and computational analysis of European
transport regulations. Information and Computation 280, 2021.
• naturally formalizes Regulation 561.
• model-checking in time f (|ϕ|) · |w |, Parameterized Complexity

where f : N→ N is some computable function.
• but f grows very fast:

Theorem (Frick, Grohe 04)
Assume P 6= NP. Then MC(Σ∗,MSO) is not decidable in time

f (|ϕ|) · |w |O(1)

for elementary f : N→ N.

Hence MSO is not sufficiently tractable.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 36 / 49

On software certification Certification in action Model Checking Looking ahead

Candidate: linear time temporal logic LTL

Model-checking in time O(|ϕ| · |w |), but not sufficiently expressive and not
sufficiently succinct (BRFB21)
Example Article 6.2: The weekly driving time shall not

exceed 56 hours

Straightforwardly formalized over words of length 1w : disjunction of∧
d≤D

(∧
rd≤i<`d+1

#i¬d ∧
∧

`d≤i<rd
#id

)
for all D ≤ 1w and
all r0 := 0 ≤ `1 < r1 < · · · < `D < rD < `D+1 := 1w with∑
1≤j≤D

(rj − `j) ≤ 56h

This has >
(7·24·60

56·60

)
> 102784 many disjuncts.

Warning
Algorithmic laws could use large constants for time constraints.
Model-checking complexity should scale well with them.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 37 / 49

On software certification Certification in action Model Checking Looking ahead

Which MC(Σ∗, L) are good models for algorithmic law?

Tractability
sufficiently fast model-checkers
fine-grained complexity analysis: parameterized complexity theory
important parameter: large time constants in law

Expressivity
test case: formalize Regulation 561

Naturality
readable sentences
sufficiently succinct

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 38 / 49

On software certification Certification in action Model Checking Looking ahead

Stopwatch automata SWA: syntax

Stopwatch automaton A
Q finite set of states including start, accept
X finite set of stopwatches
λ maps q ∈ Q to λ(q) ∈ Σ
β maps x ∈ X to bound β(x) ∈ N
ζ is the set of (x , q) ∈ X × Q such that x is active in q
∆ is the set of transitions (q, g , α, q′)

where q, q′ ∈ Q, g is a guard, α is an action.

Assignment ξ maps x ∈ X to ξ(x) ≤ β(x)
Guard g is a set of assignments
Action α maps assignments to assignments

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 39 / 49

On software certification Certification in action Model Checking Looking ahead

Stopwatch automata SWA: semantics

Transition system of A
configurations (q, ξ)

switch edges (q, ξ)
0→ (q′, ξ′)

whenever (q, g , α, q′) ∈ ∆, ξ ∈ g , ξ′ = α(ξ)

stay edges (q, ξ)
t→ (q, ξ′)

where ξ′ increases ξ(x) for x active in q to min{ξ(x)+t, β(x)}

Computation (q0, ξ0)
t0→ (q1, ξ1)

t1→ (q2, ξ2)
t2→ · · · t`−1→ (q`, ξ`)

reads w := λ(q0)t0 λ(q1)t1 · · ·λ(q`−1)t`−1

accepts if q0 = start, ξ0 ≡ 0, q` = accept, qi 6= accept for i < `.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 40 / 49

On software certification Certification in action Model Checking Looking ahead

Example: continuous driving

Article 7 (1st part): After a driving period of four and a

half hours a driver shall take an uninterrupted break of

not less than 45 minutes,...

(drive, 00)
3→ (drive, 30)

0→ (break , 30)
2→ (break , 32)

0→ (work , 32)
0→

(break , 30)
reads dddrr

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 41 / 49

On software certification Certification in action Model Checking Looking ahead

Example: continuous driving

Article 7 (1st part): After a driving period of four and a

half hours a driver shall take an uninterrupted break of

not less than 45 minutes,...

(drive, 00)
3→ (drive, 30)

0→ (break , 30)
2→ (break , 32)

0→ (work , 32)
0→

(break , 30)
reads dddrr

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 41 / 49

On software certification Certification in action Model Checking Looking ahead

Example: continuous driving

Article 7 (1st part): After a driving period of four and a

half hours a driver shall take an uninterrupted break of

not less than 45 minutes,...

(drive, 00)
3→ (drive, 30)

0→ (break , 30)
2→ (break , 32)

0→ (work , 32)
0→

(break , 30)
reads dddrr

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 41 / 49

On software certification Certification in action Model Checking Looking ahead

Example: continuous driving

Article 7 (1st part): After a driving period of four and a

half hours a driver shall take an uninterrupted break of

not less than 45 minutes,...

(drive, 00)
3→ (drive, 30)

0→ (break , 30)
2→ (break , 32)

0→ (work , 32)
0→

(break , 30)
reads dddrr

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 41 / 49

On software certification Certification in action Model Checking Looking ahead

Example: continuous driving

Article 7 (1st part): After a driving period of four and a

half hours a driver shall take an uninterrupted break of

not less than 45 minutes,...

(drive, 00)
3→ (drive, 30)

0→ (break , 30)
2→ (break , 32)

0→ (work , 32)
0→

(break , 30)
reads dddrr

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 41 / 49

On software certification Certification in action Model Checking Looking ahead

Example: continuous driving

Article 7 (1st part): After a driving period of four and a

half hours a driver shall take an uninterrupted break of

not less than 45 minutes,...

(drive, 00)
3→ (drive, 30)

0→ (break , 30)
2→ (break , 32)

0→ (work , 32)
0→

(break , 30)
reads dddrr

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 41 / 49

On software certification Certification in action Model Checking Looking ahead

Example: continuous driving

Article 7 (1st part): After a driving period of four and a

half hours a driver shall take an uninterrupted break of

not less than 45 minutes,...

(drive, 00)
3→ (drive, 30)

0→ (break , 30)
2→ (break , 32)

0→ (work , 32)
0→

(break , 30)
reads dddrr

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 41 / 49

On software certification Certification in action Model Checking Looking ahead

Example: continuous driving

Article 7 (1st part): After a driving period of four and a

half hours a driver shall take an uninterrupted break of

not less than 45 minutes,...

(drive, 00)
3→ (drive, 30)

0→ (break , 30)
2→ (break , 32)

0→ (work , 32)
0→

(break , 30)
reads dddrr

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 41 / 49

On software certification Certification in action Model Checking Looking ahead

Automaton that accepts exactly the legal words according
to Reg. 561

week

xweek, xday

break

xbreak, xday,
xweek

reg daily

xdr, xday,
xweek

red daily

xdr, xday,
xweek

reg weekly

xwr, xday,
xweek

red weekly

xwr, xday,
xweek

r

drive

xcd, xday,
xdd, xweek,
xww, xdw

other work

xww, xday,
xweek

w
d

compensate1

xcr, xday,
xweek

compensate2

xcr, xday,
xweek

r

accept

12 states
> 100 transitions
34 stopwatches
23 are nowhere active:

bits
counters
registers

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 42 / 49

On software certification Certification in action Model Checking Looking ahead

> 100 transitions

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 43 / 49

On software certification Certification in action Model Checking Looking ahead

Expressivity and model-checking

Theorem
A set of words is accepted by an SWA iff it is definable in MSO.
Theorem
There is an algorithm that decides

Input: stopwatch automaton A and a word w over Σ
Problem: does A accepts w ?

in time
O
(
|A|2 · tx · |w |

)
where

t := largest stopwatch bound of A
x := number of stopwatches of A

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 44 / 49

On software certification Certification in action Model Checking Looking ahead

Consistency-checking

Theorem
There is an algorithm that decides

Input: SWAs A,B
Problem: is there a word accepted by both A and B ?

in time
O(|A|3 · |B|3 · tx · sy)

where
t := largest stopwatch bound of A
x := number of stopwatches of A
s := largest stopwatch bound of B
y := number of stopwatches of B

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 45 / 49

On software certification Certification in action Model Checking Looking ahead

Scheduling

Theorem
There is an algorithm that decides

Input: SWA A, letter a ∈ Σ, word w over Σ, n ∈ N
Problem: compute length n word v over Σ such that

A accepts wv
v maximizes #a(v)

in time
O
(
|A|2 · tx · (|w |+ n)

)
where

t := largest stopwatch bound of A
x := number of stopwatches of A

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 46 / 49

On software certification Certification in action Model Checking Looking ahead

Lower bound

Know: MC(Σ∗, SWA) decidable in time O
(
|A|2 · tx · |w |

)
Doubt: Is tx tolerable? Can it be improved?

Interesting instances have large t and small x .
Question: replace tx by 100100·x · t100 ?

Theorem
Assume FPT 6= W[1]. Let f : N→ N be a computable function.
Then MC(Σ∗, SWA) cannot be decided in time(

|A| · f (x) · t · |w |
)O(1)

.

Question: Can we hardwire large constants in the data structure using
Hybrid Modal Logic?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 47 / 49

On software certification Certification in action Model Checking Looking ahead

Some further development

• Study if data-representation can improve complexity of model
checking;

• Define/carve out a language that corresponds naturally to bounded
stopwatch automata;

• Formally verify the meta-theorems of model checking;

• Write a formally verified implementation of the model checker;

• Provide a front-end interface to build your law yourself;

• Translate automata to semi-natural language description of the
regulation;

• etc.

• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 48 / 49

On software certification Certification in action Model Checking Looking ahead

Some further development

• Study if data-representation can improve complexity of model
checking;

• Define/carve out a language that corresponds naturally to bounded
stopwatch automata;

• Formally verify the meta-theorems of model checking;

• Write a formally verified implementation of the model checker;

• Provide a front-end interface to build your law yourself;

• Translate automata to semi-natural language description of the
regulation;

• etc.

• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 48 / 49

On software certification Certification in action Model Checking Looking ahead

Some further development

• Study if data-representation can improve complexity of model
checking;

• Define/carve out a language that corresponds naturally to bounded
stopwatch automata;

• Formally verify the meta-theorems of model checking;

• Write a formally verified implementation of the model checker;

• Provide a front-end interface to build your law yourself;

• Translate automata to semi-natural language description of the
regulation;

• etc.

• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 48 / 49

On software certification Certification in action Model Checking Looking ahead

Some further development

• Study if data-representation can improve complexity of model
checking;

• Define/carve out a language that corresponds naturally to bounded
stopwatch automata;

• Formally verify the meta-theorems of model checking;

• Write a formally verified implementation of the model checker;

• Provide a front-end interface to build your law yourself;

• Translate automata to semi-natural language description of the
regulation;

• etc.

• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 48 / 49

On software certification Certification in action Model Checking Looking ahead

Some further development

• Study if data-representation can improve complexity of model
checking;

• Define/carve out a language that corresponds naturally to bounded
stopwatch automata;

• Formally verify the meta-theorems of model checking;

• Write a formally verified implementation of the model checker;

• Provide a front-end interface to build your law yourself;

• Translate automata to semi-natural language description of the
regulation;

• etc.

• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 48 / 49

On software certification Certification in action Model Checking Looking ahead

Some further development

• Study if data-representation can improve complexity of model
checking;

• Define/carve out a language that corresponds naturally to bounded
stopwatch automata;

• Formally verify the meta-theorems of model checking;

• Write a formally verified implementation of the model checker;

• Provide a front-end interface to build your law yourself;

• Translate automata to semi-natural language description of the
regulation;

• etc.

• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 48 / 49

On software certification Certification in action Model Checking Looking ahead

Some further development

• Study if data-representation can improve complexity of model
checking;

• Define/carve out a language that corresponds naturally to bounded
stopwatch automata;

• Formally verify the meta-theorems of model checking;

• Write a formally verified implementation of the model checker;

• Provide a front-end interface to build your law yourself;

• Translate automata to semi-natural language description of the
regulation;

• etc.

• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 48 / 49

On software certification Certification in action Model Checking Looking ahead

Some further development

• Study if data-representation can improve complexity of model
checking;

• Define/carve out a language that corresponds naturally to bounded
stopwatch automata;

• Formally verify the meta-theorems of model checking;

• Write a formally verified implementation of the model checker;

• Provide a front-end interface to build your law yourself;

• Translate automata to semi-natural language description of the
regulation;

• etc.

• etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 48 / 49

On software certification Certification in action Model Checking Looking ahead

Thanks

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 49 / 49

	On software certification
	Certification in action
	Model Checking
	Looking ahead

