Quantified Reflection Calculus towards the polymodal case

Ana de Almeida Borges Joost J. Joosten

Universitat de Barcelona

Lectures on Logic and its Mathematical Aspects (Llama) Amsterdam (hybrid format!!!!) March 9, 2022

Formalised provability and applications

- Provability is a central notion in logic and metamathematics
- For theories like PA we can write a Σ_1 predicate $\Box_{PA}(\cdot)$ such that

$$\mathsf{PA} \vdash \varphi \quad \Longleftrightarrow \quad \mathbb{N} \models \Box_{\mathsf{PA}}(\ulcorner \varphi \urcorner)$$

Background QRC1 Relational semantics Arithmetical completeness Final remark •000000000000 00000 000000 000000 00000 00000

Formalised provability and applications

- Provability is a central notion in logic and metamathematics
- For theories like PA we can write a Σ_1 predicate $\Box_{\mathsf{PA}}(\cdot)$ such that

$$\mathsf{PA} \vdash \varphi \quad \Longleftrightarrow \quad \mathbb{N} \models \Box_{\mathsf{PA}}(\ulcorner \varphi \urcorner)$$

Some properties about the provability predicate:

• If $PA \vdash A$, then $PA \vdash \Box_{PA}A$ for any PA-sentence A

Background QRC1 Relational semantics Arithmetical completeness Final remar •000000000000 00000 000000 00000 00000 00000

Formalised provability and applications

- Provability is a central notion in logic and metamathematics
- For theories like PA we can write a Σ_1 predicate $\Box_{PA}(\cdot)$ such that

$$\mathsf{PA} \vdash \varphi \quad \Longleftrightarrow \quad \mathbb{N} \models \Box_{\mathsf{PA}}(\ulcorner \varphi \urcorner)$$

Some properties about the provability predicate:

• If $PA \vdash A$, then $PA \vdash \Box_{PA}A$ for any PA-sentence A

• If
$$PA \vdash \lambda \leftrightarrow \neg \Box_{PA}(\ulcorner \lambda \urcorner)$$
, then
 $PA \vdash \lambda \leftrightarrow \neg \Box_{PA}(\ulcorner 0 = 1 \urcorner)$, that is
 $PA \vdash \lambda \leftrightarrow \left(\Box_{PA}(\ulcorner 0 = 1 \urcorner) \rightarrow 0 = 1 \right)$

Formalised provability and applications

- Provability is a central notion in logic and metamathematics
- For theories like PA we can write a Σ_1 predicate $\Box_{PA}(\cdot)$ such that

$$\mathsf{PA} \vdash \varphi \quad \Longleftrightarrow \quad \mathbb{N} \models \Box_{\mathsf{PA}}(\ulcorner \varphi \urcorner)$$

Some properties about the provability predicate:

• If $PA \vdash A$, then $PA \vdash \Box_{PA}A$ for any PA-sentence A

• If
$$\mathsf{PA} \vdash \lambda \leftrightarrow \neg \Box_{\mathsf{PA}}(\ulcorner \lambda \urcorner)$$
, then
 $\mathsf{PA} \vdash \lambda \leftrightarrow \neg \Box_{\mathsf{PA}}(\ulcorner 0 = 1 \urcorner)$, that is
 $\mathsf{PA} \vdash \lambda \leftrightarrow \left(\Box_{\mathsf{PA}}(\ulcorner 0 = 1 \urcorner) \rightarrow 0 = 1\right)$

• $\mathsf{PA} \nvDash \Box_{\mathsf{PA}}(\ulcorner 0 = 1\urcorner) \to 0 = 1$

Background QRC1 Relational semantics Arithmetical completeness Final remained ●000000000000 00000 000000 000000 000000 000000

Formalised provability and applications

- Provability is a central notion in logic and metamathematics
- For theories like PA we can write a Σ_1 predicate $\Box_{PA}(\cdot)$ such that

$$\mathsf{PA} \vdash \varphi \quad \Longleftrightarrow \quad \mathbb{N} \models \Box_{\mathsf{PA}}(\ulcorner \varphi \urcorner)$$

Some properties about the provability predicate:

• If $PA \vdash A$, then $PA \vdash \Box_{PA}A$ for any PA-sentence A

• If
$$PA \vdash \lambda \leftrightarrow \neg \Box_{PA}(\ulcorner \lambda \urcorner)$$
, then
 $PA \vdash \lambda \leftrightarrow \neg \Box_{PA}(\ulcorner 0 = 1 \urcorner)$, that is
 $PA \vdash \lambda \leftrightarrow \left(\Box_{PA}(\ulcorner 0 = 1 \urcorner) \rightarrow 0 = 1 \right)$

•
$$\mathsf{PA} \nvDash \Box_{\mathsf{PA}}(\ulcorner 0 = 1\urcorner) \to 0 = 1$$

• $\mathsf{ZFC} \vdash \Box_{\mathsf{PA}}(\ulcorner 0 = 1\urcorner) \rightarrow 0 = 1$

 Background
 QRC1
 Relational semantics
 Arithmetical completeness
 Final remarks

 000000000000
 00000
 000000
 000000
 00000
 00000

Formalised provability and completess

• For theories like PA we can write a Σ_1 predicate $\Box_{\mathsf{PA}}(\cdot)$ such that

$\mathsf{PA} \vdash \varphi \quad \Longleftrightarrow \quad \mathbb{N} \models \Box_{\mathsf{PA}}(\ulcorner \varphi \urcorner)$

 Background
 QRC1
 Relational semantics
 Arithmetical completeness
 Final remarks

 000000000000
 00000
 000000
 00000
 00000
 00000

Formalised provability and completess

• For theories like PA we can write a Σ_1 predicate $\Box_{\mathsf{PA}}(\cdot)$ such that

 $\mathsf{PA} \vdash \varphi \quad \Longleftrightarrow \quad \mathbb{N} \models \Box_{\mathsf{PA}}(\ulcorner \varphi \urcorner)$

Theorem

The $\Box_{PA}(\cdot)$ predicate is Σ_1^0 -complete. That is, for each c.e. set A, there is an arithmetical formula $\rho_A(x)$ such that

$$A = \{n \in \mathbb{N} \mid \mathbb{N} \models \Box_{\mathsf{PA}}(\rho_A(n))\}.$$

 Background
 QRC1
 Relational semantics
 Arithmetical completeness
 Final remark

 000000000000
 00000
 000000
 00000
 00000
 00000

Formalised provability: provable structural properties

• $\mathsf{PA} \nvDash \Box_{\mathsf{PA}}(\ulcorner 0 = 1\urcorner) \to 0 = 1$

 Background
 QRC1
 Relational semantics
 Arithmetical completeness
 Final remark

 00000000000
 00000
 000000
 000000
 00000
 00000

Formalised provability: provable structural properties

- $\mathsf{PA} \nvDash \Box_{\mathsf{PA}}(\ulcorner 0 = 1\urcorner) \to 0 = 1$
- $\mathsf{PA} \vdash \Box_{\mathsf{PA}}(\ulcorner 1 = 1\urcorner) \rightarrow 1 = 1$

Formalised provability: provable structural properties

- $\mathsf{PA} \nvDash \Box_{\mathsf{PA}}(\ulcorner 0 = 1\urcorner) \to 0 = 1$
- $\mathsf{PA} \vdash \Box_{\mathsf{PA}}(\ulcorner 1 = 1 \urcorner) \rightarrow 1 = 1$
- Löb's Theorem:

If $\mathsf{PA} \vdash \Box_{\mathsf{PA}}(\ulcorner A \urcorner) \rightarrow A$, then $\mathsf{PA} \vdash A$, for any PA formula A

Formalised provability: provable structural properties

- $\mathsf{PA} \nvDash \Box_{\mathsf{PA}}(\ulcorner 0 = 1\urcorner) \to 0 = 1$
- $\mathsf{PA} \vdash \Box_{\mathsf{PA}}(\ulcorner 1 = 1\urcorner) \rightarrow 1 = 1$
- Löb's Theorem:

If $\mathsf{PA} \vdash \Box_{\mathsf{PA}}(\ulcorner A \urcorner) \rightarrow A$, then $\mathsf{PA} \vdash A$, for any PA formula A

• Formalised Löb's Theorem (ignoring GNs):

$$\mathsf{PA} \vdash \Box_{\mathsf{PA}} \Big(\Box_{\mathsf{PA}} A \to A \Big) \to \Box_{\mathsf{PA}} A$$

for any PA formula A

Formalised provability: provable structural properties

- $\mathsf{PA} \nvDash \Box_{\mathsf{PA}}(\ulcorner 0 = 1\urcorner) \to 0 = 1$
- $\mathsf{PA} \vdash \Box_{\mathsf{PA}}(\ulcorner 1 = 1\urcorner) \rightarrow 1 = 1$
- Löb's Theorem:

If $\mathsf{PA} \vdash \Box_{\mathsf{PA}}(\ulcorner A \urcorner) \rightarrow A$, then $\mathsf{PA} \vdash A$, for any PA formula A

• Formalised Löb's Theorem (ignoring GNs):

$$\mathsf{PA} \vdash \Box_{\mathsf{PA}} \Big(\Box_{\mathsf{PA}} A \to A \Big) \to \Box_{\mathsf{PA}} A$$

for any PA formula A

- Characterise all provably structural properties in two steps
 - \mathcal{L}_{\Box} with $\mathsf{Form}_{\Box} := \bot | \mathsf{Prop} | \mathsf{Form}_{\Box} \to \mathsf{Form}_{\Box} | \Box \mathsf{Form}_{\Box}$
 - Define a denotation of \mathcal{L}_{\Box} formulas inside the \mathcal{L}_{PA} formulas

Arithmetical realizations

An arithmetical realization is any function $(\cdot)^*$ taking:

formulas in $\mathcal{L}_{\Box} \rightarrow$ sentences in \mathcal{L}_{PA} propositional variables \rightarrow arithmetical sentences boolean connectives \rightarrow boolean connectives $\Box \rightarrow \Box_{PA}$

Arithmetical realizations

An arithmetical realization is any function $(\cdot)^*$ taking:

formulas in $\mathcal{L}_{\Box} \rightarrow$ sentences in \mathcal{L}_{PA} propositional variables \rightarrow arithmetical sentences boolean connectives \rightarrow boolean connectives $\Box \rightarrow \Box_{PA}$

Clearly, for any realization $(\cdot)^{\star}$ we have for example

$$\mathsf{PA} \vdash \left(\Box(p
ightarrow q)
ightarrow \left(\Box p
ightarrow \Box q
ight)
ight)^{\star}$$

since

$$\mathsf{PA} \vdash \Box_{\mathsf{PA}}(p^\star o q^\star) o \left(\Box_{\mathsf{PA}} p^\star o \Box_{\mathsf{PA}} q^\star
ight)$$

regardless of $(\cdot)^{\star}$

 Background
 QRC1
 Relational semantics
 Arithmetical completeness
 Final remarks

 000000000000
 00000
 000000
 00000
 00000
 00000

The Provability Logic of a Theory

• For a c.e. theory T we define

 $\mathsf{PL}(T) := \{ \varphi \in \mathcal{L}_{\Box} \mid \text{for any } (\cdot)^{\star}, \text{ we have } T \vdash (\varphi)^{\star} \}$

• Here $(\cdot)^*$ is as before, but now mapping \Box to $\Box_{\mathcal{T}}$

 Background
 QRC1
 Relational semantics
 Arithmetical completeness
 Final remarks

 0000
 00000
 00000
 00000
 00000
 00000

The Provability Logic of a Theory

• For a c.e. theory T we define

 $\mathsf{PL}(T) := \{ \varphi \in \mathcal{L}_{\Box} \mid \text{for any } (\cdot)^{\star}, \text{ we have } T \vdash (\varphi)^{\star} \}$

- Here $(\cdot)^*$ is as before, but now mapping \Box to $\Box_{\mathcal{T}}$
- We observe that PL(T) is Π_2^0 definable

 Background
 QRC1
 Relational semantics
 Arithmetical completeness
 Final remar

 000000000000
 00000
 000000
 00000
 00000

The Provability Logic of a Theory

• For a c.e. theory \mathcal{T} we define

 $\mathsf{PL}(T) := \{ \varphi \in \mathcal{L}_{\Box} \mid \text{for any } (\cdot)^{\star}, \text{ we have } T \vdash (\varphi)^{\star} \}$

- Here $(\cdot)^{\star}$ is as before, but now mapping \Box to $\Box_{\mathcal{T}}$
- We observe that PL(T) is Π_2^0 definable
- A candidate
 - GL is the normal modal logic with axioms
 - All classical logical tautologies in \mathcal{L}_{\Box} like $\Box p \lor \neg \Box p$, etc.
 - All distributions axioms: $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$,
 - All Löb axioms: $\Box(\Box A \rightarrow A) \rightarrow \Box A$.
 - and rules

• Modus Ponens
$$\frac{A \rightarrow B}{B}$$
,

• Necessitation $\frac{A}{\Box A}$.

Let $\varphi \in \mathcal{L}_{\Box}$. Then:

$$\mathsf{GL}\vdash arphi$$

 $\mathsf{PA} \vdash (\varphi)^*$ for any arithmetical realization $(\cdot)^*$

 Background
 QRC1
 Relational semantics
 Arithmetical completeness
 Final remarks

 Solovay's Theorem
 Solovay, S Theorem
 Image: Completeness of the completen

Thus, even though PL(PA) is *prima facie* of complexity Π_2^0 , it allows for a decidable description

 $\mathsf{PA} \vdash (\varphi)^*$ for any arithmetical realization $(\cdot)^*$

$$\mathsf{GL} = \{ \varphi \in \mathcal{L}_{\Box} \mid \text{for any } (\cdot)^*, \text{ we have } \mathsf{PA} \vdash (\varphi)^* \}$$

of complexity PSPACE.

True provability logic

•
$$\mathsf{PA} \nvDash \Box_{\mathsf{PA}}(\ulcorner 0 = 1\urcorner) \to 0 = 1$$

•
$$\mathbb{N} \models \Box_{\mathsf{PA}}(\ulcorner \varphi \urcorner) \rightarrow \varphi$$
 for whatever sentence φ

For a c.e. theory T we define

$$\mathsf{TPL}(\mathcal{T}) := \{ arphi \in \mathcal{L}_{\Box} \mid \mathsf{for any} \ (\cdot)^{\star}, \ \mathsf{we have} \ \mathbb{N} \models (arphi)^{\star} \}$$

A priori, complexity above true arithmetic. However,

$$\mathsf{TPL}(\mathsf{PA}) = \mathsf{GLS}.$$

Here GLS is axiomatised by all theorems of GL and all reflection axioms $\Box A \rightarrow A$ with MP as the only rule.

Let $\mathcal{L}_{\Box,\forall}$ be the language of relational quantified modal logic:

op, relation symbols, boolean connectives, orall x, and \Box

Let $\mathcal{L}_{\Box,\forall}$ be the language of relational quantified modal logic: op, relation symbols, boolean connectives, $\forall x$, and \Box Define arithmetical realizations $(\cdot)^{\bullet}$ for $\mathcal{L}_{\Box,\forall}$: formulas in $\mathcal{L}_{\Box,\forall} \rightarrow$ formulas in \mathcal{L}_{PA} *n*-ary relation symbols \rightarrow arithmetical formulas with *n* free variables boolean connectives \rightarrow boolean connectives $\forall x \rightarrow \forall x$ and $\Box \rightarrow \Box_{PA}$

Let $\mathcal{L}_{\Box,\forall}$ be the language of relational quantified modal logic:

op, relation symbols, boolean connectives, $\forall x$, and \Box

Define arithmetical realizations (·)• for $\mathcal{L}_{\Box,\forall}$:

formulas in $\mathcal{L}_{\Box,\forall} \to \text{formulas}$ in \mathcal{L}_{PA}

n-ary relation symbols \rightarrow arithmetical formulas with n free variables boolean connectives \rightarrow boolean connectives

 $\forall x \rightarrow \forall x \text{ and } \Box \rightarrow \Box_{\mathsf{PA}}$

For a c.e. theory T we define

$$\mathsf{QPL}(T) := \{ \varphi \in \mathcal{L}_{\Box, \forall} \mid \mathsf{for any} \ (\cdot)^{\bullet}, \mathsf{ we have } T \vdash (\varphi)^{\bullet} \}$$

and

$$\mathsf{TQPL}(T) := \{ \varphi \in \mathcal{L}_{\Box, \forall} \mid \mathsf{for any} \ (\cdot)^{\bullet}, \text{ we have } \mathbb{N} \models (\varphi)^{\bullet} \}$$

Let $\mathcal{L}_{\Box,\forall}$ be the language of relational quantified modal logic:

 \top , relation symbols, boolean connectives, $\forall x$, and \Box

Define arithmetical realizations (·)• for $\mathcal{L}_{\Box,\forall}$:

formulas in $\mathcal{L}_{\Box,\forall} \to \text{formulas}$ in $\mathcal{L}_{\mathsf{PA}}$

n-ary relation symbols \rightarrow arithmetical formulas with n free variables boolean connectives \rightarrow boolean connectives

 $\forall x \rightarrow \forall x \text{ and } \Box \rightarrow \Box_{\mathsf{PA}}$

For a c.e. theory T we define

$$\mathsf{QPL}(\mathcal{T}) := \{ \varphi \in \mathcal{L}_{\Box, \forall} \mid \mathsf{for any} \ (\cdot)^{ullet}, \ \mathsf{we have} \ \mathcal{T} \vdash (\varphi)^{ullet} \}$$

and

$$\mathsf{TQPL}(T) := \{ \varphi \in \mathcal{L}_{\Box, \forall} \mid \text{for any } (\cdot)^{\bullet}, \text{ we have } \mathbb{N} \models (\varphi)^{\bullet} \}$$

Example: $\Box \forall x P(x) \to \forall x \Box P(\dot{x})$

A Degenerate Quantified Provability Logic

If we define $QL(T) = \{\varphi \in \mathcal{L}_{fol} \mid \text{for any } (\cdot)^{\bullet}, \text{ we have } T \vdash (\varphi)^{\bullet}\}$, then it is not hard to see that CQC = QL(PA). Proof:

- $\subseteq \text{ if } \pi \vdash_{\mathsf{CQC}} \varphi \text{, then also } \pi^{\bullet} \vdash_{\mathsf{CQC}} \varphi^{\bullet} \text{, whence } \pi^{\bullet} \vdash_{\mathsf{PA}} \varphi^{\bullet}$
- \supseteq Henkin construction in arithmetic

A Degenerate Quantified Provability Logic

If we define $QL(T) = \{\varphi \in \mathcal{L}_{fol} \mid \text{for any } (\cdot)^{\bullet}, \text{ we have } T \vdash (\varphi)^{\bullet}\}$, then it is not hard to see that CQC = QL(PA). Proof:

- $\subseteq \text{ if } \pi \vdash_{\mathsf{CQC}} \varphi \text{, then also } \pi^{\bullet} \vdash_{\mathsf{CQC}} \varphi^{\bullet} \text{, whence } \pi^{\bullet} \vdash_{\mathsf{PA}} \varphi^{\bullet}$
- \supseteq Henkin construction in arithmetic

$$QPL(PA + Incon(PA)) = CQC + \Box \bot$$

Background 000000000000000		

Negative results

Negative results

Theorem (Vardanyan, 1986 and McGee, 1985)

 $\{closed \ \varphi \in \mathcal{L}_{\Box,\forall} \mid for \ any \ (\cdot)^{\bullet}, \ we \ have \ \mathsf{PA} \vdash (\varphi)^{\bullet} \}$

is Π_2^0 -complete. Thus it is not recursively axiomatisable.

Theorem (Artemov, 1985)

TQPL(PA) is not arithmetical.

Theorem (Vardanyan, 1985)

TQPL(PA) is Π_1^0 complete in true arithmetic.

Dackground			
000000000000000000000000000000000000000	000000000	000000	00000

Artemov's Lemma

• Let $F \in \mathcal{L}_{\mathsf{PA}}$ be a formula

 \mathcal{L}_{PA}

F

Artemov's Lemma

- Let $F \in \mathcal{L}_{PA}$ be a formula
- Replace arithmetical symbols 0, +1, +, ×, = with predicates Z, S, A, M, E, obtaining {F} ∈ L_∀

Artemov's Lemma

- Let $F \in \mathcal{L}_{\mathsf{PA}}$ be a formula
- Replace arithmetical symbols $0, +1, +, \times, =$ with predicates Z, S, A, M, E, obtaining $\{F\} \in \mathcal{L}_{\forall}$
- Go back to \mathcal{L}_{PA} with a realization $(\cdot)^{\bullet}$

 \mathcal{L}_{PA} \mathcal{L}_{\forall}

Artemov's Lemma

- Let $F \in \mathcal{L}_{\mathsf{PA}}$ be a formula
- Replace arithmetical symbols $0, +1, +, \times, =$ with predicates Z, S, A, M, E, obtaining $\{F\} \in \mathcal{L}_{\forall}$
- Go back to $\mathcal{L}_{\mathsf{PA}}$ with a realization $(\cdot)^\bullet$

When are F and $\{F\}^{\bullet}$ equivalent over PA?

Artemov's Lemma

- Let $F \in \mathcal{L}_{\mathsf{PA}}$ be a formula
- Replace arithmetical symbols $0, +1, +, \times, =$ with predicates Z, S, A, M, E, obtaining $\{F\} \in \mathcal{L}_{\forall}$
- Go back to $\mathcal{L}_{\mathsf{PA}}$ with a realization $(\cdot)^\bullet$
- When are F and $\{F\}^{\bullet}$ equivalent over PA?
 - Under $\{T\}^{\bullet}$ to get arithmetical axioms...

 \mathcal{L}_{PA}

Artemov's Lemma

- Let $F \in \mathcal{L}_{\mathsf{PA}}$ be a formula
- Replace arithmetical symbols $0, +1, +, \times, =$ with predicates Z, S, A, M, E, obtaining $\{F\} \in \mathcal{L}_{\forall}$
- Go back to $\mathcal{L}_{\mathsf{PA}}$ with a realization $(\cdot)^\bullet$
- When are F and $\{F\}^{\bullet}$ equivalent over PA?
 - Under {*T*}• to get arithmetical axioms...
 - ... and under D^{\bullet} to get recursive A^{\bullet} and M^{\bullet}

 \mathcal{L}_{PA}

$$D := \Diamond \top \land$$

$$\forall x (Z(x) \to \Box Z(x)) \land \forall x (\neg Z(x) \to \Box \neg Z(x)) \land$$

$$\cdots S \cdots A \cdots M \cdots E$$

Artemov's Lemma

- Let $F \in \mathcal{L}_{\mathsf{PA}}$ be a formula
- Replace arithmetical symbols $0, +1, +, \times, =$ with predicates Z, S, A, M, E, obtaining $\{F\} \in \mathcal{L}_{\forall}$
- Go back to $\mathcal{L}_{\mathsf{PA}}$ with a realization $(\cdot)^{\bullet}$
- When are F and $\{F\}^{\bullet}$ equivalent over PA?
 - Under {*T*}• to get arithmetical axioms...
 - ... and under D^{\bullet} to get recursive A^{\bullet} and M^{\bullet}
 - By Tennenbaum's Theorem the model induced by $(\cdot)^{\bullet}$ is standard, hence $\mathbb{N} \models S \iff (\{T\} \land D \to \{S\}) \in \mathsf{TQPL}(\mathsf{PA})$ $D := \Diamond \top \land$ $\forall x (Z(x) \to \Box Z(x)) \land \forall x (\neg Z(x) \to \Box \neg Z(x)) \land$ $\cdots S \cdots A \cdots M \cdots F$

Ĺ₩

 \mathcal{L}_{PA}
QRC₁ 00000 Relational semantics 0000000000 Arithmetical completeness

Final remarks

Robust negative results

Robust negative results

Vardanyan : { $\varphi \in \mathcal{L}_{\Box,\forall}$ no modal iterations, just one unary predicate symbol for any $(\cdot)^{\bullet}$, we have PA $\vdash (\varphi)^{\bullet}$ } is Π_2^0 -complete.

Robust negative results

Vardanyan : { $\varphi \in \mathcal{L}_{\Box,\forall}$ no modal iterations, just one unary predicate symbol for any $(\cdot)^{\bullet}$, we have PA $\vdash (\varphi)^{\bullet}$ } is Π_2^0 -complete.

Berarducci ('89) : { $\varphi \in \mathcal{L}_{\Box,\forall} \mid \text{for any } (\cdot)^{\bullet} \in \Sigma_{1}^{0}$, we have PA $\vdash (\varphi)^{\bullet}$ } is Π_{2}^{0} -complete.

Robust negative results

Vardanyan : { $\varphi \in \mathcal{L}_{\Box,\forall}$ no modal iterations, just one unary predicate symbol for any $(\cdot)^{\bullet}$, we have PA $\vdash (\varphi)^{\bullet}$ } is Π_2^0 -complete.

Berarducci ('89) : { $\varphi \in \mathcal{L}_{\Box,\forall} \mid \text{for any } (\cdot)^{\bullet} \in \Sigma_{1}^{0}$, we have PA $\vdash (\varphi)^{\bullet}$ } is Π_{2}^{0} -complete.

One easily sees that $QPL(PA + \Box_{PA} \perp)$ is r.e., but it seems that $QPL(PA + \Box_{PA} \Box_{PA} \perp)$ is also Π_2^0 -complete.

Theorem (Visser, de Jonge, 2006)

QPL(T) is Π_2^0 complete for any Σ_1 -sound theory T extending EA.

Archive for Mathematical Logic 2006: No Escape from Vardanyan's

A.A. Borges, J.J. Joosten (UB)

QRC₁, towards polymoda

13 / 43

Background 000000000000000		

Restrict $\mathcal{L}_{\Box,\forall}$ to the strictly positive fragment $\mathcal{L}_{\Diamond,\forall}$:

Terms ::= Variables | Constants

 $\mathcal{L}_{\Diamond,\forall} ::= \top \mid \text{relation symbols applied to Terms} \mid \varphi \land \varphi \mid \forall x \varphi \mid \Diamond \varphi$

Background 000000000000000		

Restrict $\mathcal{L}_{\Box,\forall}$ to the strictly positive fragment $\mathcal{L}_{\Diamond,\forall}$:

Terms ::= Variables | Constants

 $\mathcal{L}_{\Diamond,\forall} ::= \top \mid \text{relation symbols applied to Terms} \mid \varphi \land \varphi \mid \forall x \varphi \mid \Diamond \varphi$ Define a calculus QRC₁ with statements $\varphi \vdash \psi$ where:

 $\varphi,\psi\in\mathcal{L}_{\Diamond,\forall}$

Restrict $\mathcal{L}_{\Box,\forall}$ to the strictly positive fragment $\mathcal{L}_{\Diamond,\forall}$:

Terms ::= Variables | Constants

 $\mathcal{L}_{\Diamond,\forall} ::= \top \mid \text{relation symbols applied to Terms} \mid \varphi \land \varphi \mid \forall x \varphi \mid \Diamond \varphi$ Define a calculus QRC₁ with statements $\varphi \vdash \psi$ where:

$$\varphi,\psi\in\mathcal{L}_{\Diamond,\forall}$$

The arithmetical realizations $(\cdot)^*$ for $\mathcal{L}_{\Diamond,\forall}$ send:

formulas in $\mathcal{L}_{\Diamond,\forall} \to$ axiomatisations of theories in $\mathcal{L}_{\mathsf{PA}}$

Restrict $\mathcal{L}_{\Box,\forall}$ to the strictly positive fragment $\mathcal{L}_{\Diamond,\forall}$:

Terms ::= Variables | Constants

 $\mathcal{L}_{\Diamond,\forall} ::= \top \mid \text{relation symbols applied to Terms} \mid \varphi \land \varphi \mid \forall x \varphi \mid \Diamond \varphi$ Define a calculus QRC₁ with statements $\varphi \vdash \psi$ where:

$$\varphi,\psi\in\mathcal{L}_{\Diamond,\forall}$$

The arithmetical realizations $(\cdot)^*$ for $\mathcal{L}_{\Diamond,\forall}$ send:

formulas in $\mathcal{L}_{\Diamond,\forall} \to$ axiomatisations of theories in $\mathcal{L}_{\mathsf{PA}}$

Prove arithmetical soundness and completeness for QRC₁:

$$\mathsf{QRC}_1 = \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } \mathsf{PA} \vdash (\varphi \vdash \psi)^* \}$$

Background 00000000000000000		

• Artemov, Japaridze: single variable fragment, fragment of finitely refutable modal formulas (semantically defined);

Old escapes

Background 00000000000000000		

- Artemov, Japaridze: single variable fragment, fragment of finitely refutable modal formulas (semantically defined);
- Yavorski, add $\Box A \rightarrow \Box \forall x A$

Old escapes

• Strictly positive fragments of modal logics (Zakharyashev, Wolter, *et al.*)

$$A \vdash_{\mathsf{sp}(L)} B \iff L \vdash A \to B$$

Background			
0000000000000	00000		

• Strictly positive fragments of modal logics (Zakharyashev, Wolter, *et al.*)

$$A \vdash_{\mathsf{sp}(L)} B \iff L \vdash A \to B$$

Reflection Calculi: replace the realisation p* by a (simple) axiomatisation of an arbitrary theory (instead of mapping p* to an arbitrary sentence)

• Strictly positive fragments of modal logics (Zakharyashev, Wolter, *et al.*)

$$A \vdash_{\mathsf{sp}(L)} B \iff L \vdash A \to B$$

- Reflection Calculi: replace the realisation p* by a (simple) axiomatisation of an arbitrary theory (instead of mapping p* to an arbitrary sentence)
- Polymodal provability logics: GLP is a polymodal version of GL, with [0], [1], ... as modalities
 - Decidability is PSPACE-complete
 - RC is the strictly positive fragment of GLP, with statements of the form $\varphi \vdash \psi$, where φ, ψ are in the language built from \top , p, \land , $\langle 0 \rangle, \langle 1 \rangle, \ldots$
 - E.g. $\langle 1 \rangle p \vdash \langle 0 \rangle p$
 - Decidability is in PTIME

• Strictly positive fragments of modal logics (Zakharyashev, Wolter, *et al.*)

$$A \vdash_{\mathsf{sp}(L)} B \iff L \vdash A \to B$$

- Reflection Calculi: replace the realisation p* by a (simple) axiomatisation of an arbitrary theory (instead of mapping p* to an arbitrary sentence)
- Polymodal provability logics: GLP is a polymodal version of GL, with [0], [1], ... as modalities
 - Decidability is PSPACE-complete
 - RC is the strictly positive fragment of GLP, with statements of the form $\varphi \vdash \psi$, where φ, ψ are in the language built from \top , p, \land , $\langle 0 \rangle, \langle 1 \rangle, \ldots$
 - E.g. $\langle 1 \rangle p \vdash \langle 0 \rangle p$
 - Decidability is in PTIME
- Workshop on Decidable Fragments of First-order Modal Logic, Affiliated workshop of LICS 2022

A.A. Borges, J.J. Joosten (UB)

QRC₁: Axioms and rules

$$\begin{array}{ccc} \varphi \vdash \top & \varphi \land \psi \vdash \varphi \\ \varphi \vdash \varphi & \varphi \land \psi \vdash \psi \\ \frac{\varphi \vdash \psi & \psi \vdash \chi}{\varphi \vdash \chi} & \frac{\varphi \vdash \psi & \varphi \vdash \chi}{\varphi \vdash \psi \land \chi} \end{array}$$

 Background
 QRC1
 Relational semantics
 Arithmetical completeness
 Final re

 0000000000000
 0000000000
 000000
 000000
 000000

QRC₁: Axioms and rules

 $\varphi \vdash \top$

$$\Diamond \Diamond \varphi \vdash \Diamond \varphi \qquad \frac{\varphi \vdash \psi}{\Diamond \varphi \vdash \Diamond \psi}$$

$$\begin{array}{ccc} \varphi \vdash \varphi & \varphi \land \psi \vdash \psi \\ \\ \frac{\varphi \vdash \psi & \psi \vdash \chi}{\varphi \vdash \chi} & \frac{\varphi \vdash \psi & \varphi \vdash \chi}{\varphi \vdash \psi \land \chi} \end{array}$$

 $\varphi \land \psi \vdash \varphi$

QRC₁: Axioms and rules

$$\varphi \vdash \top \qquad \varphi \land \psi \vdash \varphi$$
$$\varphi \vdash \varphi \qquad \varphi \land \psi \vdash \psi$$
$$\frac{\varphi \vdash \psi \quad \psi \vdash \chi}{\varphi \vdash \chi} \qquad \frac{\varphi \vdash \psi \quad \varphi \vdash \chi}{\varphi \vdash \psi \land \chi}$$

$$\begin{split} & \Diamond \Diamond \varphi \vdash \Diamond \varphi & \frac{\varphi \vdash \psi}{\Diamond \varphi \vdash \Diamond \psi} \\ & \frac{\varphi \vdash \psi}{\varphi \vdash \forall x \psi} & \frac{\varphi[x \leftarrow t] \vdash \psi}{\forall x \varphi \vdash \psi} \\ & x \notin \mathsf{free} \text{ for } x \text{ in } \varphi \end{split}$$

φ

 Background
 QRC1
 Relational semantics
 Arithmetical completeness
 Fina

 000000000000
 000000000
 00000000
 000000
 000000

QRC₁: Axioms and rules

$$\begin{array}{ccc} \varphi \vdash \top & \varphi \land \psi \vdash \varphi \\ \varphi \vdash \varphi & \varphi \land \psi \vdash \psi \\ \hline \psi & \psi \vdash \chi & \varphi \vdash \psi & \varphi \vdash \chi \\ \hline \varphi \vdash \chi & \varphi \vdash \psi & \varphi \vdash \chi \\ \hline \end{array}$$

$$\Diamond \Diamond \varphi \vdash \Diamond \varphi \qquad \frac{\varphi \vdash \psi}{\Diamond \varphi \vdash \Diamond \psi}$$

$$\frac{\varphi \vdash \psi}{\varphi \vdash \forall \, x \, \psi} \qquad \frac{\varphi}{\nabla}$$

$$\frac{\varphi[x \leftarrow t] \vdash \psi}{\forall \, x \, \varphi \vdash \psi}$$

 $x \notin \mathsf{fv} \varphi$

t free for x in φ

$$\frac{\varphi \vdash \psi}{\varphi[x \leftarrow t] \vdash \psi[x \leftarrow t]}$$

t free for *x* in φ and ψ

$$\frac{\varphi[\textbf{x}{\leftarrow}\textbf{c}] \vdash \psi[\textbf{x}{\leftarrow}\textbf{c}]}{\varphi \vdash \psi}$$

 $c \mbox{ not in } \varphi \mbox{ nor } \psi$

 φ

Final remarks

Some provable and unprovable statements

$$\Diamond \,\forall \, x \, \varphi \vdash \forall \, x \, \Diamond \varphi$$

 $\forall \, x \, \Diamond \varphi \not\vdash \Diamond \, \forall \, x \, \varphi$

$$\frac{\varphi \vdash \psi[\mathbf{x} \leftarrow \mathbf{c}]}{\varphi \vdash \forall \, \mathbf{x} \, \psi}$$

x not free in φ and c not in φ nor ψ

Recall that RC_{ω} allows for ordinal notations up to ε_0 and that it caters Π_1^0 ordinal analyses.

Can be extended to RC_{Λ} .

 Background
 QRC1
 Relational semantics
 Arithmetical completeness
 Final remarks

 0000000000000
 000000000
 000000
 000000
 00000

Arithmetical semantics

The arithmetical realizations $(\cdot)^*$ for $\mathcal{L}_{\Diamond,\forall}$:

formulas in $\mathcal{L}_{\Diamond,\forall} \rightarrow$ axiomatisations of c.e. theories in \mathcal{L}_{PA} variables $x_i \rightarrow$ variables y_i constants $c_i \rightarrow$ variables z_i
 Background
 QRC1
 Relational semantics
 Arithmetical completeness
 Final remarks

 000000000000
 000000000
 000000
 00000
 00000

Arithmetical semantics

The arithmetical realizations $(\cdot)^*$ for $\mathcal{L}_{\Diamond,\forall}$:

formulas in $\mathcal{L}_{\Diamond,\forall} \rightarrow$ axiomatisations of c.e. theories in \mathcal{L}_{PA} variables $x_i \rightarrow$ variables y_i constants $c_i \rightarrow$ variables z_i $(\top)^* := \tau_{PA}(u)$ $(S(x,c))^* := \sigma(y, z, u) \lor \tau_{PA}(u)$ with $\sigma \in \Sigma_1$ $(\psi(x,c) \land \delta(x,c))^* := (\psi(x,c))^* \lor (\delta(x,c))^*$ $(\Diamond \psi(x,c))^* := \tau_{PA}(u) \lor (u = \ulcorner Con_{(\psi(x,c))^*} \top \urcorner)$ $(\forall x_i \psi(x,c))^* := \exists y_i (\psi(x,c))^*$

A.A. Borges, J.J. Joosten (UB)

 Background
 QRC1
 Relational semantics
 Arithmetical completeness
 Final remarks

 000000000000
 000000000
 000000
 00000
 00000

Arithmetical semantics

The arithmetical realizations $(\cdot)^*$ for $\mathcal{L}_{\Diamond,\forall}$:

formulas in $\mathcal{L}_{\Diamond,\forall} \to axiomatisations$ of c.e. theories in \mathcal{L}_{PA} variables $x_i \rightarrow$ variables y_i constants $c_i \rightarrow$ variables z_i $(\top)^* := \tau_{PA}(u)$ $(S(x,c))^* := \sigma(y,z,u) \lor \tau_{\mathsf{PA}}(u)$ with $\sigma \in \Sigma_1$ $(\psi(x,c) \wedge \delta(x,c))^* := (\psi(x,c))^* \vee (\delta(x,c))^*$ $(\Diamond \psi(x,c))^* := \tau_{\mathsf{PA}}(u) \lor (u = \lceil \mathsf{Con}_{(\psi(x,c))^*} \top \rceil)$ $(\forall x_i \psi(x,c))^* := \exists y_i (\psi(x,c))^*$ $(\varphi(x,c) \vdash \psi(x,c))^* := \forall \theta, y, z (\Box_{\psi^*(y,z)} \theta \to \Box_{\varphi^*(y,z)} \theta)$

Arithmetical soundness

Theorem (Arithmetical soundness)

$$\mathsf{QRC}_1 \subseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have}$$

 $\mathsf{PA} \vdash \forall \, \theta, y, z \, (\Box_{\psi^*(y,z)} \theta \to \Box_{\varphi^*(y,z)} \theta) \}$

Arithmetical soundness

Theorem (Arithmetical soundness)

$$\mathsf{QRC}_1 \subseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have}$$

 $\mathsf{PA} \vdash \forall \theta, y, z (\Box_{\psi^*(y,z)} \theta \rightarrow \Box_{\varphi^*(y,z)} \theta) \}$

By induction on the QRC₁-proof. Here is the case of $\Diamond \Diamond \varphi \vdash \Diamond \varphi$:

- Pick any $(\cdot)^*$, reason in T, and let θ, y, z be arbitrary
- Assume $\Box_{(\Diamond \varphi)^*} \theta$
- Then $\Box_{\mathsf{PA}}(\mathsf{Con}_{\varphi^*}(\top) \to \theta)$
- By provable Σ_1 -completeness, $\Box_{\mathsf{PA}}(\mathsf{Con}_{\mathsf{PA}}(\mathsf{Con}_{\varphi^*}(\top)) o \mathsf{Con}_{\varphi^*}(\top))$
- Then $\square_{\mathsf{PA}}(\mathsf{Con}_{\mathsf{PA}}(\mathsf{Con}_{\varphi^*}(\top)) \to \theta)$
- We conclude $\Box_{(\Diamond \Diamond \varphi)^*} \theta$
- Σ_1 -collection is needed for $\frac{\varphi \vdash \psi}{\varphi \vdash \forall x \psi}$ with $x \notin \varphi$

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

Where T is a sound r.e. theory extending $I\Sigma_1$.

Adapt Solovay's completeness proof:

Need Kripke completeness for QRC1

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

Where T is a sound r.e. theory extending $I\Sigma_1$.

Adapt Solovay's completeness proof:

- Need Kripke completeness for QRC1
- Countermodels should be finite, transitive, irreflexive, rooted, and have constant domain

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

Where T is a sound r.e. theory extending $I\Sigma_1$.

Adapt Solovay's completeness proof:

- Need Kripke completeness for QRC1
- Countermodels should be finite, transitive, irreflexive, rooted, and have constant domain
- Embed such models in arithmetic using the Solovay sentences λ_i

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

Where T is a sound r.e. theory extending $I\Sigma_1$.

Adapt Solovay's completeness proof:

- Need Kripke completeness for QRC1
- Countermodels should be finite, transitive, irreflexive, rooted, and have constant domain
- Embed such models in arithmetic using the Solovay sentences λ_i

. . .

Relational models

Kripke models where:

- each world w is a first-order model with a finite domain D
- the domain D is the same for every world
- each constant symbol *c* and relational symbol *S* has a denotation at each world
- there is a transitive relation R between worlds
- constants have the same denotation at every world
- the denotation of a relation symbol depends on the world

Relational models

Kripke models where:

- each world w is a first-order model with a finite domain D
- the domain D is the same for every world
- each constant symbol *c* and relational symbol *S* has a denotation at each world
- there is a transitive relation R between worlds
- constants have the same denotation at every world
- the denotation of a relation symbol depends on the world
- we use assignments $g: Variables \rightarrow D$ to interpret variables
- we abuse notation and define g(c) := denotation(c) for all assignments g and constants c

	Relational semantics 000000000	

Satisfaction

Let g be a w-assignment.

 $\mathcal{M}, w \Vdash^{g} S(t, u) \iff \langle g(t), g(u) \rangle \in \mathsf{denotation}_{w}(S)$

 $\mathcal{M}, \mathbf{w}\Vdash^{\mathbf{g}} \Diamond \varphi \iff$

there is a world v such that wRv and $\mathcal{M}, v \Vdash^{g} \varphi$

 $\mathcal{M}, w \Vdash^{g} \forall x \varphi \iff$ for all assignments $h \sim_{x} g$, we have $\mathcal{M}, w \Vdash^{h} \varphi$
 Background
 QRC1
 Relational semantics
 Arithmetical completeness
 Final remarks

 0000000000000
 00000
 000000
 000000
 00000

Relational soundness

Theorem (Relational soundness)

If $\varphi \vdash \psi$, then for any model \mathcal{M} , world w, and assignment g:

$$\mathcal{M}, \mathbf{w} \Vdash^{\mathbf{g}} \varphi \implies \mathcal{M}, \mathbf{w} \Vdash^{\mathbf{g}} \psi.$$

Relational soundness

Theorem (Relational soundness)

If $\varphi \vdash \psi$, then for any model \mathcal{M} , world w, and assignment g:

$$\mathcal{M}, \mathbf{w} \Vdash^{\mathbf{g}} \varphi \implies \mathcal{M}, \mathbf{w} \Vdash^{\mathbf{g}} \psi.$$

Countermodels with arbitrarily large domains are needed.

$$\forall x, y \ S(x, x, y) \land \forall x, y \ S(x, y, x) \land \forall x, y \ S(y, x, x) \vdash \forall x, y, z \ S(x, y, z)$$

is unprovable in QRC_1 , but satisfied by every world with at most two domain elements.

Relational soundness

Theorem (Relational soundness)

If $\varphi \vdash \psi$, then for any model \mathcal{M} , world w, and assignment g:

$$\mathcal{M}, \mathbf{w} \Vdash^{\mathbf{g}} \varphi \implies \mathcal{M}, \mathbf{w} \Vdash^{\mathbf{g}} \psi.$$

Countermodels with arbitrarily large domains are needed.

$$\forall x, y \ S(x, x, y) \land \forall x, y \ S(x, y, x) \land \forall x, y \ S(y, x, x) \vdash \forall x, y, z \ S(x, y, z)$$

is unprovable in QRC_1 , but satisfied by every world with at most two domain elements.

Can be extended to any *n*: with *S n*-ary, let φ be the conjunction of the n(n-1)/2 formulas of the form $\forall x_0, \ldots, x_{n-2} S(\ldots, x_0, \ldots, x_0, \ldots)$. Now φ does not entail $\psi := \forall x_0, \ldots, x_{n-1} S(x_0, \ldots, x_{n-1})$. Worlds with $\leq n-1$ elements that satisfies φ must also satisfy ψ .

A.A. Borges, J.J. Joosten (UB)

Relational completeness

Theorem (Relational completeness)

If $\varphi \not\vdash \psi$, then there is a finite model \mathcal{M} , a world w, and an assignment g such that:

$$\mathcal{M}, w \Vdash^{g} \varphi$$
 and $\mathcal{M}, w \nvDash^{g} \psi$.

Since QRC_1 has the finite model property (finite number of worlds with finite constant domain), it is decidable.

Proving relational completeness

- Given $\varphi \not\vdash \psi$, build a counter-model
- The standard is to use term models: each world is the set of formulas true at that world
- We also want to know which formulas are not true at given worlds
- Our worlds are pairs of "positive" (true) and "negative" (false) formulas:

$$w = \langle w^+, w^- \rangle$$
 e.g. $\langle \{\varphi\}, \{\psi\} \rangle$
Proving relational completeness

- Given $\varphi \not\vdash \psi$, build a counter-model
- The standard is to use term models: each world is the set of formulas true at that world
- We also want to know which formulas are not true at given worlds
- Our worlds are pairs of "positive" (true) and "negative" (false) formulas:

$$w = \langle w^+, w^- \rangle$$
 e.g. $\langle \{\varphi\}, \{\psi\} \rangle$

• Worlds should be *well-formed* pairs though...

		Relational semantics 0000000000	
Well-formed	pairs		

- $\Gamma \vdash \delta$ is shorthand for $(\bigwedge_{\gamma \in \Gamma} \gamma) \vdash \delta$
- *p* is *closed* if every formula in *p* is closed

	Relational semantics	

- $\Gamma \vdash \delta$ is shorthand for $(\bigwedge_{\gamma \in \Gamma} \gamma) \vdash \delta$
- *p* is *closed* if every formula in *p* is closed
- p is *consistent* if for every $\delta \in p^-$ we have $p^+ \not\vdash \delta$

	Relational semantics	

- $\Gamma \vdash \delta$ is shorthand for $(\bigwedge_{\gamma \in \Gamma} \gamma) \vdash \delta$
- *p* is *closed* if every formula in *p* is closed
- p is *consistent* if for every $\delta \in p^-$ we have $p^+ \not\vdash \delta$
- p is Λ -maximal if for every $\varphi \in \Lambda$, either $\varphi \in p^+$ or $\varphi \in p^-$

	Relational semantics	

- $\Gamma \vdash \delta$ is shorthand for $(\bigwedge_{\gamma \in \Gamma} \gamma) \vdash \delta$
- p is closed if every formula in p is closed
- p is *consistent* if for every $\delta \in p^-$ we have $p^+ \not\vdash \delta$
- p is Λ -maximal if for every $\varphi \in \Lambda$, either $\varphi \in p^+$ or $\varphi \in p^-$
- *p* is *fully witnessed* if for every formula ∀x φ ∈ p⁻ there is a constant c such that φ[x←c] ∈ p⁻

	Relational semantics	

- $\Gamma \vdash \delta$ is shorthand for $(\bigwedge_{\gamma \in \Gamma} \gamma) \vdash \delta$
- *p* is *closed* if every formula in *p* is closed
- p is *consistent* if for every $\delta \in p^-$ we have $p^+ \not\vdash \delta$
- p is Λ -maximal if for every $\varphi \in \Lambda$, either $\varphi \in p^+$ or $\varphi \in p^-$
- *p* is *fully witnessed* if for every formula ∀x φ ∈ p⁻ there is a constant c such that φ[x←c] ∈ p⁻
- *p* is Λ-*well-formed* if it is closed, Λ-maximal, consistent and fully witnessed

Building a world from an incomplete pair

- Let Λ be a finite set of closed formulas
- Let *C* be a finite set of constants containing the constants in Λ and some new constants
- Let Λ_C be the closure under (closed) subformulas of Λ, and such that if ∀x φ ∈ Λ_C, then for every c ∈ C we have φ[x←c] ∈ Λ_C
- Let $p = \langle p^+, p^- \rangle$ be a closed consistent pair such that $p^+ \cup p^- \subseteq \Lambda_C$

Building a world from an incomplete pair

- Let Λ be a finite set of closed formulas
- Let *C* be a finite set of constants containing the constants in Λ and some new constants
- Let Λ_C be the closure under (closed) subformulas of Λ, and such that if ∀x φ ∈ Λ_C, then for every c ∈ C we have φ[x←c] ∈ Λ_C
- Let $p = \langle p^+, p^- \rangle$ be a closed consistent pair such that $p^+ \cup p^- \subseteq \Lambda_C$
- Goal: obtain a Λ_C -well-formed pair w extending p

Building a world from an incomplete pair

- Let Λ be a finite set of closed formulas
- Let C be a finite set of constants containing the constants in Λ and some new constants
- Let Λ_C be the closure under (closed) subformulas of Λ, and such that if ∀x φ ∈ Λ_C, then for every c ∈ C we have φ[x←c] ∈ Λ_C
- Let $p = \langle p^+, p^- \rangle$ be a closed consistent pair such that $p^+ \cup p^- \subseteq \Lambda_C$
- Goal: obtain a Λ_C -well-formed pair w extending p

Method

- Some formulas in Λ_C are consequences of p^+ , and thus must be added to w^+ to preserve consistency
- We put all the other formulas of Λ_C in p^-

	Relational semantics	

Lemma

If $|C| > 2(max. \text{ constant count in } \Lambda) + 2(max. \forall -depth \text{ of } \Lambda) \text{ and } p^+ \text{ is a singleton, the Method produces a } \Lambda_C\text{-well-formed pair } w.$

	Relational semantics	

Lemma

If $|C| > 2(max. \text{ constant count in } \Lambda) + 2(max. \forall -depth \text{ of } \Lambda) \text{ and } p^+ \text{ is a singleton, the Method produces a } \Lambda_C\text{-well-formed pair } w.$

• *w* is consistent because $\varphi \in w^+$ if and only if $p^+ \vdash \varphi$

	Relational semantics	

Lemma

If $|C| > 2(max. \text{ constant count in } \Lambda) + 2(max. \forall -depth \text{ of } \Lambda) \text{ and } p^+ \text{ is a singleton, the Method produces a } \Lambda_C\text{-well-formed pair } w.$

- w is consistent because $\varphi \in w^+$ if and only if $p^+ \vdash \varphi$
- w is fully-witnessed because...

	Relational semantics	

Lemma

If $|C| > 2(max. \text{ constant count in } \Lambda) + 2(max. \forall -depth \text{ of } \Lambda) \text{ and } p^+ \text{ is a singleton, the Method produces a } \Lambda_C\text{-well-formed pair } w.$

- w is consistent because $\varphi \in w^+$ if and only if $p^+ \vdash \varphi$
- w is fully-witnessed because...

 $\forall x \varphi \in w^- \\ \Downarrow$

there is some $c \in C$ s.t. c doesn't appear in $\forall x \varphi$ nor p^+

	Relational semantics	

Lemma

If $|C| > 2(max. \text{ constant count in } \Lambda) + 2(max. \forall -depth \text{ of } \Lambda) \text{ and } p^+ \text{ is a singleton, the Method produces a } \Lambda_C\text{-well-formed pair } w.$

- w is consistent because $\varphi \in w^+$ if and only if $p^+ \vdash \varphi$
- w is fully-witnessed because...

$$\forall x \varphi \in w^-$$

$$\Downarrow$$
there is some $c \in C$ s.t. c doesn't appear in $\forall x \varphi$ nor p^+

$$\downarrow \\ p^+ \not\vdash \varphi[x \leftarrow c]$$

	Relational semantics	

Lemma

If $|C| > 2(max. \text{ constant count in } \Lambda) + 2(max. \forall -depth \text{ of } \Lambda) \text{ and } p^+ \text{ is a singleton, the Method produces a } \Lambda_C\text{-well-formed pair } w.$

- w is consistent because $\varphi \in w^+$ if and only if $p^+ \vdash \varphi$
- w is fully-witnessed because...

 $\forall x \varphi \in w^-$

there is some $c \in C$ s.t. c doesn't appear in $\forall x \varphi$ nor p^+

$$\begin{array}{c} \downarrow \\ p^+ \not\vdash \varphi[x \leftarrow c] \\ \downarrow \\ \varphi[x \leftarrow c] \in w^- \end{array}$$

Building a counter-model

- Start with $\varphi \not\vdash \psi$ (both closed)
- Build a (well-formed!) world w by extending $p := \langle \{\varphi\}, \{\psi\} \rangle$ (with $\Lambda := \{\varphi, \psi\}$ and C large enough for Λ)
- Let the domain be the set of constants C
- Let the denotation of relation symbols at w correspond to their membership in w^+

Building a counter-model

- Start with $\varphi \not\vdash \psi$ (both closed)
- Build a (well-formed!) world w by extending $p := \langle \{\varphi\}, \{\psi\} \rangle$ (with $\Lambda := \{\varphi, \psi\}$ and C large enough for Λ)
- Let the domain be the set of constants C
- Let the denotation of relation symbols at w correspond to their membership in w^+
- If $\Diamond \chi \in w^+$, create a new world v_{χ} seen from w by Λ_C -completing

$$\langle \{\chi\}, \{\delta, \Diamond \delta \mid \Diamond \delta \in w^-\} \cup \{\Diamond \chi\} \rangle$$

- Define the domain and the denotation at v_{χ} like with w
- Repeat until all ◊-formulas are witnessed

	Relational semantics 00000000●	

Putting it together

Lemma (Truth lemma)

Let \mathcal{M} be the counter-model we just built. Then for any world w, assignment g, and formula $\chi^g \in \Lambda_C$:

$$\mathcal{M}, \mathbf{w} \Vdash^{\mathbf{g}} \chi \iff \chi^{\mathbf{g}} \in \mathbf{w}^+,$$

where χ^{g} is χ with every free variable x replaced by g(x).

Theorem (Relational completeness)

If $\varphi \not\vdash \psi$, then there is a finite model \mathcal{M} , a world w, and an assignment g such that:

$$\mathcal{M}, w \Vdash^{g} \varphi$$
 and $\mathcal{M}, w \nvDash^{g} \psi$.

Theorem (Arithmetical completeness)

Theorem (Arithmetical completeness)

 $\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$

• Assume $\varphi \not\vdash \psi$

Theorem (Arithmetical completeness)

- Assume $\varphi \not\vdash \psi$
- Take a (finite, transitive, irreflexive, rooted, constant domain) Kripke model \mathcal{M} satisfying φ and not ψ at world 1 (the root)

Theorem (Arithmetical completeness)

- Assume $\varphi \not\vdash \psi$
- Take a (finite, transitive, irreflexive, rooted, constant domain) Kripke model \mathcal{M} satisfying φ and not ψ at world 1 (the root)
- Embed *M* (with an extra world 0 pointing to the root) into the language of arithmetic using the regular Solovay construction *i* → λ_i

Theorem (Arithmetical completeness)

- Assume $\varphi \not\vdash \psi$
- Take a (finite, transitive, irreflexive, rooted, constant domain) Kripke model \mathcal{M} satisfying φ and not ψ at world 1 (the root)
- Embed *M* (with an extra world 0 pointing to the root) into the language of arithmetic using the regular Solovay construction *i* → λ_i

•
$$T \vdash \bigvee_i \lambda_i$$

Theorem (Arithmetical completeness)

- Assume $\varphi \not\vdash \psi$
- Take a (finite, transitive, irreflexive, rooted, constant domain) Kripke model \mathcal{M} satisfying φ and not ψ at world 1 (the root)
- Embed *M* (with an extra world 0 pointing to the root) into the language of arithmetic using the regular Solovay construction *i* → λ_i

•
$$T \vdash \bigvee_i \lambda_i$$

•
$$T \vdash \bigwedge_{i \neq j} (\lambda_i \to \neg \lambda_j)$$

Theorem (Arithmetical completeness)

- Assume $\varphi \not\vdash \psi$
- Take a (finite, transitive, irreflexive, rooted, constant domain) Kripke model \mathcal{M} satisfying φ and not ψ at world 1 (the root)
- Embed *M* (with an extra world 0 pointing to the root) into the language of arithmetic using the regular Solovay construction *i* → λ_i

$$T \vdash \bigvee_i \lambda_i$$

•
$$T \vdash \bigwedge_{i \neq j} (\lambda_i \to \neg \lambda_j)$$

•
$$T \vdash \bigwedge_{iRj} (\lambda_i \to \Diamond \lambda_j)$$

Theorem (Arithmetical completeness)

 $\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$

- Assume $\varphi \not\vdash \psi$
- Take a (finite, transitive, irreflexive, rooted, constant domain) Kripke model \mathcal{M} satisfying φ and not ψ at world 1 (the root)
- Embed *M* (with an extra world 0 pointing to the root) into the language of arithmetic using the regular Solovay construction *i* → λ_i

•
$$T \vdash \bigvee_i \lambda_i$$

(

•
$$T \vdash \bigwedge_{i \neq j} (\lambda_i \to \neg \lambda_j)$$

•
$$T \vdash \bigwedge_{iRj} (\lambda_i \to \Diamond \lambda_j)$$

• $T \vdash \bigwedge_{i>0} (\lambda_i \to \Box(\bigvee_{iRj} \lambda_j))$

Theorem (Arithmetical completeness)

- Assume $\varphi \not\vdash \psi$
- Take a (finite, transitive, irreflexive, rooted, constant domain) Kripke model $\mathcal M$ satisfying φ and not ψ at world 1 (the root)
- Embed *M* (with an extra world 0 pointing to the root) into the language of arithmetic using the regular Solovay construction *i* → λ_i

$$T \vdash \bigvee_i \lambda_i$$

•
$$T \vdash \bigwedge_{i \neq j} (\lambda_i \to \neg \lambda_j)$$

•
$$T \vdash \bigwedge_{iRj} (\lambda_i \to \Diamond \lambda_j)$$

•
$$T \vdash \bigwedge_{i>0} (\lambda_i \to \Box(\bigvee_{iRj} \lambda_j))$$

•
$$\mathbb{N} \models \lambda_0$$

Theorem (Arithmetical completeness)

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

• Define S• as:

$$(S(x_k))^{ullet} := \bigvee_{i \in \mathcal{M}} \left(\lambda_i \wedge \bigvee_{\langle a
angle \in S^{\mathcal{M}_i}} \ulcorner a \urcorner = y_k \mod m
ight)$$

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

• Define S• as:

$$(S(x_k))^{ullet} := \bigvee_{i \in \mathcal{M}} \left(\lambda_i \wedge \bigvee_{\langle a \rangle \in S^{\mathcal{M}_i}} \ulcorner a \urcorner = y_k \mod m \right)$$

• Prove a Truth Lemma stating (for i > 0) that

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

• Define S• as:

$$(S(x_k))^{ullet} := \bigvee_{i \in \mathcal{M}} \left(\lambda_i \wedge \bigvee_{\langle a \rangle \in S^{\mathcal{M}_i}} \ulcorner a \urcorner = y_k \mod m \right)$$

- Prove a Truth Lemma stating (for i > 0) that
 - if $i \Vdash^g \chi$ then $T \vdash \lambda_i \to \chi^{\bullet}[y \leftarrow \ulcorner g(x) \urcorner];$

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

• Define S• as:

$$(S(x_k))^{ullet} := \bigvee_{i \in \mathcal{M}} \left(\lambda_i \wedge \bigvee_{\langle a \rangle \in S^{\mathcal{M}_i}} \ulcorner a \urcorner = y_k \mod m \right)$$

- Prove a Truth Lemma stating (for i > 0) that
 - if $i \Vdash^g \chi$ then $T \vdash \lambda_i \to \chi^{\bullet}[y \leftarrow \ulcornerg(x)\urcorner];$
 - if $i \not\Vdash^g \chi$ then $T \vdash \lambda_i \to \neg \chi^{\bullet}[y \leftarrow \ulcornerg(x) \urcorner].$

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ arphi \vdash \psi \mid \textit{for any } (\cdot)^*, \textit{ we have } \mathsf{T} \vdash (arphi \vdash \psi)^* \}$$

• We can use finite extensions of the base theory, so regular Solovay construction!

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ arphi dash \psi \mid \textit{for any } (\cdot)^*, \textit{ we have } \mathsf{T} dash (arphi dash \psi)^* \}$$

- We can use finite extensions of the base theory, so regular Solovay construction!
- Recall $\varphi \not\vdash \psi$

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ arphi dash \psi \mid \textit{for any } (\cdot)^*, \textit{ we have } \mathsf{T} dash (arphi dash \psi)^* \}$$

- We can use finite extensions of the base theory, so regular Solovay construction!
- Recall $\varphi \not\vdash \psi$
- Then $T \vdash \lambda_1 \to \varphi^{\bullet}[y \leftarrow \ulcorner g(x) \urcorner]$ and $T \vdash \lambda_1 \to \neg \psi^{\bullet}[y \leftarrow \ulcorner g(x) \urcorner]$

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ arphi \vdash \psi \mid \textit{for any } (\cdot)^*, \textit{ we have } T \vdash (arphi \vdash \psi)^* \}$$

- We can use finite extensions of the base theory, so regular Solovay construction!
- Recall $\varphi \not\vdash \psi$
- Then $T \vdash \lambda_1 \to \varphi^{\bullet}[y \leftarrow \ulcorner g(x) \urcorner]$ and $T \vdash \lambda_1 \to \neg \psi^{\bullet}[y \leftarrow \ulcorner g(x) \urcorner]$
- Recall $\mathbb{N} \vDash \lambda_0$
$$\mathsf{QRC}_1 \supseteq \{ arphi \vdash \psi \mid \textit{for any } (\cdot)^*, \textit{ we have } T \vdash (arphi \vdash \psi)^* \}$$

- We can use finite extensions of the base theory, so regular Solovay construction!
- Recall $\varphi \not\vdash \psi$
- Then $T \vdash \lambda_1 \to \varphi^{\bullet}[y \leftarrow \ulcorner g(x) \urcorner]$ and $T \vdash \lambda_1 \to \neg \psi^{\bullet}[y \leftarrow \ulcorner g(x) \urcorner]$
- Recall $\mathbb{N} \vDash \lambda_0$
- Recall $T \vdash \lambda_0 \rightarrow \Diamond_T \lambda_1$.

$$\mathsf{QRC}_1 \supseteq \{ arphi dash \psi \mid \textit{for any } (\cdot)^*, \textit{ we have } \mathsf{T} dash (arphi dash \psi)^* \}$$

- We can use finite extensions of the base theory, so regular Solovay construction!
- Recall $\varphi \not\vdash \psi$
- Then $T \vdash \lambda_1 \to \varphi^{\bullet}[y \leftarrow \ulcorner g(x) \urcorner]$ and $T \vdash \lambda_1 \to \neg \psi^{\bullet}[y \leftarrow \ulcorner g(x) \urcorner]$
- Recall $\mathbb{N} \vDash \lambda_0$
- Recall $T \vdash \lambda_0 \rightarrow \Diamond_T \lambda_1$.
- Then $T \vdash \lambda_0 \to \Diamond_T \neg (\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \textit{for any } (\cdot)^*, \textit{ we have } \mathsf{T} \vdash (\varphi \vdash \psi)^* \}$$

- We can use finite extensions of the base theory, so regular Solovay construction!
- Recall $\varphi \not\vdash \psi$
- Then $T \vdash \lambda_1 \to \varphi^{\bullet}[y \leftarrow \ulcorner g(x) \urcorner]$ and $T \vdash \lambda_1 \to \neg \psi^{\bullet}[y \leftarrow \ulcorner g(x) \urcorner]$
- Recall $\mathbb{N} \vDash \lambda_0$
- Recall $T \vdash \lambda_0 \rightarrow \Diamond_T \lambda_1$.
- Then $T \vdash \lambda_0 \to \Diamond_T \neg (\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$
- Then $\mathbb{N} \vDash \neg \Box_{\mathcal{T}} (\varphi^{\bullet} \to \psi^{\bullet}) [y \leftarrow \ulcorner g(x) \urcorner]$

$$\mathsf{QRC}_1 \supseteq \{ arphi dash \psi \mid \textit{for any } (\cdot)^*, \textit{ we have } \mathsf{T} dash (arphi dash \psi)^* \}$$

- We can use finite extensions of the base theory, so regular Solovay construction!
- Recall $\varphi \not\vdash \psi$
- Then $T \vdash \lambda_1 \to \varphi^{\bullet}[y \leftarrow \ulcorner g(x) \urcorner]$ and $T \vdash \lambda_1 \to \neg \psi^{\bullet}[y \leftarrow \ulcorner g(x) \urcorner]$
- Recall $\mathbb{N} \vDash \lambda_0$
- Recall $T \vdash \lambda_0 \rightarrow \Diamond_T \lambda_1$.
- Then $T \vdash \lambda_0 \to \Diamond_T \neg (\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow [g(x)]]$
- Then $\mathbb{N} \vDash \neg \Box_{\mathcal{T}} (\varphi^{\bullet} \to \psi^{\bullet}) [y \leftarrow \ulcorner g(x) \urcorner]$
- Then $T \not\vdash (\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

• ...

• We have
$$T \not\vdash (\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$$

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

4

• We have
$$T \not\vdash (\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$$

• Recall
$$(\varphi \vdash \psi)^* = \forall \theta, y (\Box_{\psi^*} \theta \rightarrow \Box_{\varphi^*} \theta)$$

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

• ...

• We have
$$T \not\vdash (\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$$

• Recall
$$(\varphi \vdash \psi)^* = \forall \theta, y (\Box_{\psi^*} \theta \rightarrow \Box_{\varphi^*} \theta)$$

• Prove
$$T \vdash \forall \theta, y (\Box_{\varphi^*} \theta \leftrightarrow \Box_T (\varphi^{\bullet} \to \theta))$$

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

• ...

• We have
$$T \not\vdash (\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$$

• Recall
$$(\varphi \vdash \psi)^* = \forall \theta, y (\Box_{\psi^*} \theta \rightarrow \Box_{\varphi^*} \theta)$$

• Prove
$$T \vdash \forall \theta, y (\Box_{\varphi^*} \theta \leftrightarrow \Box_T (\varphi^\bullet \to \theta))$$

• Assume towards contradiction that $T \vdash (\varphi \vdash \psi)^*$

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

• ...

• We have
$$T \not\vdash (\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$$

• Recall
$$(\varphi \vdash \psi)^* = \forall \theta, y (\Box_{\psi^*} \theta \rightarrow \Box_{\varphi^*} \theta)$$

• Prove
$$T \vdash \forall \theta, y (\Box_{\varphi^*} \theta \leftrightarrow \Box_T (\varphi^{\bullet} \to \theta))$$

- Assume towards contradiction that $T \vdash (\varphi \vdash \psi)^*$
- Then $T \vdash \forall \theta, y (\Box_T (\psi^{\bullet} \to \theta) \to \Box_T (\varphi^{\bullet} \to \theta))$

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

• ...

• We have
$$T \not\vdash (\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$$

• Recall
$$(\varphi \vdash \psi)^* = \forall \theta, y (\Box_{\psi^*} \theta \rightarrow \Box_{\varphi^*} \theta)$$

• Prove
$$T \vdash \forall \theta, y (\Box_{\varphi^*} \theta \leftrightarrow \Box_T (\varphi^{\bullet} \to \theta))$$

- Assume towards contradiction that $T \vdash (\varphi \vdash \psi)^*$
- Then $T \vdash \forall \theta, y (\Box_T(\psi^{\bullet} \to \theta) \to \Box_T(\varphi^{\bullet} \to \theta))$

• Then
$$T \vdash \Box_T(\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$$

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

• ...

• We have
$$T \not\vdash (\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$$

• Recall
$$(\varphi \vdash \psi)^* = \forall \, \theta, y \, (\Box_{\psi^*} \theta \to \Box_{\varphi^*} \theta)$$

• Prove
$$T \vdash \forall \theta, y (\Box_{\varphi^*} \theta \leftrightarrow \Box_T (\varphi^\bullet \to \theta))$$

- Assume towards contradiction that $T \vdash (\varphi \vdash \psi)^*$
- Then $T \vdash \forall \theta, y (\Box_T (\psi^{\bullet} \to \theta) \to \Box_T (\varphi^{\bullet} \to \theta))$

• Then
$$T \vdash \Box_T(\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$$

• Then $T \vdash (\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$ by soundness of T

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

• ...

• We have
$$T \not\vdash (\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$$

• Recall
$$(\varphi \vdash \psi)^* = \forall \theta, y (\Box_{\psi^*} \theta \rightarrow \Box_{\varphi^*} \theta)$$

• Prove
$$T \vdash \forall \theta, y (\Box_{\varphi^*} \theta \leftrightarrow \Box_T (\varphi^\bullet \to \theta))$$

- Assume towards contradiction that $\mathcal{T} \vdash (\varphi \vdash \psi)^*$
- Then $T \vdash \forall \theta, y (\Box_T(\psi^{\bullet} \to \theta) \to \Box_T(\varphi^{\bullet} \to \theta))$
- Then $T \vdash \Box_T(\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$
- Then $T \vdash (\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$ by soundness of T
- Contradiction!

	Arithmetical completeness	

Corollaries

Theorem (Fragment of QPL(PA))

$$\varphi \vdash_{\mathsf{QRC}_1} \psi \iff (\varphi \rightarrow \psi) \in \mathsf{QPL}(\mathsf{PA})$$

Theorem (Positive fragment)

Let φ and ψ be QRC₁ formulas (no constants) and let QS be any logic between QK4 and QGL. Then $\varphi \vdash_{QRC_1} \psi$ if and only if QS $\vdash \varphi \rightarrow \psi$.

QRC₁ 00000 Relational semantics 0000000000 Arithmetical completeness

Final remarks

 Background
 QRC1
 Relational semantics
 Arithmetical completeness
 Final remark

 0000000000000
 00000
 000000
 00000
 00000
 00000

- 1
- K, K4, GL are PSPACE-complete
- K+, K4+, GL+ are polytime decidable

- 1
- K, K4, GL are PSPACE-complete
- K+, K4+, GL+ are polytime decidable

- K, K4, GL are PSPACE-complete
 - K+, K4+, GL+ are polytime decidable
- GLP is PSPACE complete

- K, K4, GL are PSPACE-complete
 - K+, K4+, GL+ are polytime decidable
- GLP is PSPACE complete
 - GLP+ is polytime decidable

- K, K4, GL are PSPACE-complete
 - K+, K4+, GL+ are polytime decidable
- GLP is PSPACE complete
 - GLP+ is polytime decidable

- K, K4, GL are PSPACE-complete
 - K+, K4+, GL+ are polytime decidable
- GLP is PSPACE complete
 - GLP+ is polytime decidable
- GL.3 is coNP-complete

- K, K4, GL are PSPACE-complete
 - K+, K4+, GL+ are polytime decidable
- GLP is PSPACE complete
 - GLP+ is polytime decidable
 - GL.3 is coNP-complete
 - GL.3+ is polytime decidable

8

- K, K4, GL are PSPACE-complete
 - K+, K4+, GL+ are polytime decidable
- GLP is PSPACE complete
 - GLP+ is polytime decidable
 - GL.3 is coNP-complete
 - GL.3+ is polytime decidable

8

- K, K4, GL are PSPACE-complete
 - K+, K4+, GL+ are polytime decidable
- GLP is PSPACE complete
 - GLP+ is polytime decidable
- GL.3 is coNP-complete
 - GL.3+ is polytime decidable
- QPL(PA) is Π⁰₂-complete

- K, K4, GL are PSPACE-complete
 - K+, K4+, GL+ are polytime decidable
- GLP is PSPACE complete
 - GLP+ is polytime decidable
- GL.3 is coNP-complete
 - GL.3+ is polytime decidable
- QPL(PA) is Π⁰₂-complete
 - QPL(PA)+ is decidable

- K, K4, GL are PSPACE-complete
 - K+, K4+, GL+ are polytime decidable
- GLP is PSPACE complete
 - GLP+ is polytime decidable
- GL.3 is coNP-complete
 - GL.3+ is polytime decidable
- QPL(PA) is Π⁰₂-complete
 - QPL(PA)+ is decidable
- **5** Advanced conjecture:

- K, K4, GL are PSPACE-complete
 - K+, K4+, GL+ are polytime decidable
- GLP is PSPACE complete
 - GLP+ is polytime decidable
- GL.3 is coNP-complete
 - GL.3+ is polytime decidable
- QPL(PA) is Π⁰₂-complete
 - QPL(PA)+ is decidable
- 6 Advanced conjecture:
 - TQPL(PA) is Π_1^0 -complete in (0)^{ω} (non-arithmetical)

- K, K4, GL are PSPACE-complete
 - K+, K4+, GL+ are polytime decidable
- GLP is PSPACE complete
 - GLP+ is polytime decidable
- GL.3 is coNP-complete
 - GL.3+ is polytime decidable
- QPL(PA) is Π⁰₂-complete
 - QPL(PA)+ is decidable
- 6 Advanced conjecture:
 - TQPL(PA) is Π_1^0 -complete in $(0)^{\omega}$ (non-arithmetical)
 - TQPL(PA)+ is decidable

 Background
 QRC1
 Relational semantics
 Arithmetical completeness
 Final remarks

 000000000000
 00000
 000000
 00000
 00000
 00000

Heyting Arithmetic

Theorem

$$QRC_1 = \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } PA \vdash (\varphi \vdash \psi)^* \}$$

• Soundness also works for HA

Heyting Arithmetic

Theorem

$$\mathsf{QRC}_1 = \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } \mathsf{PA} \vdash (\varphi \vdash \psi)^* \}$$

- Soundness also works for HA
- $(\varphi \vdash \psi)^* = \forall \theta, y, z (\Box_{\psi^*(y,z)} \theta \to \Box_{\varphi^*(y,z)} \theta)$
- $(\varphi \vdash \psi)^*$ is Π_2^0
- PA is provably Π_2^0 conservative over HA
- Complexity of unprovable substitutions using Solovay is $\boldsymbol{\Sigma}_2$
- This seems to leave room for generalising to HA

Heyting Arithmetic

Theorem

$$\mathsf{QRC}_1 = \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } \mathsf{PA} \vdash (\varphi \vdash \psi)^* \}$$

- Soundness also works for HA
- $(\varphi \vdash \psi)^* = \forall \theta, y, z (\Box_{\psi^*(y,z)} \theta \to \Box_{\varphi^*(y,z)} \theta)$
- $(\varphi \vdash \psi)^*$ is Π_2^0
- PA is provably Π_2^0 conservative over HA
- Complexity of unprovable substitutions using Solovay is Σ_2
- This seems to leave room for generalising to HA
- Recall that PL(HA) is a long-standing open problem

In summary

- There is no quantified provability logic with $\mathcal{L}_{\Box,\forall}$ QRC_1:
 - quantified, strictly positive provability logic with $\mathcal{L}_{\Diamond,\forall}$
 - decidable
 - sound and complete w.r.t. relational semantics (with constant domain models!)
 - sound and complete w.r.t. arithmetical semantics
 - for all sound r.e. theories extending $\mathsf{I}\Sigma_1$

• Determine the set of always true QRC₁ sequents

- Determine the set of always true QRC₁ sequents
- Gauge computational complexity of QRC1

- Determine the set of always true QRC₁ sequents
- Gauge computational complexity of QRC1
- Properties of QRC₁ such interpolation, etc.

- Determine the set of always true QRC₁ sequents
- Gauge computational complexity of QRC1
- Properties of QRC₁ such interpolation, etc.
- Neighbourhood / topological semantics for QRC₁?
- Determine the set of always true QRC₁ sequents
- Gauge computational complexity of QRC1
- Properties of QRC₁ such interpolation, etc.
- Neighbourhood / topological semantics for QRC₁?
- Polymodal version of QRC₁ (also for HA?)

- Determine the set of always true QRC₁ sequents
- Gauge computational complexity of QRC1
- Properties of QRC₁ such interpolation, etc.
- Neighbourhood / topological semantics for QRC₁?
- Polymodal version of QRC₁ (also for HA?)
- Computational complexity of $\text{QPL}(\text{PA} + \Delta^n \bot)$ for Δ a suitable slow provability notion

- Determine the set of always true QRC₁ sequents
- Gauge computational complexity of QRC1
- Properties of QRC₁ such interpolation, etc.
- Neighbourhood / topological semantics for QRC₁?
- Polymodal version of QRC₁ (also for HA?)
- Computational complexity of QPL(PA + $\Delta^n \perp$) for Δ a suitable slow provability notion
- Can we enhance the expressibility of QRC₁ without losing decidability?

- Determine the set of always true QRC₁ sequents
- Gauge computational complexity of QRC1
- Properties of QRC₁ such interpolation, etc.
- Neighbourhood / topological semantics for QRC₁?
- Polymodal version of QRC₁ (also for HA?)
- Computational complexity of QPL(PA + $\Delta^n \perp$) for Δ a suitable slow provability notion
- Can we enhance the expressibility of QRC₁ without losing decidability?
- Applications to Π⁰₁ ordinal analysis?

- Determine the set of always true QRC₁ sequents
- Gauge computational complexity of QRC1
- Properties of QRC₁ such interpolation, etc.
- Neighbourhood / topological semantics for QRC₁?
- Polymodal version of QRC₁ (also for HA?)
- Computational complexity of QPL(PA + $\Delta^n \perp$) for Δ a suitable slow provability notion
- Can we enhance the expressibility of QRC₁ without losing decidability?
- Applications to Π⁰₁ ordinal analysis?
- Strictly positive fragments of modal mu calculus

- Determine the set of always true QRC₁ sequents
- Gauge computational complexity of QRC1
- Properties of QRC₁ such interpolation, etc.
- Neighbourhood / topological semantics for QRC₁?
- Polymodal version of QRC₁ (also for HA?)
- Computational complexity of $\mathsf{QPL}(\mathsf{PA}+\Delta^n\bot)$ for Δ a suitable slow provability notion
- Can we enhance the expressibility of QRC₁ without losing decidability?
- Applications to Π⁰₁ ordinal analysis?
- Strictly positive fragments of modal mu calculus
- Modal mu calculus to capture infinite dynamics in GLP (Reduction Property, Reflexive points in RC models, etc.)

			completeness Final rema	arks
00000000000000 000	000000 00000	00000 00000	00000	

Thank you

Further Reading I

- S.N. Artemov (1985)
 Nonarithmeticity of truth predicate logics of provability. Doklady Akad. Nauk SSSR 284(2), 270–271 (Russian) Soviet Mathematics Doklady 33, 403–405 (English)
 - G. Boolos (1995) The Logic of Provability Cambridge University Press
- A.A. Borges. and J.J. Joosten (2020)
 Quantified Reflection Calculus with one modality
 Advances in Modal Logic 13
 - A.A. Borges. and J.J. Joosten (2021) An Escape from Vardanyan's Theorem https://arxiv.org/abs/2102.13091

Further Reading II

R. Goldblatt (2011)

Quantifiers, propositions and identity: admissible semantics for quantified modal and substructural logics Cambridge University Press

V.A. Vardanyan (1986)

Arithmetic complexity of predicate logics of provability and their fragments

Doklady Akad. Nauk SSSR 288(1), 11–14 (Russian) Soviet Mathematics Doklady 33, 569–572 (English)

A. Visser, M. de Jonge (2006)
 No Escape from Vardanyan's Theorem
 Archive for Mathematical Logic 45(1), 539–554