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Background QRC1 Relational semantics Arithmetical completeness Final remarks

Formalised provability and applications

• Provability is a central notion in logic and metamathematics

• For theories like PA we can write a Σ1 predicate �PA(·) such that

PA ` ϕ ⇐⇒ N |= �PA(pϕq)

Some properties about the provability predicate:

• If PA ` A, then PA ` �PAA for any PA-sentence A

• If PA ` λ↔ ¬�PA(pλq), then
PA ` λ↔ ¬�PA(p0 = 1q), that is

PA ` λ↔
(
�PA(p0 = 1q)→ 0 = 1

)
• PA 0 �PA(p0 = 1q)→ 0 = 1

• ZFC ` �PA(p0 = 1q)→ 0 = 1
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Formalised provability and completess

• For theories like PA we can write a Σ1 predicate �PA(·) such that

PA ` ϕ ⇐⇒ N |= �PA(pϕq)

Theorem

The �PA(·) predicate is Σ0
1-complete. That is, for each c.e. set A, there is

an arithmetical formula ρA(x) such that

A = {n ∈ N | N |= �PA

(
ρA(n)

)
}.
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Formalised provability: provable structural properties

• PA 0 �PA(p0 = 1q)→ 0 = 1

• PA ` �PA(p1 = 1q)→ 1 = 1

• Löb’s Theorem:

If PA ` �PA(pAq)→ A, then PA ` A, for any PA formula A

• Formalised Löb’s Theorem (ignoring GNs):

PA ` �PA

(
�PAA→ A

)
→ �PAA

for any PA formula A
• Characterise all provably structural properties in two steps

• L� with Form� := ⊥ | Prop | Form� → Form� | �Form�
• Define a denotation of L� formulas inside the LPA formulas
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Arithmetical realizations

An arithmetical realization is any function (·)? taking:

formulas in L� → sentences in LPA

propositional variables→ arithmetical sentences

boolean connectives→ boolean connectives

�→ �PA

Clearly, for any realization (·)? we have for example

PA `
(
�(p → q)→

(
�p → �q

))?
since

PA ` �PA(p? → q?)→
(
�PAp

? → �PAq
?
)

regardless of (·)?
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The Provability Logic of a Theory

• For a c.e. theory T we define

PL(T ) := {ϕ ∈ L� | for any (·)?, we have T ` (ϕ)?}

• Here (·)? is as before, but now mapping � to �T

• We observe that PL(T ) is Π0
2 definable

A candidate
• GL is the normal modal logic with axioms

• All classical logical tautologies in L� like �p ∨ ¬�p, etc.
• All distributions axioms: �(A→ B)→ (�A→ �B),
• All Löb axioms: �(�A→ A)→ �A.

• and rules

• Modus Ponens
A→ B A

B
,

• Necessitation
A

�A
.
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Solovay’s Theorem

Theorem (Solovay, 1976)

Let ϕ ∈ L�. Then:
GL ` ϕ
m

PA ` (ϕ)? for any arithmetical realization (·)?

Thus, even though PL(PA) is prima facie of complexity Π0
2, it allows for a

decidable description

GL = {ϕ ∈ L� | for any (·)?, we have PA ` (ϕ)?}

of complexity PSPACE.
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True provability logic

• PA 0 �PA(p0 = 1q)→ 0 = 1

• N |= �PA(pϕq)→ ϕ for whatever sentence ϕ

For a c.e. theory T we define

TPL(T ) := {ϕ ∈ L� | for any (·)?, we have N |= (ϕ)?}

A priori, complexity above true arithmetic.
However,

TPL(PA) = GLS.

Here GLS is axiomatised by all theorems of GL and all reflection axioms
�A→ A with MP as the only rule.
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Solovay for quantified modal logic?

Let L�,∀ be the language of relational quantified modal logic:

>, relation symbols, boolean connectives, ∀x , and �

Define arithmetical realizations (·)• for L�,∀:
formulas in L�,∀ → formulas in LPA

n-ary relation symbols→ arithmetical formulas with n free variables

boolean connectives→ boolean connectives

∀x → ∀x and �→ �PA

For a c.e. theory T we define

QPL(T ) := {ϕ ∈ L�,∀ | for any (·)•, we have T ` (ϕ)•}
and

TQPL(T ) := {ϕ ∈ L�,∀ | for any (·)•, we have N |= (ϕ)•}
Example: �∀xP(x)→ ∀x�P(ẋ)
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A Degenerate Quantified Provability Logic

If we define QL(T ) = {ϕ ∈ Lfol | for any (·)•, we have T ` (ϕ)•}, then it
is not hard to see that CQC = QL(PA).
Proof:

⊆ if π `CQC ϕ, then also π• `CQC ϕ
•, whence π• `PA ϕ

•

⊇ Henkin construction in arithmetic

QPL(PA + Incon(PA)) = CQC +�⊥
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Negative results

Theorem (Vardanyan, 1986 and McGee, 1985)

{closed ϕ ∈ L�,∀ | for any (·)•, we have PA ` (ϕ)•}

is Π0
2-complete. Thus it is not recursively axiomatisable.

Theorem (Artemov, 1985)

TQPL(PA) is not arithmetical.

Theorem (Vardanyan, 1985)

TQPL(PA) is Π0
1 complete in true arithmetic.
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Artemov’s Lemma

• Let F ∈ LPA be a formula

• Replace arithmetical symbols 0,+1,+,×,=
with predicates Z ,S ,A,M,E , obtaining
{F} ∈ L∀
• Go back to LPA with a realization (·)•

When are F and {F}• equivalent over PA?

• Under {T}• to get arithmetical axioms...

• ... and under D• to get recursive A• and M•

F

LPA

• By Tennenbaum’s Theorem the model induced by (·)• is standard,
hence N |= S ⇐⇒ ({T} ∧ D → {S}) ∈ TQPL(PA)

D :=♦> ∧
∀ x (Z (x)→ �Z (x)) ∧ ∀ x (¬Z (x)→ �¬Z (x)) ∧
· · · S · · ·A · · ·M · · ·E
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F

{F}•

{F}

LPA L∀

` l
{T}•

D•

• By Tennenbaum’s Theorem the model induced by (·)• is standard,
hence N |= S ⇐⇒ ({T} ∧ D → {S}) ∈ TQPL(PA)

D :=♦> ∧
∀ x (Z (x)→ �Z (x)) ∧ ∀ x (¬Z (x)→ �¬Z (x)) ∧
· · · S · · ·A · · ·M · · ·E
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Robust negative results

Vardanyan : {ϕ ∈ L�,∀ no modal iterations, just one unary predicate symbol |
for any (·)•, we have PA ` (ϕ)•} is Π0

2-complete.

Berarducci (’89) : {ϕ ∈ L�,∀ | for any (·)• ∈ Σ0
1, we have PA ` (ϕ)•}

is Π0
2-complete.

One easily sees that QPL(PA +�PA⊥) is r.e., but it seems that
QPL(PA +�PA�PA⊥) is also Π0

2-complete.

Theorem (Visser, de Jonge, 2006)

QPL(T ) is Π0
2 complete for any Σ1-sound theory T extending EA.

Archive for Mathematical Logic 2006: No Escape from Vardanyan’s
Theorem
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Planning an escape

Restrict L�,∀ to the strictly positive fragment L♦,∀:

Terms ::= Variables | Constants

L♦,∀ ::= > | relation symbols applied to Terms | ϕ ∧ ϕ | ∀ x ϕ | ♦ϕ

Define a calculus QRC1 with statements ϕ ` ψ where:

ϕ,ψ ∈ L♦,∀

The arithmetical realizations (·)∗ for L♦,∀ send:

formulas in L♦,∀ → axiomatisations of theories in LPA

Prove arithmetical soundness and completeness for QRC1:

QRC1 = {ϕ ` ψ | for any (·)∗, we have PA ` (ϕ ` ψ)∗}

A.A. Borges, J.J. Joosten (UB) QRC1, towards polymodal Amsterdam, March 9 14 / 43



Background QRC1 Relational semantics Arithmetical completeness Final remarks

Planning an escape

Restrict L�,∀ to the strictly positive fragment L♦,∀:

Terms ::= Variables | Constants

L♦,∀ ::= > | relation symbols applied to Terms | ϕ ∧ ϕ | ∀ x ϕ | ♦ϕ

Define a calculus QRC1 with statements ϕ ` ψ where:

ϕ,ψ ∈ L♦,∀

The arithmetical realizations (·)∗ for L♦,∀ send:

formulas in L♦,∀ → axiomatisations of theories in LPA

Prove arithmetical soundness and completeness for QRC1:

QRC1 = {ϕ ` ψ | for any (·)∗, we have PA ` (ϕ ` ψ)∗}

A.A. Borges, J.J. Joosten (UB) QRC1, towards polymodal Amsterdam, March 9 14 / 43



Background QRC1 Relational semantics Arithmetical completeness Final remarks

Planning an escape

Restrict L�,∀ to the strictly positive fragment L♦,∀:

Terms ::= Variables | Constants

L♦,∀ ::= > | relation symbols applied to Terms | ϕ ∧ ϕ | ∀ x ϕ | ♦ϕ

Define a calculus QRC1 with statements ϕ ` ψ where:

ϕ,ψ ∈ L♦,∀

The arithmetical realizations (·)∗ for L♦,∀ send:

formulas in L♦,∀ → axiomatisations of theories in LPA

Prove arithmetical soundness and completeness for QRC1:

QRC1 = {ϕ ` ψ | for any (·)∗, we have PA ` (ϕ ` ψ)∗}

A.A. Borges, J.J. Joosten (UB) QRC1, towards polymodal Amsterdam, March 9 14 / 43



Background QRC1 Relational semantics Arithmetical completeness Final remarks

Planning an escape

Restrict L�,∀ to the strictly positive fragment L♦,∀:

Terms ::= Variables | Constants

L♦,∀ ::= > | relation symbols applied to Terms | ϕ ∧ ϕ | ∀ x ϕ | ♦ϕ

Define a calculus QRC1 with statements ϕ ` ψ where:

ϕ,ψ ∈ L♦,∀

The arithmetical realizations (·)∗ for L♦,∀ send:

formulas in L♦,∀ → axiomatisations of theories in LPA

Prove arithmetical soundness and completeness for QRC1:

QRC1 = {ϕ ` ψ | for any (·)∗, we have PA ` (ϕ ` ψ)∗}

A.A. Borges, J.J. Joosten (UB) QRC1, towards polymodal Amsterdam, March 9 14 / 43



Background QRC1 Relational semantics Arithmetical completeness Final remarks

Old escapes

• Artemov, Japaridze: single variable fragment, fragment of finitely
refutable modal formulas (semantically defined);

• Yavorski, add �A→ �∀xA
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Four current trends

• Strictly positive fragments of modal logics (Zakharyashev, Wolter, et
al.)

A `sp(L) B ⇐⇒ L ` A→ B

• Reflection Calculi: replace the realisation p? by a (simple)
axiomatisation of an arbitrary theory
(instead of mapping p? to an arbitrary sentence)
• Polymodal provability logics: GLP is a polymodal version of GL, with

[0], [1], . . . as modalities
• Decidability is PSPACE-complete
• RC is the strictly positive fragment of GLP, with statements of the form
ϕ ` ψ, where ϕ,ψ are in the language built from >, p, ∧, 〈0〉, 〈1〉, . . .

• E.g. 〈1〉p ` 〈0〉p
• Decidability is in PTIME

• Workshop on Decidable Fragments of First-order Modal Logic,
Affiliated workshop of LICS 2022

A.A. Borges, J.J. Joosten (UB) QRC1, towards polymodal Amsterdam, March 9 16 / 43
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QRC1: Axioms and rules

ϕ ` > ϕ ∧ ψ ` ϕ

ϕ ` ϕ ϕ ∧ ψ ` ψ

ϕ ` ψ ψ ` χ
ϕ ` χ

ϕ ` ψ ϕ ` χ
ϕ ` ψ ∧ χ

♦♦ϕ ` ♦ϕ ϕ ` ψ
♦ϕ ` ♦ψ

ϕ ` ψ
ϕ ` ∀ x ψ

ϕ[x←t] ` ψ
∀ x ϕ ` ψ

x /∈ fvϕ t free for x in ϕ

ϕ ` ψ
ϕ[x←t] ` ψ[x←t]

ϕ[x←c] ` ψ[x←c]

ϕ ` ψ
t free for x in ϕ and ψ c not in ϕ nor ψ
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Some provable and unprovable statements

♦∀ x ϕ ` ∀ x ♦ϕ

∀ x ♦ϕ 6` ♦∀ x ϕ

ϕ ` ψ[x←c]

ϕ ` ∀ x ψ
x not free in ϕ and c not in ϕ nor ψ

Recall that RCω allows for ordinal notations up to ε0 and that it caters Π0
1

ordinal analyses.

Can be extended to RCΛ.
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Arithmetical semantics

The arithmetical realizations (·)∗ for L♦,∀:

formulas in L♦,∀ → axiomatisations of c.e. theories in LPA

variables xi → variables yi

constants ci → variables zi

(>)∗ := τPA(u)

(S(x , c))∗ := σ(y , z , u) ∨ τPA(u) with σ ∈ Σ1

(ψ(x , c) ∧ δ(x , c))∗ := (ψ(x , c))∗ ∨ (δ(x , c))∗

(♦ψ(x , c))∗ := τPA(u) ∨ (u = pCon(ψ(x ,c))∗>q)
(∀ xi ψ(x , c))∗ := ∃ yi (ψ(x , c))∗

(ϕ(x , c) ` ψ(x , c))∗ := ∀ θ, y , z (�ψ∗(y ,z)θ → �ϕ∗(y ,z)θ)

A.A. Borges, J.J. Joosten (UB) QRC1, towards polymodal Amsterdam, March 9 19 / 43
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Arithmetical soundness

Theorem (Arithmetical soundness)

QRC1 ⊆ {ϕ ` ψ | for any (·)∗, we have

PA ` ∀ θ, y , z (�ψ∗(y ,z)θ → �ϕ∗(y ,z)θ)}

By induction on the QRC1-proof. Here is the case of ♦♦ϕ ` ♦ϕ:

• Pick any (·)∗, reason in T , and let θ, y , z be arbitrary

• Assume �(♦ϕ)∗θ

• Then �PA(Conϕ∗(>)→ θ)

• By provable Σ1-completeness, �PA(ConPA(Conϕ∗(>))→ Conϕ∗(>))

• Then �PA(ConPA(Conϕ∗(>))→ θ)

• We conclude �(♦♦ϕ)∗θ

• Σ1-collection is needed for
ϕ ` ψ
ϕ ` ∀xψ

with x /∈ ϕ

A.A. Borges, J.J. Joosten (UB) QRC1, towards polymodal Amsterdam, March 9 20 / 43



Background QRC1 Relational semantics Arithmetical completeness Final remarks

Arithmetical soundness

Theorem (Arithmetical soundness)

QRC1 ⊆ {ϕ ` ψ | for any (·)∗, we have

PA ` ∀ θ, y , z (�ψ∗(y ,z)θ → �ϕ∗(y ,z)θ)}

By induction on the QRC1-proof. Here is the case of ♦♦ϕ ` ♦ϕ:

• Pick any (·)∗, reason in T , and let θ, y , z be arbitrary

• Assume �(♦ϕ)∗θ

• Then �PA(Conϕ∗(>)→ θ)

• By provable Σ1-completeness, �PA(ConPA(Conϕ∗(>))→ Conϕ∗(>))

• Then �PA(ConPA(Conϕ∗(>))→ θ)

• We conclude �(♦♦ϕ)∗θ

• Σ1-collection is needed for
ϕ ` ψ
ϕ ` ∀xψ

with x /∈ ϕ

A.A. Borges, J.J. Joosten (UB) QRC1, towards polymodal Amsterdam, March 9 20 / 43



Background QRC1 Relational semantics Arithmetical completeness Final remarks

Arithmetical completeness

Theorem (Arithmetical completeness)

QRC1 ⊇ {ϕ ` ψ | for any (·)∗, we have T ` (ϕ ` ψ)∗}

Where T is a sound r.e. theory extending IΣ1.

Adapt Solovay’s completeness proof:

• Need Kripke completeness for QRC1

• Countermodels should be finite, transitive, irreflexive, rooted, and
have constant domain

• Embed such models in arithmetic using the Solovay sentences λi
• . . .
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Relational models

Kripke models where:

• each world w is a first-order model with a finite domain D

• the domain D is the same for every world

• each constant symbol c and relational symbol S has a denotation at
each world

• there is a transitive relation R between worlds

• constants have the same denotation at every world

• the denotation of a relation symbol depends on the world

• we use assignments g : Variables→ D to interpret variables

• we abuse notation and define g(c) := denotation(c) for all
assignments g and constants c

A.A. Borges, J.J. Joosten (UB) QRC1, towards polymodal Amsterdam, March 9 22 / 43



Background QRC1 Relational semantics Arithmetical completeness Final remarks

Relational models

Kripke models where:

• each world w is a first-order model with a finite domain D

• the domain D is the same for every world

• each constant symbol c and relational symbol S has a denotation at
each world

• there is a transitive relation R between worlds

• constants have the same denotation at every world

• the denotation of a relation symbol depends on the world

• we use assignments g : Variables→ D to interpret variables

• we abuse notation and define g(c) := denotation(c) for all
assignments g and constants c

A.A. Borges, J.J. Joosten (UB) QRC1, towards polymodal Amsterdam, March 9 22 / 43



Background QRC1 Relational semantics Arithmetical completeness Final remarks

Satisfaction

Let g be a w -assignment.

M,w 
g S(t, u) ⇐⇒ 〈g(t), g(u)〉 ∈ denotationw (S)

M,w 
g ♦ϕ ⇐⇒
there is a world v such that wRv and M, v 
g ϕ

M,w 
g ∀ x ϕ ⇐⇒
for all assignments h ∼x g , we have M,w 
h ϕ
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Relational soundness

Theorem (Relational soundness)

If ϕ ` ψ, then for any model M, world w, and assignment g:

M,w 
g ϕ =⇒ M,w 
g ψ.

Countermodels with arbitrarily large domains are needed.

∀ x , y S(x , x , y) ∧ ∀ x , y S(x , y , x) ∧ ∀ x , y S(y , x , x) ` ∀ x , y , z S(x , y , z)

is unprovable in QRC1, but satisfied by every world with at most two
domain elements.

Can be extended to any n: with S n-ary, let ϕ be the conjunction of the
n(n − 1)/2 formulas of the form ∀ x0, . . . , xn−2 S(. . . , x0, . . . , x0, . . .). Now
ϕ does not entail ψ := ∀ x0, . . . , xn−1 S(x0, . . . , xn−1). Worlds with ≤ n−1
elements that satisfies ϕ must also satisfy ψ.
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Relational completeness

Theorem (Relational completeness)

If ϕ 6` ψ, then there is a finite model M, a world w, and an assignment g
such that:

M,w 
g ϕ and M,w 6
g ψ.

Since QRC1 has the finite model property (finite number of worlds with
finite constant domain), it is decidable.
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Proving relational completeness

• Given ϕ 6` ψ, build a counter-model

• The standard is to use term models: each world is the set of formulas
true at that world

• We also want to know which formulas are not true at given worlds

• Our worlds are pairs of “positive” (true) and “negative” (false)
formulas:

w = 〈w+,w−〉 e.g. 〈{ϕ}, {ψ}〉

• Worlds should be well-formed pairs though...
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Well-formed pairs

Let Λ be a set of formulas and p be a pair.

• Γ ` δ is shorthand for (
∧
γ∈Γ γ) ` δ

• p is closed if every formula in p is closed

• p is consistent if for every δ ∈ p− we have p+ 6` δ
• p is Λ-maximal if for every ϕ ∈ Λ, either ϕ ∈ p+ or ϕ ∈ p−

• p is fully witnessed if for every formula ∀ x ϕ ∈ p− there is a constant
c such that ϕ[x←c] ∈ p−

• p is Λ-well-formed if it is closed, Λ-maximal, consistent and fully
witnessed
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Building a world from an incomplete pair

• Let Λ be a finite set of closed formulas

• Let C be a finite set of constants containing the constants in Λ and
some new constants

• Let ΛC be the closure under (closed) subformulas of Λ, and such that
if ∀ x ϕ ∈ ΛC , then for every c ∈ C we have ϕ[x←c] ∈ ΛC

• Let p = 〈p+, p−〉 be a closed consistent pair such that p+ ∪ p− ⊆ ΛC

• Goal: obtain a ΛC -well-formed pair w extending p

Method

• Some formulas in ΛC are consequences of p+, and thus must be
added to w+ to preserve consistency

• We put all the other formulas of ΛC in p−
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This Method works!

Lemma

If |C | > 2(max. constant count in Λ) + 2(max. ∀-depth of Λ) and p+ is a
singleton, the Method produces a ΛC -well-formed pair w.

• w is consistent because ϕ ∈ w+ if and only if p+ ` ϕ
• w is fully-witnessed because...

∀ x ϕ ∈ w−

⇓
there is some c ∈ C s.t. c doesn’t appear in ∀ x ϕ nor p+

⇓
p+ 6` ϕ[x←c]

⇓
ϕ[x←c] ∈ w−
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Building a counter-model

• Start with ϕ 6` ψ (both closed)

• Build a (well-formed!) world w by extending p := 〈{ϕ}, {ψ}〉 (with
Λ := {ϕ,ψ} and C large enough for Λ)

• Let the domain be the set of constants C

• Let the denotation of relation symbols at w correspond to their
membership in w+

• If ♦χ ∈ w+, create a new world vχ seen from w by ΛC -completing

〈{χ}, {δ,♦δ | ♦δ ∈ w−} ∪ {♦χ}〉

• Define the domain and the denotation at vχ like with w

• Repeat until all ♦-formulas are witnessed
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Putting it together

Lemma (Truth lemma)

Let M be the counter-model we just built. Then for any world w,
assignment g, and formula χg ∈ ΛC :

M,w 
g χ ⇐⇒ χg ∈ w+,

where χg is χ with every free variable x replaced by g(x).

Theorem (Relational completeness)

If ϕ 6` ψ, then there is a finite model M, a world w, and an assignment g
such that:

M,w 
g ϕ and M,w 6
g ψ.
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Arithmetical completeness proof

Theorem (Arithmetical completeness)

QRC1 ⊇ {ϕ ` ψ | for any (·)∗, we have T ` (ϕ ` ψ)∗}

• Assume ϕ 6` ψ
• Take a (finite, transitive, irreflexive, rooted, constant domain) Kripke

model M satisfying ϕ and not ψ at world 1 (the root)
• Embed M (with an extra world 0 pointing to the root) into the

language of arithmetic using the regular Solovay construction i 7→ λi

• T `
∨

i λi
• T `

∧
i 6=j(λi → ¬λj)

• T `
∧

iRj

(
λi → ♦λj

)
• T `

∧
i>0

(
λi → �(

∨
iRj λj)

)
• N |= λ0
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(
λi → ♦λj

)
• T `

∧
i>0

(
λi → �(

∨
iRj λj)

)
• N |= λ0
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Arithmetical completeness proof (cont’ed)

Theorem (Arithmetical completeness)

QRC1 ⊇ {ϕ ` ψ | for any (·)∗, we have T ` (ϕ ` ψ)∗}

• Define S• as:

(S(xk))• :=
∨
i∈M

(
λi ∧

∨
〈a〉∈SMi

paq = yk mod m
)

• Prove a Truth Lemma stating (for i > 0) that

• if i 
g χ then T ` λi → χ•[y←pg(x)q];
• if i 6
g χ then T ` λi → ¬χ•[y←pg(x)q].
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Arithmetical completeness proof (cont’ed)

Theorem (Arithmetical completeness)

QRC1 ⊇ {ϕ ` ψ | for any (·)∗, we have T ` (ϕ ` ψ)∗}

• We can use finite extensions of the base theory, so regular Solovay
construction!

• Recall ϕ 6` ψ
• Then T ` λ1 → ϕ•[y←pg(x)q] and T ` λ1 → ¬ψ•[y←pg(x)q]

• Recall N � λ0

• Recall T ` λ0 → ♦Tλ1.

• Then T ` λ0 → ♦T¬(ϕ• → ψ•)[y←pg(x)q]

• Then N � ¬�T (ϕ• → ψ•)[y←pg(x)q]

• Then T 6` (ϕ• → ψ•)[y←pg(x)q]
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Arithmetical completeness proof (cont’ed)

Theorem (Arithmetical completeness)

QRC1 ⊇ {ϕ ` ψ | for any (·)∗, we have T ` (ϕ ` ψ)∗}

• ...

• We have T 6` (ϕ• → ψ•)[y←pg(x)q]

• Recall (ϕ ` ψ)∗ = ∀ θ, y (�ψ∗θ → �ϕ∗θ)

• Prove T ` ∀ θ, y (�ϕ∗θ ↔ �T (ϕ• → θ))

• Assume towards contradiction that T ` (ϕ ` ψ)∗

• Then T ` ∀ θ, y (�T (ψ• → θ)→ �T (ϕ• → θ))

• Then T ` �T (ϕ• → ψ•)[y←pg(x)q]

• Then T ` (ϕ• → ψ•)[y←pg(x)q] by soundness of T

• Contradiction!
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Corollaries

Theorem (Fragment of QPL(PA))

ϕ `QRC1 ψ ⇔ (ϕ→ ψ) ∈ QPL(PA)

Theorem (Positive fragment)

Let ϕ and ψ be QRC1 formulas (no constants) and let QS be any logic
between QK4 and QGL. Then ϕ `QRC1 ψ if and only if QS ` ϕ→ ψ.
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Background QRC1 Relational semantics Arithmetical completeness Final remarks

Computational Complexity

1 • K,K4,GL are PSPACE-complete
• K+,K4+,GL+ are polytime decidable

2 • GLP is PSPACE complete
• GLP+ is polytime decidable

3 • GL.3 is coNP-complete
• GL.3+ is polytime decidable

4 • QPL(PA) is Π0
2-complete

• QPL(PA)+ is decidable

5 Advanced conjecture:

• TQPL(PA) is Π0
1-complete in (0)ω (non-arithmetical)

• TQPL(PA)+ is decidable
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Heyting Arithmetic

Theorem

QRC1 = {ϕ ` ψ | for any (·)∗, we have PA ` (ϕ ` ψ)∗}

• Soundness also works for HA

• (ϕ ` ψ)∗ = ∀ θ, y , z (�ψ∗(y ,z)θ → �ϕ∗(y ,z)θ)

• (ϕ ` ψ)∗ is Π0
2

• PA is provably Π0
2 conservative over HA

• Complexity of unprovable substitutions using Solovay is Σ2

• This seems to leave room for generalising to HA

• Recall that PL(HA) is a long-standing open problem
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In summary

• There is no quantified provability logic with L�,∀
QRC1:

• quantified, strictly positive provability logic with L♦,∀
• decidable

• sound and complete w.r.t. relational semantics (with constant domain
models!)

• sound and complete w.r.t. arithmetical semantics

• for all sound r.e. theories extending IΣ1
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Forthcoming research

• Determine the set of always true QRC1 sequents

• Gauge computational complexity of QRC1

• Properties of QRC1 such interpolation, etc.

• Neighbourhood / topological semantics for QRC1?

• Polymodal version of QRC1 (also for HA?)

• Computational complexity of QPL(PA + ∆n⊥) for ∆ a suitable slow
provability notion

• Can we enhance the expressibility of QRC1 without losing decidability?

• Applications to Π0
1 ordinal analysis?

• Strictly positive fragments of modal mu calculus

• Modal mu calculus to capture infinite dynamics in GLP (Reduction
Property, Reflexive points in RC models, etc.)
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Thank you
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