Homologated software should come with a formal
dialogue fragment

Joost J. Joosten
University of Barcelona

April 2022

This is a position paper presented and discussed at the
Transatlantic Dialogue on Humanity and Al Regulation Event

in the panel on AI and Human Decision Loops on Thursday, May the 12th,
2022.

https://tinyurl.com/2p8uyfzd

Paris Position Paper

Software is ever more present in our society and important tasks are entrusted
to algorithms. How do we know that the algorithms do what they should be
doing? Various court rulings have asked for homologation of software: a seal of
quality so to say for software.

In this position paper I will make my point that we do not really know what
software homologation is or should be. Next, I will expose the only serious
proposal that I am aware of which is the one that we help to develop and put to
practice in our group in Barcelona. I will finish by proposing a new ingredient
to the homologation protocol: each homologated software should come with an
identified well-behaved but expressive enough formal language that will enable
the public officer or a citizen to enter in a controlled and well defined dialogue
with the homologated software.

Before we start out, a disclaimer: of course we are aware that legal software
can only be applied in a very limited area. But even if large part of the legal
decision making is discretionary, once it is decided to include certain software
in the process of decision making, these software should be subject to severe
requirements at the risk of endangering civil rights. It is in this panorama that
the need of software homologation/certification has been articulated.



As I mentioned before, there is no consensus on what software homologation
exactly is. However, one important ingredient is omnipresent in all conceptions
of software homologation, namely software homologation should at least certify
that a program does what it claims it does.

Before continuing the exposition, it may be good to state that in a very
precise sense one can prove that unrestricted homologation of software does
not exist. To make this statement a bit more precise, let us define what we
call here a universal homologation program. We call a program P a universal
homologation program whenever P takes two inputs

1. another program @ in a language that can be recognized by P and,

2. a specification S in a language that can be recognized by P that describes
behavior of programs;

and whenever given these two inputs @ and S, the program P outputs
“YES”” if program @ does what the specification S says and, outputs
“NO”" if the program ) does something different than as was claimed by S.

The non-existence of unrestricted software homologation can now be formu-
lated as follows: given a minimal requirement on the expressibility of a pro-
gramming language, a universal software homologation program cannot exist.

It is important to be aware of the nature of this statement. It does not say
that we currently have not found such a program P. No, it says that it is a
logical impossibility that such a program P can exist. This impossibility is a
mathematical theorem.

Of course, in order to prove the theorem, one should make precise various
notions such as an arbitrary program, what it means to be a specification, and
what it means for a program to comply with a specification. However, after
decades of mature mathematical logic and computer science, the communities
have indeed made these concepts precise in a very satisfactory, convincing and
widely accepted manner and the theorem can be proven.

This is bad news for regulators. Requiring that any possible software has
to be homologated is in some sense like requiring that any police officer be a
married bachelor: an outright impossibility. However, there is hope. In order
to prove that no universal homologation program P exists, it is essential that
one can input any arbitrary program () and any arbitrary specification S to
the alleged universal homologation program P. If we restrict the @) to a special
class T' of programs, then restricted homologation programs P will exist. For
example, we can consider I' to be the class of all programs that do not contain
any loops.

The additional good news is, that most if not all automatisable problems that
are encountered in the public administration can be solved with some program
that falls within a simple class I' of programs so that a restricted homologation
program P’ exists for T

As such, the homologation of any program II from the class I by a homolo-
gation program P’ restricted to I' shall exist of three ingredients (X, II, A):



1. A formal specification ¥ in a language that can be recognized by P’ that
tells what the program @ should be doing: how the program behaves.
So, ¥ will tell us what to output on what input. For example, it should
output “LEGAL " if a truck driver has driven only four hours in an entire
week and it should output “ILLEGAL” " if that truck driver has driven 14
hours straight without any break in between.

2. A program II in a language that can be recognized by P’ that should
perform the task stated in the formal specification X.

3. A certificate A for which it is checked by P’ that the program IT indeed
complies with the specification X. Typically, A will be a mathematical
proof that the program II complies with the specification X.

The good news is, we can take I' to be large enough so that practically
any program that is used in public administration belongs to I'. The bad news
is, making a triple (X,II, A} is about a thousand times more expensive than
conventional programming. However, I think that for critical software we have
no other choice. We have seen the consequences of non-verified/homologated
software: plane crashes, rocket explosions and seriously infrictions of civil rights.

I think that it is useful to observe that the hard part of software homologation
is in finding the certificate/proof A. As a matter of fact, the programmer will
normally find out that her envisioned program II actually contains bugs wrt to
the specification ¥ when trying to come up with a proof/certificate A. One
can only find a proof/certificate of correctness A in case there is absolutely no
error in the program II at all. Moreover, the proof A is checked by a small
and trustworthy computer program called a proof assistant. Where finding the
certificate is hard, checking that the proof/certificate is indeed a simple task.

The above sketched homologation method will warrant that the verified soft-
ware will not contain a single error with respect to its formal specification (of
course, given some reasonable assumptions). Clearly the specification may be
wrong but at least the program is mathematically proven to be error free wrt
the specification.

This is a huge step forward and I foresee that in the next decade or so
administrations will become aware of this possibility of generating error-free
software and simply require it for critical software.

The current set-up however does not seem to help much to fundamental
questions like transparency and contestability: even by seeing and studying the
certificate, the individual will not be enlightened much.

Now, why are we so much concerned with errors in computer programs?
We know that judges, lawyers and other officers alike also make mistakes. The
fundamental difference is, that we can enter in a dialogue with an officer. If
we doubt something, we can ask for explanations and obtain more and more
information and clarity of the officer about the motivation of the decision. With
computer programs this is typically not the case.

To mitigate this situation, I propose that a homologation protocol should
come with a well defined formal language fragment where the inquisitor can



formulate questions about the behavior of the software. In particular, is this
software treating all individuals equally? For example, in the formal language
it can be formalised that any individual with two passports is treated equally to
any individual with only one passport. And homologated software should come
with a mechanism to decide and certify these kind of questions. It is thus to the
logician and software engineer to work with feasible fragments of logic so that
this dialogue becomes possible and feasible.

Once such a mechanism is there, the citizen can indeed enter in a dialogue
with the software. In this particular sense, the software can explain the decisions
it made. Only in such a situation can we start to consider homologated software
accessible to the larger public.



