My worms, my friends

Joost J. Joosten University of Barcelona

6th International Wormshop - Bern

31 - 10 - 2023

emantics Hyp 00000 00

yperations and Co

o Arithmeti

Reflection calc

Recent 00000

Happy birthday

• Thank you Bern: Sixth edition!

Semantics 000000 Hyperations and Co

Arithmetic 0000000 Reflection calc 0000000 Recent 00000

- Thank you Bern: Sixth edition!
- First edition: 2012 Barcelona

nantics Hypera 0000 0000 ons and Co A

rithmetic Ref

calculi Rec 00

- Thank you Bern: Sixth edition!
- First edition: 2012 Barcelona
- Second edition: 2014 Mexico City

nantics Hypera

ns and Co Ar

Arithmetic F

on calculi F

- Thank you Bern: Sixth edition!
- First edition: 2012 Barcelona
- Second edition: 2014 Mexico City
- Third edition: 2016 Tbilisi

Hyperations and Co

Arithmetic 0000000 Reflection calc

Recent 00000

- Thank you Bern: Sixth edition!
- First edition: 2012 Barcelona
- Second edition: 2014 Mexico City
- Third edition: 2016 Tbilisi
- Fourth edition: 2017 Moscow

Hyperations and Co

Arithmetic

Reflection calc

Recent 00000

- Thank you Bern: Sixth edition!
- First edition: 2012 Barcelona
- Second edition: 2014 Mexico City
- Third edition: 2016 Tbilisi
- Fourth edition: 2017 Moscow
- Fifth edition: 2019 Barcelona

mantics Hype 00000 000 tions and Co

Arithmetic

eflection calculi

Recent 00000

emantics Hy

lyperations and Co

Co Arithme

Reflection calcu

Recent 00000

s Semantics

Arithmetic 0000000 Reflection calculi

Recent 00000

ns Semantic 000000 Hyperations and C

Co Arithmet

c Reflection cal

Recent 00000

ns Semantic 000000 Hyperations and C

d Co Arithm 00 0000 Reflection calcu

Recent 00000

s Semantics 000000 Hyperations and C

Co Arithmet

Reflection calc

Recent 00000

s Semantics

Hyperations and C

o Arithmetic

Reflection calcul

Recent 00000

mantics Hype

yperations and Co

Arithmetic 0000000 Reflection calcu

Recent 00000

Three milestones

• A. Turing's idea: iteration of adding consistency statements 1938, Systems of logic based on ordinals.

Hyperations and Co

Arithmetic

Three milestones

- A. Turing's idea: iteration of adding consistency statements 1938, Systems of logic based on ordinals.
- U. R. Schmerl: adding different kinds of consistency statements 1978: A fine structure generated by reflection formulas over primitive recursive arithmetic

Three milestones

- A. Turing's idea: iteration of adding consistency statements 1938, Systems of logic based on ordinals.
- U. R. Schmerl: adding different kinds of consistency statements 1978: A fine structure generated by reflection formulas over primitive recursive arithmetic
- L. D. Beklemishev: casting the project in polymodal provability logic 2004: Provability algebras and proof theoretic ordinals, I

Hyperations and C 0000000000000

Co Arithmeti

Turing progressions

• We fix an ordinal notation up to Λ

- We fix an ordinal notation up to Λ
 - $T^0 := T$ where T is an initial theory.

Semantics

Hyperations and C

Co Arithmet

c Reflection ca

Recent 00000

Turing progressions

- We fix an ordinal notation up to Λ
 - $T^0 := T$ where T is an initial theory.
 - $T^{\alpha+1} := T^{\alpha} \cup {\operatorname{Con}(T^{\alpha})};$

s Semantics

Hyperations and C

Co Arithmet

tic Reflection

Recent 00000

Turing progressions

- We fix an ordinal notation up to Λ
 - $T^0 := T$ where T is an initial theory.
 - $T^{\alpha+1} := T^{\alpha} \cup {\operatorname{Con}(T^{\alpha})};$
 - $T^{\lambda} := \bigcup_{\beta < \lambda} T^{\beta}$, for λ a limit ordinal.

s Semantics

Hyperations and C

Co Arithmet

ic Reflection c

Recent 00000

Turing progressions

- We fix an ordinal notation up to Λ
 - $T^0 := T$ where T is an initial theory.
 - $T^{\alpha+1} := T^{\alpha} \cup {\operatorname{Con}(T^{\alpha})};$
 - $T^{\lambda} := \bigcup_{\beta < \lambda} T^{\beta}$, for λ a limit ordinal.
- Stronger consistency notions,

$\operatorname{Con}_n(T)$

denotes the natural formalisation of

Semantics

Hyperations and C

Co Arithmeti

c Reflection cal

Recent 00000

Turing progressions

- We fix an ordinal notation up to Λ
 - $T^0 := T$ where T is an initial theory.
 - $T^{\alpha+1} := T^{\alpha} \cup {\operatorname{Con}(T^{\alpha})};$
 - $T^{\lambda} := \bigcup_{\beta < \lambda} T^{\beta}$, for λ a limit ordinal.
- Stronger consistency notions,

$\operatorname{Con}_n(T)$

denotes the natural formalisation of The theory T together with all true Π_n^0 formulas is consistent.

Semantics

Hyperations and C

Co Arithmeti

c Reflection cal

Recent 00000

Turing progressions

- We fix an ordinal notation up to Λ
 - $T^0 := T$ where T is an initial theory.
 - $T^{\alpha+1} := T^{\alpha} \cup {\operatorname{Con}(T^{\alpha})};$
 - $T^{\lambda} := \bigcup_{\beta < \lambda} T^{\beta}$, for λ a limit ordinal.
- Stronger consistency notions,

$\operatorname{Con}_n(T)$

denotes the natural formalisation of The theory T together with all true Π_n^0 formulas is consistent.

Semantics

Hyperations and C

Co Arithmet

ic Reflection ca

Recent 00000

Turing progressions

- We fix an ordinal notation up to Λ
 - $T^0 := T$ where T is an initial theory.
 - $T^{\alpha+1} := T^{\alpha} \cup {\operatorname{Con}(T^{\alpha})};$
 - $T^{\lambda} := \bigcup_{\beta < \lambda} T^{\beta}$, for λ a limit ordinal.
- Stronger consistency notions,

$Con_n(T)$

denotes the natural formalisation of The theory T together with all true Π_n^0 formulas is consistent.

• $T_n^0 := T$ where T is an initial theory.

5 Semantics

Hyperations and C

Co Arithmet

tic Reflection o

Recent 00000

Turing progressions

- We fix an ordinal notation up to Λ
 - $T^0 := T$ where T is an initial theory.
 - $T^{\alpha+1} := T^{\alpha} \cup {\operatorname{Con}(T^{\alpha})};$
 - $T^{\lambda} := \bigcup_{\beta < \lambda} T^{\beta}$, for λ a limit ordinal.
- Stronger consistency notions,

$Con_n(T)$

denotes the natural formalisation of The theory T together with all true Π_n^0 formulas is consistent.

- T_n⁰ := T where T is an initial theory.
 - $T_n^{\alpha+1} := T_n^{\alpha} \cup \{\operatorname{Con}(T_n^{\alpha})\};$

- We fix an ordinal notation up to Λ
 - $T^0 := T$ where T is an initial theory.
 - $T^{\alpha+1} := T^{\alpha} \cup \{\operatorname{Con}(T^{\alpha})\};$
 - $T^{\lambda} := \bigcup_{\beta < \lambda} T^{\beta}$, for λ a limit ordinal.
- Stronger consistency notions,

$\operatorname{Con}_n(T)$

denotes the natural formalisation of The theory T together with all true Π_n^0 formulas is consistent.

- $T_n^0 := T$ where T is an initial theory.

 - $T_n^{\alpha+1} := T_n^{\alpha} \cup \{ \operatorname{Con}(T_n^{\alpha}) \};$ $T_n^{\lambda} := \bigcup_{\beta < \lambda} T_n^{\beta}, \text{ for } \lambda \text{ a limit ordinal.}$

s Semantics 000000 Hyperations and Co

o Arithmeti

Reflection calc

Recent 00000

•
$$(T^{\alpha})^{\beta} \equiv T^{\alpha+\beta}$$

Examples: $(T^{1})^{\omega} \equiv T^{\omega}$

s Semantics 000000 Hyperations and Co

o Arithmeti

Reflection calc

Recent 00000

•
$$(T^{\alpha})^{\beta} \equiv T^{\alpha+\beta}$$

Examples: $(T^{1})^{\omega} \equiv T^{\omega}$

•
$$(T^{\alpha})^{\beta} \equiv T^{\alpha+\beta}$$

Examples: $(T^{1})^{\omega} \equiv T^{\omega}$ $(T^{\omega})^{1} \equiv T^{\omega+1}$
• $(T^{\alpha})^{\beta} - T^{\alpha+\beta}$

•
$$(T_n^{\alpha})_n^{\beta} \equiv T_n^{\alpha+\beta}$$

Wormshop, nutshell, history

Turing progressions

Semantics

Hyperations and Co

Arithmetic
 0000000

Reflection calco

Recent 00000

- $(T^{\alpha})^{\beta} \equiv T^{\alpha+\beta}$ Examples: $(T^{1})^{\omega} \equiv T^{\omega}$ $(T^{\omega})^{1} \equiv T^{\omega+1}$
- $(T_n^{\alpha})_n^{\beta} \equiv T_n^{\alpha+\beta}$

•
$$T_{n+1}^{\alpha} \equiv_{\prod_{n+1}} T_n^{\omega^{\alpha}}$$
 for $\alpha \succ 0$

s Semantics 000000 Hyperations and Co

Arithmetic

Reflection calc

Recent 00000

Schmerl

- $(T^{\alpha})^{\beta} \equiv T^{\alpha+\beta}$ Examples: $(T^{1})^{\omega} \equiv T^{\omega}$ $(T^{\omega})^{1} \equiv T^{\omega+1}$
- $(T_n^{\alpha})_n^{\beta} \equiv T_n^{\alpha+\beta}$

•
$$T_{n+1}^{\alpha} \equiv_{\prod_{n+1}} T_n^{\omega^{\alpha}}$$
 for $\alpha \succ 0$

• Transfinite Turing progressions can be related to transfinite induction principles, like

Semantics

Hyperations and Co

o Arithmeti

Recent 00000

- $(T^{\alpha})^{\beta} \equiv T^{\alpha+\beta}$ Examples: $(T^{1})^{\omega} \equiv T^{\omega}$ $(T^{\omega})^{1} \equiv T^{\omega+1}$
- $(T_n^{\alpha})_n^{\beta} \equiv T_n^{\alpha+\beta}$

•
$$T_{n+1}^{\alpha} \equiv_{\prod_{n+1}} T_n^{\omega^{\alpha}}$$
 for $\alpha \succ 0$

- Transfinite Turing progressions can be related to transfinite induction principles, like
- $[\mathsf{TI}]^n_{\alpha} \equiv_{\prod_{n=1}^0} T^{\alpha}_n$ for α a large enough limit number

• Provability logics can be employed to approximate Turing progressions and to compute ordinal analysis of PA and its kin

- Provability logics can be employed to approximate Turing progressions and to compute ordinal analysis of PA and its kin
- Here $\langle n \rangle$ models *n*-consistency and [*n*] models *n*-provability

Wormshop, nutshell, history Turing progressions Semantics Hyperations and Co Arithmetic Reflection calculi Recent Beklemishev

- Provability logics can be employed to approximate Turing progressions and to compute ordinal analysis of PA and its kin
- Here $\langle n \rangle$ models *n*-consistency and [*n*] models *n*-provability
- For numbers n, m we have $T_n^m \equiv T + \langle n \rangle_T^m \top$
Wormshop, nutshell, history Turing progressions Semantics Hyperations and Co Arithmetic Reflection calculi Recent Beklemishev Bester Bester

- Provability logics can be employed to approximate Turing progressions and to compute ordinal analysis of PA and its kin
- Here $\langle n \rangle$ models *n*-consistency and [*n*] models *n*-provability
- For numbers n, m we have $T_n^m \equiv T + \langle n \rangle_T^m \top$
- $T_n^{\omega} \not\equiv \langle n+1 \rangle_T \top$

- Provability logics can be employed to approximate Turing progressions and to compute ordinal analysis of PA and its kin
- Here $\langle n \rangle$ models *n*-consistency and [*n*] models *n*-provability
- For numbers n, m we have $T_n^m \equiv T + \langle n \rangle_T^m \top$
- $T_n^{\omega} \not\equiv \langle n+1 \rangle_T \top$
- Thm: For each number n and for each $\alpha < \varepsilon_0$, there is an iteration of consistency statements A (worm) so that

$$T_n^{\alpha} \equiv_{\prod_{n=1}^0} T + (A)^*.$$

Beklemishev

- Provability logics can be employed to approximate Turing progressions and to compute ordinal analysis of PA and its kin
- Here $\langle n \rangle$ models *n*-consistency and [*n*] models *n*-provability
- For numbers n, m we have $T_n^m \equiv T + \langle n \rangle_T^m \top$
- $T_n^{\omega} \not\equiv \langle n+1 \rangle_T \top$
- Thm: For each number n and for each $\alpha < \varepsilon_0$, there is an iteration of consistency statements A (worm) so that

$$T_n^{\alpha} \equiv_{\prod_{n=1}^0} T + (A)^*.$$

• In particular $T_n^{\omega} \equiv_{\Pi_{n+1}^0} \langle n+1 \rangle_T \top$

erations and Co

Arithmetic 0000000 Reflection calcu

Recent 00000

Beklemishev: proof theoretic ordinals

• Picture: approach from below

Beklemishev: proof theoretic ordinals

- Picture: approach from below
- For 'natural' notations:

$$|\mathcal{T}|_{n} := \sup\{\alpha \mid \mathsf{EA}_{n}^{\alpha} \subseteq_{\Pi_{n+1}^{0}} \mathcal{T}\}$$

o Arithmetic 0000000 Reflection calcu

Recent 00000

Beklemishev: proof theoretic ordinals

- Picture: approach from below
- For 'natural' notations:

$$|\mathcal{T}|_{n} := \sup\{\alpha \mid \mathsf{EA}_{n}^{\alpha} \subseteq_{\Pi_{n+1}^{0}} \mathcal{T}\}$$

• Kreisel, Levy, Leivant, Beklemishev: $I\Sigma_n \equiv EA + \langle n+1 \rangle_{EA} \top$ so that

$$\mathsf{PA} \equiv \{ \langle 1 \rangle_{\mathsf{EA}} \top, \langle 2 \rangle_{\mathsf{EA}} \top, \langle 3 \rangle_{\mathsf{EA}} \top, \ldots \}$$

Beklemishev: proof theoretic ordinals

- Picture: approach from below
- For 'natural' notations:

$$|\mathcal{T}|_{n} := \sup\{\alpha \mid \mathsf{EA}_{n}^{\alpha} \subseteq_{\Pi_{n+1}^{0}} \mathcal{T}\}\$$

• Kreisel, Levy, Leivant, Beklemishev: I $\Sigma_n \equiv \mathsf{EA} + \langle n+1 \rangle_{\mathsf{EA}} \top$ so that

$$\mathsf{PA} \equiv \{ \langle 1 \rangle_{\mathsf{EA}} \top, \langle 2 \rangle_{\mathsf{EA}} \top, \langle 3 \rangle_{\mathsf{EA}} \top, \ldots \}$$

• Observe, worms can denote approximations of Turing progressions, but also, natural fragments of arithmetic

Beklemishev: proof theoretic ordinals

- Picture: approach from below
- For 'natural' notations:

$$|\mathcal{T}|_{n} := \sup\{\alpha \mid \mathsf{EA}_{n}^{\alpha} \subseteq_{\Pi_{n+1}^{0}} \mathcal{T}\}$$

• Kreisel, Levy, Leivant, Beklemishev: I $\Sigma_n \equiv \mathsf{EA} + \langle n+1 \rangle_{\mathsf{EA}} \top$ so that

$$\mathsf{PA} \equiv \{ \langle 1 \rangle_{\mathsf{EA}} \top, \langle 2 \rangle_{\mathsf{EA}} \top, \langle 3 \rangle_{\mathsf{EA}} \top, \ldots \}$$

- Observe, worms can denote approximations of Turing progressions, but also, natural fragments of arithmetic
- And clearly also, elements of a modal logic

Hyperations and C

Co Arithme

Reflection calc

Recent 00000

Polymodal provability logic

• (Dzh)Japaridze: The propositional polymodal logic GLP:

Hyperations and C

I Co Arithme

ic Reflection c

Recent 00000

Polymodal provability logic

- \bullet (Dzh)Japaridze: The propositional polymodal logic GLP:
 - $[n](A \rightarrow B) \rightarrow ([n]A \rightarrow [n]B);$

Hyperations and C

Co Arithme

ic Reflection ca

Recent 00000

Polymodal provability logic

• (Dzh)Japaridze: The propositional polymodal logic GLP:

•
$$[n](A \rightarrow B) \rightarrow ([n]A \rightarrow [n]B);$$

• $[n]([n]A \rightarrow A) \rightarrow [n]A;$

Hyperations and C

Co Arithmet

c Reflection c

Recent 00000

Polymodal provability logic

 \bullet (Dzh)Japaridze: The propositional polymodal logic GLP:

•
$$[n](A \rightarrow B) \rightarrow ([n]A \rightarrow [n]B);$$

- $[n]([n]A \rightarrow A) \rightarrow [n]A;$
- $[n]A \rightarrow [m]A$ n < m;

Hyperations and C

Co Arithmet

c Reflection c 0 00000<u>00</u> Recent 00000

Polymodal provability logic

 \bullet (Dzh)Japaridze: The propositional polymodal logic GLP:

•
$$[n](A \rightarrow B) \rightarrow ([n]A \rightarrow [n]B);$$

- $[n]([n]A \rightarrow A) \rightarrow [n]A;$
- $[n]A \rightarrow [m]A$ n < m;

•
$$\langle n \rangle A \rightarrow [m] \langle n \rangle A$$
 $n < m;$

Hyperations and C

Co Arithmet

tic Reflection o

Recent 00000

Polymodal provability logic

- (Dzh)Japaridze: The propositional polymodal logic GLP:
 - $[n](A \rightarrow B) \rightarrow ([n]A \rightarrow [n]B);$
 - $[n]([n]A \rightarrow A) \rightarrow [n]A;$
 - $[n]A \rightarrow [m]A$ n < m;
 - $\langle n \rangle A \rightarrow [m] \langle n \rangle A$ n < m;
 - Rules: Modus Ponens and Necessitation $\frac{A}{[n]A}$.

Hyperations and C

Co Arithme

Reflection cal

Recent 00000

Polymodal provability logic

• (Dzh)Japaridze: The propositional polymodal logic GLP:

•
$$[n](A \rightarrow B) \rightarrow ([n]A \rightarrow [n]B);$$

- $[n]([n]A \rightarrow A) \rightarrow [n]A;$
- $[n]A \rightarrow [m]A$ n < m;
- $\langle n \rangle A \rightarrow [m] \langle n \rangle A$ n < m;
- Rules: Modus Ponens and Necessitation $\frac{A}{[n]A}$.
- A happy coincidence?: for worms A, B we can define

$$A <_n B := \operatorname{GLP} \vdash B \rightarrow \langle n \rangle A$$

and then (Ignatiev, Beklemishev)

$$(arepsilon_0,\prec)$$
 ~ $(\mathbb{W}/\sim,<_0)$

IS Semantics

Hyperations and C

Co Arithmet

c Reflection ca

Recent 00000

Long live worms

• Worms are extremely versatile and can denote

Hyperations and C

Co Arithmeti

Reflection cal

Recent 00000

- Worms are extremely versatile and can denote
 - Approximations of Turing progressions;

ns Semantics

Hyperations and C

Co Arithmeti

Reflection cal

Recent 00000

- Worms are extremely versatile and can denote
 - Approximations of Turing progressions;
 - Fragments of arithmetic;

s Semantics

Hyperations and C

Co Arithmeti

Reflection calc

Recent 00000

- Worms are extremely versatile and can denote
 - Approximations of Turing progressions;
 - Fragments of arithmetic;
 - Elements of a modal logic;

s Semantics

Hyperations and C

Co Arithmeti

c Reflection ca

Recent 00000

- Worms are extremely versatile and can denote
 - Approximations of Turing progressions;
 - Fragments of arithmetic;
 - Elements of a modal logic;
 - Ordinals.

emantics Hyper ০০০০০ ০০০০

Hyperations and Co

Co Arithmeti

ic Reflection ca

Recent 00000

Long live worms

- Worms are extremely versatile and can denote
 - Approximations of Turing progressions;
 - Fragments of arithmetic;
 - Elements of a modal logic;
 - Ordinals.
- Beklemishev: modal logics empower computations for an ordinal analysis and

$$|\mathsf{PA}|_n = \varepsilon_0$$

giving rise to fine grained ordinal analyses, e.g., $|PA + Con(PA)|_0 = \varepsilon_0 \cdot 2$

s Semantics

Hyperations and C

Co Arithmet

Reflection calc

Recent 00000

Long live worms

- Worms are extremely versatile and can denote
 - Approximations of Turing progressions;
 - Fragments of arithmetic;
 - Elements of a modal logic;
 - Ordinals.
- Beklemishev: modal logics empower computations for an ordinal analysis and

$$|\mathsf{PA}|_n = \varepsilon_0$$

giving rise to fine grained ordinal analyses, e.g., $|PA + Con(PA)|_0 = \varepsilon_0 \cdot 2$

s Semantics

Hyperations and C

Co Arithmet

Reflection calc

Recent 00000

Long live worms

- Worms are extremely versatile and can denote
 - Approximations of Turing progressions;
 - Fragments of arithmetic;
 - Elements of a modal logic;
 - Ordinals.
- Beklemishev: modal logics empower computations for an ordinal analysis and

$$|\mathsf{PA}|_n = \varepsilon_0$$

giving rise to fine grained ordinal analyses, e.g., $|PA + Con(PA)|_0 = \varepsilon_0 \cdot 2$

s Semantics

Hyperations and C

Co Arithmet

Reflection calc

Recent 00000

Long live worms

- Worms are extremely versatile and can denote
 - Approximations of Turing progressions;
 - Fragments of arithmetic;
 - Elements of a modal logic;
 - Ordinals.
- Beklemishev: modal logics empower computations for an ordinal analysis and

$$|\mathsf{PA}|_n = \varepsilon_0$$

giving rise to fine grained ordinal analyses, e.g., $|PA + Con(PA)|_0 = \varepsilon_0 \cdot 2$

- Long live worms! , but not too long (Beklemishev):
- Every worm dies

s Semantics

Hyperations and Co

Co Arithmeti

Reflection ca

Recent 00000

Long live worms

- Worms are extremely versatile and can denote
 - Approximations of Turing progressions;
 - Fragments of arithmetic;
 - Elements of a modal logic;
 - Ordinals.
- Beklemishev: modal logics empower computations for an ordinal analysis and

$$|\mathsf{PA}|_n = \varepsilon_0$$

giving rise to fine grained ordinal analyses, e.g., $|PA + Con(PA)|_0 = \varepsilon_0 \cdot 2$

- Long live worms! , but not too long (Beklemishev):
- Every worm dies
- is a combinatorial (Hydra like) principle not provable in PA

s Semantics

Hyperations and C 000000000000

Co Arithme

Reflection calc

Recent 00000

•
$$(T^{\alpha})^{\beta} \equiv T^{\alpha+\beta}$$

Examples: $(T^{1})^{\omega} \equiv T^{\omega}$

s Semantics

Hyperations and C 000000000000

Co Arithme

Reflection calc

Recent 00000

•
$$(T^{\alpha})^{\beta} \equiv T^{\alpha+\beta}$$

Examples: $(T^{1})^{\omega} \equiv T^{\omega}$

s Semantics

Hyperations and C

Co Arithme

c Reflection cal

Recent 00000

•
$$(T^{\alpha})^{\beta} \equiv T^{\alpha+\beta}$$

Examples: $(T^{1})^{\omega} \equiv T^{\omega}$ $(T^{\omega})^{1} \equiv T^{\omega+1}$

•
$$(T_n^{\alpha})_n^{\beta} \equiv T_n^{\alpha+\beta}$$

Hyperations and Co

o Arithmetic

c Reflection cal

Recent 00000

•
$$(T^{\alpha})^{\beta} \equiv T^{\alpha+\beta}$$

Examples: $(T^{1})^{\omega} \equiv T^{\omega}$ $(T^{\omega})^{1} \equiv T^{\omega+1}$

•
$$(T_n^{\alpha})_n^{\beta} \equiv T_n^{\alpha+\beta}$$

•
$$T_{n+1}^{\alpha} \equiv_{\prod_{n+1}} T_n^{\omega^{\alpha}}$$
 for $\alpha \succ 0$

Hyperations and Co

Arithmetic

c Reflection cal

Recent 00000

- $(T^{\alpha})^{\beta} \equiv T^{\alpha+\beta}$ Examples: $(T^{1})^{\omega} \equiv T^{\omega}$ $(T^{\omega})^{1} \equiv T^{\omega+1}$
- $(T_n^{\alpha})_n^{\beta} \equiv T_n^{\alpha+\beta}$
- $T_{n+1}^{\alpha} \equiv_{\prod_{n+1}} T_n^{\omega^{\alpha}}$ for $\alpha \succ 0$
- $(T^{\alpha}_{m+k})^{\beta}_{m} \equiv_{\Pi_{m+1}} T^{\omega^{\alpha}_{k} \cdot (1+\beta)}_{m}$ for $\alpha \succ 0$

ns Semantic 000000 Hyperations and C 0000000000000 Arithmetic 0000000 Reflection calcul

Recent 00000

Example

Semantics 000000 lyperations and Co

o Arithmeti

Reflection calcul

Recent 00000

Example

s Semantics

Hyperations and Co

Arithmetic

Reflection calculi

Recent 00000

Example

s Semantics

Hyperations and C 0000000000000

Co Arithme 0 00000 Reflection calcu

Recent 00000

Another example

ns Semantic 000000 Hyperations and C 0000000000000 Arithmetic 0000000 Reflection calcul

Recent 00000

Another example

ns Semantic 000000

Arithmetic 0000000 Reflection calcul

Recent 00000

Another example

Turing progressions

s Semantics 000000

Arithmetic 0000000 Reflection calcul

Recent 00000

Another example

mantics Hype 00000 0000

ations and Co

Arithmetic 0000000

Reflection calcu

Recent 00000

A logic for Turing progressions

• Hermo Reyes, JjJ: A complete calculus (closed fragment) for Turing progressions can be given

Semantics 000000 Hyperations and Co

o Arithmeti

Reflection calc

Recent 00000

A logic for Turing progressions

- Hermo Reyes, JjJ: A complete calculus (closed fragment) for Turing progressions can be given
- A picture says more than a honderd words:

Wormshop, nutshell, history

Turing progressions

emantics Hyp 000000 00

perations and Co

Co Arithme

Reflection calcu

Recent 00000

Roadmap

mantics Hyp 00000 000

Arithmetic

Reflection calc

Recent 00000

Legenda for identities and conservation results

• Confluent paths denote identities;

Recent 00000

Legenda for identities and conservation results

- Confluent paths denote identities;
- Conservation is flagged by being at the same level;

Semantics

Hyperations and C

o Arithmetic

c Reflection cal

Recent 00000

The closed fragment

• GLP is frame-incomplete

Semantics Hyp

yperations and Co

o Arithmetic

c Reflection cal 0 0000000 Recent 00000

The closed fragment

- GLP is frame-incomplete
- However, since Ignatiev we know: the closed fragment does admit a decent universal model

o Arithmetic

tic Reflection ca

Recent 00000

The closed fragment

- GLP is frame-incomplete
- However, since Ignatiev we know: the closed fragment does admit a decent universal model
- We define an *Ignatiev sequence* to be a sequence of ordinals $< \varepsilon_0$,

$$\langle \alpha_0, \alpha_1, \alpha_2, \ldots \rangle$$
 with $\alpha_{n+1} \leq l(\alpha_n)$.

where $I(\alpha + \omega^{\beta}) = \beta$ and I(0) = 0.

Arithmetic
 0000000

ic Reflection ca

Recent 00000

The closed fragment

- GLP is frame-incomplete
- However, since Ignatiev we know: the closed fragment does admit a decent universal model
- We define an *Ignatiev sequence* to be a sequence of ordinals $< \varepsilon_0$,

$$\langle \alpha_0, \alpha_1, \alpha_2, \ldots \rangle$$
 with $\alpha_{n+1} \leq l(\alpha_n)$.

where $I(\alpha + \omega^{\beta}) = \beta$ and I(0) = 0.

• Example: $\langle \omega^{\omega}, 3 \rangle$

o Arithmetic 000000

Reflection calc

Recent 00000

The closed fragment

- GLP is frame-incomplete
- However, since Ignatiev we know: the closed fragment does admit a decent universal model
- We define an *Ignatiev sequence* to be a sequence of ordinals $< \varepsilon_0$,

$$\langle \alpha_0, \alpha_1, \alpha_2, \ldots \rangle$$
 with $\alpha_{n+1} \leq l(\alpha_n)$.

where $I(\alpha + \omega^{\beta}) = \beta$ and I(0) = 0.

• Example: $\langle \omega^\omega, \mathbf{3} \rangle$ (we omit the tail of zeros)

o Arithmetic

c Reflection cal

Recent 00000

The closed fragment

- GLP is frame-incomplete
- However, since Ignatiev we know: the closed fragment does admit a decent universal model
- We define an *Ignatiev sequence* to be a sequence of ordinals $< \varepsilon_0$,

$$\langle \alpha_0, \alpha_1, \alpha_2, \ldots \rangle$$
 with $\alpha_{n+1} \leq l(\alpha_n)$.

where $I(\alpha + \omega^{\beta}) = \beta$ and I(0) = 0.

- Example: $\langle \omega^\omega, \mathbf{3} \rangle$ (we omit the tail of zeros)
- but also $\langle \omega^{\omega}, \omega, 0 \rangle$

o Arithmetic

c Reflection cal

Recent 00000

The closed fragment

- GLP is frame-incomplete
- However, since Ignatiev we know: the closed fragment does admit a decent universal model
- We define an *Ignatiev sequence* to be a sequence of ordinals $< \varepsilon_0$,

$$\langle \alpha_0, \alpha_1, \alpha_2, \ldots \rangle$$
 with $\alpha_{n+1} \leq l(\alpha_n)$.

where $I(\alpha + \omega^{\beta}) = \beta$ and I(0) = 0.

- Example: $\langle \omega^\omega, 3 \rangle$ (we omit the tail of zeros)
- but also $\langle \omega^{\omega}, \omega, 0 \rangle$
- and $\langle \omega^{\omega}, \omega, 1
 angle$

• For two Ignatiev sequences $\vec{\alpha}$ and $\vec{\beta}$ we define an accessibility relation $<_n$:

- For two Ignatiev sequences $\vec{\alpha}$ and $\vec{\beta}$ we define an accessibility relation $<_n$:
- $\vec{\alpha} <_n \vec{\beta}$ if and only if

- For two Ignatiev sequences $\vec{\alpha}$ and $\vec{\beta}$ we define an accessibility relation $<_n$:
- $\vec{\alpha} <_n \vec{\beta}$ if and only if
 - $\alpha_m = \beta_m$ for all m < n

- For two Ignatiev sequences $\vec{\alpha}$ and $\vec{\beta}$ we define an accessibility relation $<_n$:
- $\vec{\alpha} <_n \vec{\beta}$ if and only if
 - $\alpha_m = \beta_m$ for all m < n
 - $\alpha_n < \beta_n$

- For two Ignatiev sequences $\vec{\alpha}$ and $\vec{\beta}$ we define an accessibility relation $<_n$:
- $\vec{\alpha} <_n \vec{\beta}$ if and only if
 - $\alpha_m = \beta_m$ for all m < n
 - $\alpha_n < \beta_n$
- Example: $\langle \omega^{\omega+1}, \omega+1 \rangle >_1 \langle \omega^{\omega+1}, \omega \rangle$

- For two Ignatiev sequences $\vec{\alpha}$ and $\vec{\beta}$ we define an accessibility relation $<_n$:
- $\vec{\alpha} <_n \vec{\beta}$ if and only if
 - $\alpha_m = \beta_m$ for all m < n
 - $\alpha_n < \beta_n$
- Example: $\langle \omega^{\omega+1}, \omega+1 \rangle >_1 \langle \omega^{\omega+1}, \omega \rangle$
- but also $\langle \omega^{\omega+1}, \omega+1 \rangle >_1 \langle \omega^{\omega+1}, \omega, 1 \rangle$

- For two Ignatiev sequences $\vec{\alpha}$ and $\vec{\beta}$ we define an accessibility relation $<_n$:
- $\vec{\alpha} <_n \vec{\beta}$ if and only if
 - $\alpha_m = \beta_m$ for all m < n
 - $\alpha_n < \beta_n$
- Example: $\langle \omega^{\omega+1}, \omega+1 \rangle >_1 \langle \omega^{\omega+1}, \omega \rangle$
- but also $\langle \omega^{\omega+1}, \omega+1\rangle >_1 \langle \omega^{\omega+1}, \omega, 1\rangle$
- We define ⊢ by a ⊢ ⊤, and for no a, a ⊢ ⊥.

- For two Ignatiev sequences $\vec{\alpha}$ and $\vec{\beta}$ we define an accessibility relation $<_n$:
- $\vec{\alpha} <_n \vec{\beta}$ if and only if
 - $\alpha_m = \beta_m$ for all m < n
 - $\alpha_n < \beta_n$
- Example: $\langle \omega^{\omega+1}, \omega+1 \rangle >_1 \langle \omega^{\omega+1}, \omega \rangle$
- but also $\langle \omega^{\omega+1}, \omega+1\rangle >_1 \langle \omega^{\omega+1}, \omega, 1\rangle$
- We define ⊢ by a ⊢ ⊤, and for no a, a ⊢ ⊥.
- \Vdash commutes with Boolean connectives: $\vec{\alpha} \Vdash A \land B$ if and only if $\vec{\alpha} \Vdash A$ and $\vec{\alpha} \Vdash B$, etc

- For two Ignatiev sequences $\vec{\alpha}$ and $\vec{\beta}$ we define an accessibility relation $<_n$:
- $\vec{\alpha} <_n \vec{\beta}$ if and only if
 - $\alpha_m = \beta_m$ for all m < n
 - $\alpha_n < \beta_n$
- Example: $\langle \omega^{\omega+1}, \omega+1 \rangle >_1 \langle \omega^{\omega+1}, \omega \rangle$
- but also $\langle \omega^{\omega+1}, \omega+1\rangle >_1 \langle \omega^{\omega+1}, \omega, 1\rangle$
- We define ⊢ by a ⊢ ⊤, and for no a, a ⊢ ⊥.
- \Vdash commutes with Boolean connectives: $\vec{\alpha} \Vdash A \land B$ if and only if $\vec{\alpha} \Vdash A$ and $\vec{\alpha} \Vdash B$, etc
- $\vec{\alpha} \Vdash \langle n \rangle A$ if and only if there is some $\vec{\beta}$ with $\vec{\alpha} >_n \vec{\beta}$ so that $\vec{\beta} \Vdash A$

Semantics

Hyperations and Co 000000000000

o Arithmetio

Reflection calo

Recent 00000

Ignatiev's model

• **Theorem**(Ignatiev): $GLP^0_{\omega} \vdash A \Leftrightarrow \mathcal{I} \models A$

Semantics

Hyperations and Co

Co Arithmetic

Ignatiev's model

- **Theorem**(Ignatiev): $GLP^0_{\omega} \vdash A \Leftrightarrow \mathcal{I} \models A$
- Beklemishev, Vervoort, JjJ: Soundness and completeness can be formalised in EA.

Lo Arithmetic

Ignatiev's model

- **Theorem**(Ignatiev): $\text{GLP}^0_{\omega} \vdash A \Leftrightarrow \mathcal{I} \models A$
- Beklemishev, Vervoort, JjJ: Soundness and completeness can be formalised in EA.
- Worms can be associated with special points (main axis) in the Ignatiev model so:

Lo Arithmetic

Ignatiev's model

- **Theorem**(Ignatiev): $GLP^0_{\omega} \vdash A \Leftrightarrow \mathcal{I} \models A$
- Beklemishev, Vervoort, JjJ: Soundness and completeness can be formalised in EA.
- Worms can be associated with special points (main axis) in the Ignatiev model so:
- Worms can denote:
 - modal formulas, fragments of arithmetic, ordinals, approximations of Turing progressions, special elements in Ignatiev's model

Wormshop, nutshell, history

Turing progressions

Semantics

yperations and Co

Co Arithme

Reflection calcu

Recent 00000

A universal model

o Arithmetic 0000000 Reflection calcu

Recent 00000

Spectra or Turing-Taylor expansions

• For *U* a formal arithmetic theory we define its *Turing-Taylor* expansion by

Spectra or Turing-Taylor expansions

- For *U* a formal arithmetic theory we define its *Turing-Taylor* expansion by
- $\mathsf{tt}(U) := \langle |U|_{\Pi_0}, |U|_{\Pi_1}, \dots, |U|_{\Pi_n}, |U|_{\Pi_{n+1}}, \dots \rangle$

• For *U* a formal arithmetic theory we define its *Turing-Taylor* expansion by

Semantics

- $\mathsf{tt}(U) := \langle |U|_{\Pi_0}, |U|_{\Pi_1}, \dots, |U|_{\Pi_n}, |U|_{\Pi_{n+1}}, \dots \rangle$
- In case $U \equiv \bigcup_{n=0}^{\infty} T_n^{|U|_{\prod_{n=1}}}$ we say that U has a convergent Turing-Taylor expansion.

• For *U* a formal arithmetic theory we define its *Turing-Taylor* expansion by

Semantics

- $\operatorname{tt}(U) := \langle |U|_{\Pi_0}, |U|_{\Pi_1}, \dots, |U|_{\Pi_n}, |U|_{\Pi_{n+1}}, \dots \rangle$
- In case $U \equiv \bigcup_{n=0}^{\infty} T_n^{|U|_{\prod_{n=1}}}$ we say that U has a convergent Turing-Taylor expansion.
- For each worm $A : T + A \equiv \bigcup_{n=0}^{\infty} T_n^{o_n(A)}$ (JjJ) whenever T is a Π_1^0 extension of EA + supexp

the $o_n(A)$ is the *n*-order type of A as defined in terms of modal logic later

Semantics

Hyperations and Co 00000000000000

Arithmetic

Reflection calc

Recent 00000

The many faces of Ignatiev's model

• The monomials in Turing-Taylor progressions are the T^{lpha}_n

The many faces of Ignatiev's model

- The monomials in Turing-Taylor progressions are the T^{lpha}_n
- They are not entirely independent:

Recent

The many faces of Ignatiev's model

- The monomials in Turing-Taylor progressions are the T^{lpha}_n
- They are not entirely independent:

$$T_1^1 + T_0^{\omega + 1} \equiv T_1^1 + T_0^{\omega \cdot 2}$$

Recen 0000

The many faces of Ignatiev's model

- The monomials in Turing-Taylor progressions are the T^{lpha}_n
- They are not entirely independent:

$$T_1^1 + T_0^{\omega+1} \equiv T_1^1 + T_0^{\omega \cdot 2}$$

• **Theorem (JjJ)** The Ignatiev sequences exactly correspond to those sub-theories of PA that have a convergent Turing-Taylor expansion

Co Arithmeti o 000000

Going beyond GLP_{ω}

• The success of a worm-project was a happy coincidence for PA?
Going beyond GLP_{ω}

- The success of a worm-project was a happy coincidence for PA?
- Beklemishev 2005: define GLP_{Λ} .

Going beyond GLP_ω

- The success of a worm-project was a happy coincidence for PA?
- Beklemishev 2005: define GLP_{Λ} .
- Fernández Duque, JjJ: Ignatiev's model can be generalised for ${\rm GLP}_\Lambda$ and likewise for the topological (Icard) semantics

Going beyond GLP_{ω}

- The success of a worm-project was a happy coincidence for PA?
- Beklemishev 2005: define GLP_{Λ} .
- Fernández Duque, JjJ: Ignatiev's model can be generalised for ${\rm GLP}_\Lambda$ and likewise for the topological (Icard) semantics
- This required the development of a theory of transfinitely iterating ordinal functions

Going beyond GLP_{ω}

- The success of a worm-project was a happy coincidence for PA?
- Beklemishev 2005: define GLP_{Λ} .
- Fernández Duque, JjJ: Ignatiev's model can be generalised for ${\rm GLP}_\Lambda$ and likewise for the topological (Icard) semantics
- This required the development of a theory of transfinitely iterating ordinal functions
- An Ignatiev sequence of Length α is a function $f:\alpha\to\operatorname{On}$

Going beyond GLP_ω

- The success of a worm-project was a happy coincidence for PA?
- Beklemishev 2005: define GLP_{Λ} .
- Fernández Duque, JjJ: Ignatiev's model can be generalised for ${\rm GLP}_\Lambda$ and likewise for the topological (Icard) semantics
- This required the development of a theory of transfinitely iterating ordinal functions
- An Ignatiev sequence of Length α is a function $f:\alpha\to\operatorname{On}$
- so that for all $\xi < \zeta < \alpha$ we have

Going beyond GLP_ω

- The success of a worm-project was a happy coincidence for PA?
- Beklemishev 2005: define GLP_{Λ} .
- \bullet Fernández Duque, JjJ: Ignatiev's model can be generalised for GLP_Λ and likewise for the topological (Icard) semantics
- This required the development of a theory of transfinitely iterating ordinal functions
- An Ignatiev sequence of Length α is a function $f:\alpha\to\operatorname{On}$
- so that for all $\xi < \zeta < \alpha$ we have
- $f(\zeta) \leq l^{-\xi+\zeta}f(\xi)$

Going beyond GLP

- The success of a worm-project was a happy coincidence for PA?
- Beklemishev 2005: define GLP_A.
- Fernández Duque, JjJ: Ignatiev's model can be generalised for GLP_Λ and likewise for the topological (lcard) semantics
- This required the development of a theory of transfinitely iterating ordinal functions
- An Ignatiev sequence of Length α is a function $f: \alpha \to On$
- so that for all $\xi < \zeta < \alpha$ we have
- $f(\zeta) < I^{-\xi+\zeta}f(\xi)$
- The first non-trivial ones longer than omega:

$$\langle \varepsilon_0, \varepsilon_0, \dots, 1 \rangle$$

and

$$\langle \varepsilon_0, \varepsilon_0, \ldots, 0 \rangle$$

Turing progressions

ns Semantics

Hyperations and C

Co Arithmet

Reflection ca

Recent 00000

Heads and tails

• Definition (ξ-head):

Turing progressions

s Semantics

Hyperations and C

Co Arithm

Reflection cal

Recent 00000

Heads and tails

• Definition (ξ -head): • $h_{\xi}\top := \top$ Semantics 000000

Hyperations and Co

Co Arithmet

c Reflection cal

Recent 00000

- Definition (ξ-head):
 - 1 $h_{\xi}\top := \top$ 2 $h_{\xi}\zeta A := \top$ if $\zeta < \xi$;

s Semantics

Hyperations and Co

o Arithmeti 000000

Reflection cal

Recent 00000

- Definition (ξ-head):
 - $\begin{array}{l} \bullet h_{\xi}\top := \top \\ \bullet h_{\xi}\zeta A := \top \text{ if } \zeta < \xi; \\ \bullet h_{\xi}\zeta A := \zeta h_{\xi}A \text{ if } \zeta \geq \xi; \end{array}$

Semantics

Hyperations and Co

Co Arithme O 00000 Reflection cal

Recent 00000

- Definition (ξ-head):
 - 1 $h_{\xi} \top := \top$ 2 $h_{\xi} \zeta A := \top$ if $\zeta < \xi$;
 - **3** $h_{\xi}\zeta A := \zeta h_{\xi}A$ if $\zeta \geq \xi$;
- **Definition** (*ξ*-remainder):

Co Arithmet

Reflection cal

Recent 00000

- **Definition (***ξ*-head):
 - 1 $h_{\xi} \top := \top$ 2 $h_{\xi} \zeta A := \top$ if $\zeta < \xi$;
- **Definition (***ξ***-remainder)**:

Semantics H

Hyperations and Co

o Arithmeti 000000

Reflection cal

Recent 00000

- Definition (ξ-head):
 - 1 $h_{\xi} \top := \top$ 2 $h_{\xi} \zeta A := \top$ if $\zeta < \xi$;
- **Definition** (*ξ*-remainder):

1
$$r_{\xi} \top := \top$$

2 $r_{\xi} \zeta A := \zeta A$ if $\zeta < \xi$;

Co Arithme

Reflection calo

Recent 00000

- **Definition (***ξ*-head):
 - $\mathbf{1} \quad h_{\xi} \top := \top$
 - 2 $h_{\xi}\zeta A := \top$ if $\zeta < \xi$;
- **Definition** (*ξ*-remainder):

1
$$r_{\xi} \top := \top$$

2 $r_{\xi} \zeta A := \zeta A$ if $\zeta < \xi$;
3 $r_{\xi} \zeta A := r_{\xi} A$ if $\zeta \ge \xi$;

Co Arithme

Reflection calc

Recent 00000

Heads and tails

- **Definition (***ξ*-head):
 - $h_{\xi}\top := \top$
 - 2 $h_{\xi}\zeta A := \top$ if $\zeta < \xi$;
- **Definition (***ξ*-remainder):

1
$$r_{\xi} \top := \top$$

2 $r_{\xi} \zeta A := \zeta A$ if $\zeta < \xi$;
3 $r_{\xi} \zeta A := r_{\xi} A$ if $\zeta \ge \xi$;

• Examples:

Co Arithmet

Reflection cal

Recent 00000

- Definition (ξ-head):
 - 1 $h_{\xi}\top := \top$
 - **2** $h_{\xi}\zeta A := \top$ if $\zeta < \xi$;
- **Definition (***ξ***-remainder)**:
 - $\begin{array}{l} \bullet \quad r_{\xi}\top := \top \\ \bullet \quad r_{\xi}\zeta A := \zeta A \text{ if } \zeta < \xi; \\ \bullet \quad r_{\xi}\zeta A := r_{\xi}A \text{ if } \zeta \geq \xi; \end{array}$
- Examples:
 - $h_2(3210321) = 32;$

Co Arithmet

Reflection calc

Recent 00000

- **Definition (***ξ*-head):
 - 1 $h_{\xi}\top := \top$
 - **2** $h_{\xi}\zeta A := \top$ if $\zeta < \xi$;
- **Definition** (*ξ*-remainder):

1
$$r_{\xi} \top := \top$$

2 $r_{\xi} \zeta A := \zeta A$ if $\zeta < \xi$;
3 $r_{\xi} \zeta A := r_{\xi} A$ if $\zeta \ge \xi$

- Examples:
 - $h_2(3210321) = 32;$
 - $r_2(3210321) = 10321;$

Co Arithmet

c Reflection ca

Recent 00000

- Definition (ξ-head):
 - 1 $h_{\xi} \top := \top$
 - **2** $h_{\xi}\zeta A := \top$ if $\zeta < \xi$;
- **Definition (***ξ***-remainder)**:

1
$$r_{\xi} \top := \top$$

2 $r_{\xi} \zeta A := \zeta A$ if $\zeta < \xi$;
3 $r_{\xi} \zeta A := r_{\xi} A$ if $\zeta \ge \xi$;

- Examples:
 - $h_2(3210321) = 32;$
 - $r_2(3210321) = 10321;$
 - $h_3(3210321) = 3;$

Co Arithmet

Reflection calo

Recent 00000

- Definition (ξ-head):
 - 1 $h_{\xi}\top := \top$
 - **2** $h_{\xi}\zeta A := \top$ if $\zeta < \xi$;
- **Definition (***ξ***-remainder)**:

1
$$r_{\xi} \top := \top$$

2 $r_{\xi} \zeta A := \zeta A$ if $\zeta < \xi$;
3 $r_{\xi} \zeta A := r_{\xi} A$ if $\zeta \ge \xi$;

- Examples:
 - $h_2(3210321) = 32;$
 - $r_2(3210321) = 10321;$
 - $h_3(3210321) = 3;$
 - $h_0(3210321) = 3210321;$

Semantics 000000

Hyperations and Co

Co Arithmet

Reflection ca

Recent 00000

- **Definition (***ξ*-head):
 - 1 $h_{\xi} \top := \top$
 - 2 $h_{\xi}\zeta A := \top$ if $\zeta < \xi$;
- **Definition (***ξ***-remainder)**:

1
$$r_{\xi} \top := \top$$

2 $r_{\xi} \zeta A := \zeta A$ if $\zeta < \xi$;
3 $r_{\xi} \zeta A := r_{\xi} A$ if $\zeta \ge \xi$;

- Examples:
 - $h_2(3210321) = 32;$
 - $r_2(3210321) = 10321;$
 - $h_3(3210321) = 3;$
 - $h_0(3210321) = 3210321;$
- The chopped worm theorem $A \equiv h_{\xi}(A) \wedge r_{\xi}(A)$

Co Arithmet

Reflection calcu

Recent 00000

Well orders in the Japaridze Algebra

• **Definition:** (as before)

 $A <_{\xi} B \quad :\Leftrightarrow \quad B \vdash \xi A$

 Arithmetic 0000000 Reflection calcul

Recent 00000

Well orders in the Japaridze Algebra

• **Definition:** (as before)

$$A <_{\xi} B \quad :\Leftrightarrow \quad B \vdash \xi A$$

• Theorem (Beklemishev (DfD, JjJ)):

$$\langle \mathsf{On}, <
angle \simeq \langle \mathbb{W}_{\xi} / \equiv, <_{\xi}
angle$$

Here \mathbb{W}_{ξ} is the class of worms whose modalities are all at least ξ

Arithmetic

Reflection calculi

Recent 00000

Well orders in the Japaridze Algebra

• **Definition:** (as before)

$$A <_{\xi} B \quad :\Leftrightarrow \quad B \vdash \xi A$$

• Theorem (Beklemishev (DfD, JjJ)):

$$\langle \mathsf{On}, <
angle \simeq \langle \mathbb{W}_{\xi} / \equiv, <_{\xi}
angle$$

Here \mathbb{W}_{ξ} is the class of worms whose modalities are all at least ξ

• Theorem (DfD, JjJ): Each $<_{\xi}$ is a well-founded order on $\mathbb W$

Well orders in the Japaridze Algebra

Definition: (as before)

$$A <_{\xi} B \quad :\Leftrightarrow \quad B \vdash \xi A$$

Theorem (Beklemishev (DfD, JjJ)):

$$\langle \mathsf{On}, < \rangle \simeq \langle \mathbb{W}_{\xi} / \equiv, <_{\xi} \rangle$$

Here \mathbb{W}_{ξ} is the class of worms whose modalities are all at least ξ

- Theorem (DfD, JjJ): Each <_ε is a well-founded order on W
- Definition:

$$o_{\xi}(A) := \sup\{o_{\xi}(B) + 1 \mid B <_{\xi} A\}$$

Well orders in the Japaridze Algebra

Definition: (as before)

$$A <_{\xi} B \quad :\Leftrightarrow \quad B \vdash \xi A$$

Theorem (Beklemishev (DfD, JjJ)):

$$\langle \mathsf{On}, < \rangle \simeq \langle \mathbb{W}_{\xi} / \equiv, <_{\xi} \rangle$$

Here \mathbb{W}_{ξ} is the class of worms whose modalities are all at least ξ

- Theorem (DfD, JjJ): Each <_ε is a well-founded order on W
- **Definition:**

$$o_{\xi}(A) := \sup\{o_{\xi}(B) + 1 \mid B <_{\xi} A\}$$

Theorem (DfD, JjJ):

$$o_{\xi}(A) = o_{\xi}(h_{\xi}(A))$$

Well orders in the Japaridze Algebra

• **Definition:** (as before)

$$A <_{\xi} B \quad :\Leftrightarrow \quad B \vdash \xi A$$

• Theorem (Beklemishev (DfD, JjJ)):

$$\langle \mathsf{On}, < \rangle \simeq \langle \mathbb{W}_{\xi} / \equiv, <_{\xi} \rangle$$

Here \mathbb{W}_{ξ} is the class of worms whose modalities are all at least ξ

- Theorem (DfD, JjJ): Each $<_{\xi}$ is a well-founded order on $\mathbb W$
- Definition:

$$o_{\xi}(A) := \sup\{o_{\xi}(B) + 1 \mid B <_{\xi} A\}$$

• Theorem (DfD, JjJ):

$$o_{\xi}(A) = o_{\xi}(h_{\xi}(A))$$

• The order types tell 'how many' successors a modal world should have

d Co Arithme

Reflection calculi

Recent 00000

Well orders in the Japaridze Algebra

• Definition: (as before)

$$A <_{\xi} B \quad :\Leftrightarrow \quad B \vdash \xi A$$

• Theorem (Beklemishev (DfD, JjJ)):

1

$$\langle \mathsf{On}, < \rangle \simeq \langle \mathbb{W}_{\xi} / \equiv, <_{\xi} \rangle$$

Here \mathbb{W}_{ξ} is the class of worms whose modalities are all at least ξ

- Theorem (DfD, JjJ): Each $<_{\xi}$ is a well-founded order on $\mathbb W$
- Definition:

$$o_{\xi}(A) := \sup\{o_{\xi}(B) + 1 \mid B <_{\xi} A\}$$

• Theorem (DfD, JjJ):

$$o_{\xi}(A) = o_{\xi}ig(h_{\xi}(A)ig)$$

- The order types tell 'how many' successors a modal world should have
- Generalise the GLP_ω sequences iterating exponents/logarithms

JjJ (UB)

Semantics 000000 Hyperations and Co

Co Arithme

Reflection ca

Recent 00000

Hyperations and order types

• Hyperations is exactly what is needed to compute order types

- Hyperations is exactly what is needed to compute order types
- By $\xi \uparrow A$ we denote the worm obtained by replacing any modality ζ in A by $\xi + \zeta$

- Hyperations is exactly what is needed to compute order types
- By $\xi\uparrow A$ we denote the worm obtained by replacing any modality ζ in A by $\xi+\zeta$
- Example: $2 \uparrow 0\omega = 2\omega$.

- Hyperations is exactly what is needed to compute order types
- By $\xi\uparrow A$ we denote the worm obtained by replacing any modality ζ in A by $\xi+\zeta$
- Example: $2 \uparrow 0\omega = 2\omega$.
- Theorem ((Bekl), DfD, JjJ): The following is a complete calculus to compute *o*

- Hyperations is exactly what is needed to compute order types
- By $\xi\uparrow A$ we denote the worm obtained by replacing any modality ζ in A by $\xi+\zeta$
- Example: $2 \uparrow 0\omega = 2\omega$.
- Theorem ((Bekl), DfD, JjJ): The following is a complete calculus to compute *o*
 - $o(\top) = 0;$

- Hyperations is exactly what is needed to compute order types
- By $\xi\uparrow A$ we denote the worm obtained by replacing any modality ζ in A by $\xi+\zeta$
- Example: $2 \uparrow 0\omega = 2\omega$.
- Theorem ((Bekl), DfD, JjJ): The following is a complete calculus to compute *o*
 - o(⊤) = 0;
 - o(A0B) = o(B) + 1 + o(A);

- Hyperations is exactly what is needed to compute order types
- By $\xi\uparrow A$ we denote the worm obtained by replacing any modality ζ in A by $\xi+\zeta$
- Example: $2 \uparrow 0\omega = 2\omega$.
- Theorem ((Bekl), DfD, JjJ): The following is a complete calculus to compute *o*
 - o(⊤) = 0;
 - o(A0B) = o(B) + 1 + o(A);
 - $o(\xi \uparrow A) = e^{\xi}(o(A)).$

d Co Arithme

Reflection calo

Recent 00000

- Hyperations is exactly what is needed to compute order types
- By $\xi\uparrow A$ we denote the worm obtained by replacing any modality ζ in A by $\xi+\zeta$
- Example: $2 \uparrow 0\omega = 2\omega$.
- Theorem ((Bekl), DfD, JjJ): The following is a complete calculus to compute *o*
 - o(⊤) = 0;
 - o(A0B) = o(B) + 1 + o(A);
 - $o(\xi \uparrow A) = e^{\xi}(o(A)).$
- Intuitively: e^{ξ} is the ξ times iteration of $\alpha \mapsto -1 + \omega^{\alpha}$
Hyperations and Co

d Co Arithme

Hyperations and order types

- Hyperations is exactly what is needed to compute order types
- By $\xi\uparrow A$ we denote the worm obtained by replacing any modality ζ in A by $\xi+\zeta$
- Example: $2 \uparrow 0\omega = 2\omega$.
- Theorem ((Bekl), DfD, JjJ): The following is a complete calculus to compute *o*
 - $o(\top) = 0;$
 - o(AOB) = o(B) + 1 + o(A);
 - $o(\xi \uparrow A) = e^{\xi}(o(A)).$
- Intuitively: e^{ξ} is the ξ times iteration of $\alpha \mapsto -1 + \omega^{\alpha}$
- Hyperations are a natural refinement of Veblen functions

Hyperations and Co

d Co Arithme 00 00000 Reflection cal

Recent 00000

Hyperations and order types

- Hyperations is exactly what is needed to compute order types
- By $\xi\uparrow A$ we denote the worm obtained by replacing any modality ζ in A by $\xi+\zeta$
- Example: $2 \uparrow 0\omega = 2\omega$.
- Theorem ((Bekl), DfD, JjJ): The following is a complete calculus to compute *o*
 - o(⊤) = 0;
 - o(AOB) = o(B) + 1 + o(A);
 - $o(\xi \uparrow A) = e^{\xi}(o(A)).$
- Intuitively: e^{ξ} is the ξ times iteration of $\alpha \mapsto -1 + \omega^{\alpha}$
- Hyperations are a natural refinement of Veblen functions
- $e^{\omega^{eta}}(\xi) = \varphi_{eta}(\xi)$

Explicit definition for hyperations (DfD, JjJ)

Don't read:

- Definition Let e(ξ) = −1 + ω^ξ. Then, we define the hyperexponential e^ζξ by the following recursion:
- $e^0\xi = \xi$
- $e^{\xi}0 = 0$
- $e^1 = e$
- $e^{\omega^{\rho}+\xi}=e^{\omega^{\rho}}e^{\xi}$, where $\xi<\omega^{\rho}+\xi$
- $e^{\omega^{
 ho}}(\xi+1) = \lim_{\zeta o \omega^{
 ho}} e^{\zeta}(e^{\omega^{
 ho}}(\xi)+1)$, provided ho > 0

•
$$e^{\omega^{\rho}}\xi = \lim_{\zeta \to \xi} e^{\omega^{\rho}}\zeta$$
 for $\xi \in \text{Lim}$, $\rho > 0$.

• Likewise, we have a recursive calculus for transfinitely iterating end-logarithms which is a left-inverse of hyperations

- Likewise, we have a recursive calculus for transfinitely iterating end-logarithms which is a left-inverse of hyperations

• So, Worms are just as good as the regular ordinals

- So, Worms are just as good as the regular ordinals
- In addition we can use their algebraic/logical structure ٠

- So, Worms are just as good as the regular ordinals
- In addition we can use their algebraic/logical structure
- So the multiple roles of worms carries over to the transfinite

yperations and Co

Arithmetic

Reflection calc

Recent 00000

Hierarchies of provability

• GLP_{ω} is sound and complete for a range of readings of [n]

nantics Hyper 0000 0000 tions and Co 0000000

Arithmetic Ref

on calculi F

Hierarchies of provability

- GLP_ω is sound and complete for a range of readings of [n]
- Most prominently:

Semantics H

perations and Co

Arithmetic

Reflection calc

Recent 00000

Hierarchies of provability

- GLP_ω is sound and complete for a range of readings of [n]
- Most prominently:
- [n] stands for

ations and Co 00000000

Arithmetic

Reflection calcu

Recent 00000

Hierarchies of provability

- GLP_ω is sound and complete for a range of readings of [n]
- Most prominently:
- [n] stands for

'provable in T together with all true Π_n^0 formulas'

ations and Co 00000000

Arithmetic

Reflection calculi 0000000 Recent 00000

Hierarchies of provability

- GLP_ω is sound and complete for a range of readings of [n]
- Most prominently:
- [n] stands for

'provable in T together with all true Π_n^0 formulas'

• [n] stands for

Hierarchies of provability

- GLP_ω is sound and complete for a range of readings of [n]
- Most prominently:
- [n] stands for

'provable in T together with all true Π_n^0 formulas'

• [n] stands for

'provable in T using at most n nestings of the ω -rule'

Hyperations and Co 0000000000000 Arithmetic

Reflection calc

Recent 00000

Hierarchies of provability

- GLP_ω is sound and complete for a range of readings of [n]
- Most prominently:
- [n] stands for 'provable in T together with all true Π_n^0 formulas'
- [n] stands for

'provable in T using at most n nestings of the ω -rule'

• The latter naturally suggests a generalisation to the transfinite

Hyperations and Co 000000000000

Arithmetic 0000000

ic Reflection ca o 0000000 Recent 00000

The omega-rule interpretation

antics Hypera 2000 00000

tions and Co

Arithmetic R 000000 C

Reflection calculi

Recent 00000

The omega-rule interpretation

- (DfD, JjJ)
 - One can formalise transfinite omega-rule provability [ξ] in second-order logic with a Δ_1^1 formula;

- (DfD, JjJ)
 - One can formalise transfinite omega-rule provability [ξ] in second-order logic with a Δ_1^1 formula;
 - To prove major facts, introspectivity was used: 'there exist a provability class'

- One can formalise transfinite omega-rule provability [ξ] in second-order logic with a Δ_1^1 formula;
- To prove major facts, introspectivity was used: 'there exist a provability class'
- Soundness of GLP_Λ wrt to $\mathcal T$ moreover requires $\mathcal T\vdash\mathsf{wo}(\Lambda)$ and $\mathcal T\subseteq\mathsf{ACA}_0$

- One can formalise transfinite omega-rule provability [ξ] in second-order logic with a Δ_1^1 formula;
- To prove major facts, introspectivity was used: 'there exist a provability class'
- Soundness of GLP_Λ wrt to $\mathcal T$ moreover requires $\mathcal T\vdash\mathsf{wo}(\Lambda)$ and $\mathcal T\subseteq\mathsf{ACA}_0$
- Soundness and completeness proven for a wide range of theories

lo Arithmetic 000000

Reflection calc

Recent 00000

The omega-rule interpretation

- One can formalise transfinite omega-rule provability [ξ] in second-order logic with a Δ_1^1 formula;
- To prove major facts, introspectivity was used: 'there exist a provability class'
- Soundness of GLP_Λ wrt to $\mathcal T$ moreover requires $\mathcal T\vdash\mathsf{wo}(\Lambda)$ and $\mathcal T\subseteq\mathsf{ACA}_0$
- Soundness and completeness proven for a wide range of theories
- Certain drawbacks:

Recent 00000

The omega-rule interpretation

- One can formalise transfinite omega-rule provability [ξ] in second-order logic with a Δ_1^1 formula;
- To prove major facts, introspectivity was used: 'there exist a provability class'
- Soundness of GLP_Λ wrt to $\mathcal T$ moreover requires $\mathcal T\vdash\mathsf{wo}(\Lambda)$ and $\mathcal T\subseteq\mathsf{ACA}_0$
- Soundness and completeness proven for a wide range of theories
- Certain drawbacks:
 - strong base theory needed;

- One can formalise transfinite omega-rule provability [ξ] in second-order logic with a Δ_1^1 formula;
- To prove major facts, introspectivity was used: 'there exist a provability class'
- Soundness of GLP_Λ wrt to $\mathcal T$ moreover requires $\mathcal T\vdash\mathsf{wo}(\Lambda)$ and $\mathcal T\subseteq\mathsf{ACA}_0$
- Soundness and completeness proven for a wide range of theories
- Certain drawbacks:
 - strong base theory needed;
 - no easy fine structure theorem à la Schmerl available;

Hyperations and Co

o Arithmetic

Reflection calc

Recent 00000

The omega-rule interpretation

- One can formalise transfinite omega-rule provability [ξ] in second-order logic with a Δ_1^1 formula;
- To prove major facts, introspectivity was used: 'there exist a provability class'
- Soundness of GLP_Λ wrt to $\mathcal T$ moreover requires $\mathcal T\vdash\mathsf{wo}(\Lambda)$ and $\mathcal T\subseteq\mathsf{ACA}_0$
- Soundness and completeness proven for a wide range of theories
- Certain drawbacks:
 - strong base theory needed;
 - no easy fine structure theorem à la Schmerl available;
 - runs out of phase with the Turing jumps

Hyperations and Co

Co Arithmetic

c Reflection cal

Recent 00000

Predicativity through reflection

• Recall:

$\mathsf{PA} \ \equiv \ \mathsf{EA} + \{ \langle 1 \rangle_{\mathsf{EA}} \top, \langle 2 \rangle_{\mathsf{EA}} \top, \langle 3 \rangle_{\mathsf{EA}} \top, \ldots \}$

Predicativity through reflection

• Recall:

$$\mathsf{PA} \;\equiv\; \mathsf{EA} + \{ \langle 1 \rangle_{\mathsf{EA}} \top, \langle 2 \rangle_{\mathsf{EA}} \top, \langle 3 \rangle_{\mathsf{EA}} \top, \ldots \}$$

• Cordón-Franco, Lara-Martín, DfD, JjJ:

 $\mathsf{ATR}_0 \equiv \mathsf{ECA}_0 + ``\Lambda \text{-} \texttt{OracleCons}(\mathsf{ECA}_0) \text{ holds for every well-order } \Lambda "\,,$

Predicativity through reflection

• Recall:

$$\mathsf{PA} \; \equiv \; \mathsf{EA} + \{ \langle 1 \rangle_{\mathsf{EA}} \top, \langle 2 \rangle_{\mathsf{EA}} \top, \langle 3 \rangle_{\mathsf{EA}} \top, \ldots \}$$

• Cordón-Franco, Lara-Martín, DfD, JjJ:

 $\mathsf{ATR}_0 \equiv \mathsf{ECA}_0 + ``\Lambda \text{-} \texttt{OracleCons}(\mathsf{ECA}_0) \text{ holds for every well-order } \Lambda "',$

• Here 'oracle provability' $[\alpha|X]^{\Lambda}_{T}$ is defined as nested omega provability where the oracle X injects complexity in the axiom set

$$\begin{array}{ll} \operatorname{Axiom}_{\mathcal{T}|X} & (\varphi) \coloneqq \operatorname{Axiom}_{\mathcal{T}}(\varphi) \lor \exists x < \varphi \; (\varphi = \ulcorner \mathcal{O}(\overline{x}) \urcorner \land x \in X) \\ & \lor \exists x < \varphi \; (\varphi = \ulcorner \neg \mathcal{O}(\overline{x}) \urcorner \land x \notin X) \\ & \lor \; \varphi = \ulcorner \exists Y \; \forall x \; (x \in Y \; \leftrightarrow \; \mathcal{O}(x)) \urcorner \end{array}$$

Recen 0000

Predicativity through reflection

• Recall:

$$\mathsf{PA} ~\equiv~ \mathsf{EA} + \{ \langle 1 \rangle_{\mathsf{EA}} \top, \langle 2 \rangle_{\mathsf{EA}} \top, \langle 3 \rangle_{\mathsf{EA}} \top, \ldots \}$$

• Cordón-Franco, Lara-Martín, DfD, JjJ:

 $\mathsf{ATR}_0 \equiv \mathsf{ECA}_0 + ``\Lambda \text{-} \texttt{OracleCons}(\mathsf{ECA}_0) \text{ holds for every well-order } \Lambda "',$

• Here 'oracle provability' $[\alpha|X]_T^{\Lambda}$ is defined as nested omega provability where the oracle X injects complexity in the axiom set

$$\begin{array}{ll} \operatorname{Axiom}_{\mathcal{T}|X} & (\varphi) \coloneqq \operatorname{Axiom}_{\mathcal{T}}(\varphi) \lor \exists x < \varphi \; (\varphi = \ulcorner \mathcal{O}(\overline{x}) \urcorner \land x \in X) \\ & \lor \; \exists x < \varphi \; (\varphi = \ulcorner \neg \mathcal{O}(\overline{x}) \urcorner \land x \notin X) \\ & \lor \; \varphi = \ulcorner \exists Y \; \forall x \; (x \in Y \; \leftrightarrow \; \mathcal{O}(x)) \urcorner \end{array}$$

• As before, link between consistency and reflection

 $\mathsf{ATR}_0 \equiv \mathsf{ECA}_0 + \mathtt{Pred-0-Cons}(\mathsf{ECA}_0) \equiv \mathsf{ECA}_0 + \mathtt{Pred-0-RFN}_{\Pi^1_2}(\mathsf{ACA}).$

Hyperations and C

Co Arithmetic

etic Reflection

Recent 00000

Turing jumps through provability

• Most prominently readings of [n]:

Arithmetic
 0000000

tic Reflection c

Recent 00000

Turing jumps through provability

- Most prominently readings of [n]:
- [n] stands for

Hyperations and C

Co Arithmetic

etic Reflection (

Recent 00000

Turing jumps through provability

- Most prominently readings of [n]:
- [n] stands for

'provable in T together with all true Π_n^0 formulas'
Semantics 000000

Hyperations and Co

Arithmetic 0000000

tic Reflection c

Recent 00000

Turing jumps through provability

- Most prominently readings of [n]:
- [n] stands for

'provable in T together with all true Π_n^0 formulas'

• [n] stands for

Semantics H 000000 0

Hyperations and Co

Co Arithmetic

etic Reflection

Recent 00000

Turing jumps through provability

- Most prominently readings of [n]:
- [n] stands for
 'provable in T together with all true Π⁰_n formulas'
- [n] stands for

'provable in T using at most n nestings of the ω -rule'

Semantics 000000

Hyperations and C

Co Arithmetic

etic Reflection o

Recent 00000

Turing jumps through provability

- Most prominently readings of [n]:
- [n] stands for
 'provable in T together with all true Π⁰_n formulas'
- [n] stands for *'provable in T using at most n nestings of the ω-rule'*
- The latter has various drawbacks, so we tried something similar to the first

Semantics 000000

Hyperations and C

Co Arithmetic

etic Reflection o

Recent 00000

Turing jumps through provability

- Most prominently readings of [n]:
- [n] stands for
 'provable in T together with all true Π⁰_n formulas'
- [n] stands for
 'provable in T using at most n nestings of the ω-rule'
- The latter has various drawbacks, so we tried something similar to the first
- Enriching the language with new truth-predicates seemed not elegant

Semantics | 000000

Hyperations and C

Co Arithmetic

tic Reflection c

Recent 00000

Turing jumps through provability

- Most prominently readings of [n]:
- [n] stands for
 'provable in T together with all true Π⁰_n formulas'
- [n] stands for
 'provable in T using at most n nestings of the ω-rule'
- The latter has various drawbacks, so we tried something similar to the first
- Enriching the language with new truth-predicates seemed not elegant
- Employing the fact that \Box_T is Σ_1^0 -complete

ntics Hyperatio

ns and Co Ar

Arithmetic Refle

Recent

Münchhausen provability

• Main idea:

 $[\zeta]_T^{\Lambda}\phi \quad :\Leftrightarrow \quad \Box_T\phi \ \lor \ \exists \psi \, \exists \xi < \zeta \ \left(\langle \xi \rangle_T^{\Lambda}\psi \ \land \ \Box_T(\langle \xi \rangle_T^{\Lambda}\psi \to \phi) \right).$

Hyperations and C

Arithmetic

ic Reflection cal o ooooooo Recent 00000

Münchhausen provability

• Main idea:

 $[\zeta]_T^{\Lambda}\phi \quad :\Leftrightarrow \quad \Box_T\phi \ \lor \ \exists \psi \, \exists \xi < \zeta \ \left(\langle \xi \rangle_T^{\Lambda}\psi \ \land \ \Box_T(\langle \xi \rangle_T^{\Lambda}\psi \to \phi) \right).$

• Soundness and completeness almost 'automatically' follow from the defining equivalence

Münchhausen provability

• Main idea:

 $[\zeta]_T^{\Lambda}\phi \quad :\Leftrightarrow \quad \Box_T\phi \ \lor \ \exists\psi\,\exists\xi < \zeta \ \left(\langle\xi\rangle_T^{\Lambda}\psi \ \land \ \Box_T(\langle\xi\rangle_T^{\Lambda}\psi \to \phi)\right).$

- Soundness and completeness almost 'automatically' follow from the defining equivalence
- Again, can be implemented in Second Order Arithmetic

lyperations and Co

Arithmetic
 0000000

tic Reflection ca

Recent 00000

Münchhausen provability

• Main idea:

 $[\zeta]_T^{\Lambda}\phi \quad :\Leftrightarrow \quad \Box_T\phi \ \lor \ \exists \psi \, \exists \xi < \zeta \ \left(\langle \xi \rangle_T^{\Lambda}\psi \ \land \ \Box_T(\langle \xi \rangle_T^{\Lambda}\psi \to \phi) \right).$

- Soundness and completeness almost 'automatically' follow from the defining equivalence
- Again, can be implemented in Second Order Arithmetic
- Runs in phase with Turing jumps and thus seems to allow for fine structures

ions and Co 🛛 A

Arithmetic Refl

culi Rece 000

Iterated truth predicates

• Beklemishev; Pakhomov: First order theories of iterated truth predicates

Hyperations and Co

Co Arithmetic

- Beklemishev; Pakhomov: First order theories of iterated truth predicates
- EA + UTB_{α} has a new truth predicate T_{α} for formulas of lower complexity that do not contain T_{α}

- Beklemishev; Pakhomov: First order theories of iterated truth predicates
- EA + UTB_{α} has a new truth predicate T_{α} for formulas of lower complexity that do not contain T_{α}
- Fine structure (Reduction property) is restored

Hyperations and Co

Co Arithmetic

- Beklemishev; Pakhomov: First order theories of iterated truth predicates
- EA + UTB_{α} has a new truth predicate T_{α} for formulas of lower complexity that do not contain T_{α}
- Fine structure (Reduction property) is restored
- Ordinal analysis is performed for a myriad of theories

- Beklemishev; Pakhomov: First order theories of iterated truth predicates
- EA + UTB_{α} has a new truth predicate T_{α} for formulas of lower complexity that do not contain T_{α}
- Fine structure (Reduction property) is restored
- Ordinal analysis is performed for a myriad of theories
- Most notably transfinitely iterated comprehension

- Beklemishev; Pakhomov: First order theories of iterated truth predicates
- EA + UTB_{α} has a new truth predicate T_{α} for formulas of lower complexity that do not contain T_{α}
- Fine structure (Reduction property) is restored
- Ordinal analysis is performed for a myriad of theories
- Most notably transfinitely iterated comprehension
- DfD, JjJ, Pakhomov, Papafillipou, Weierman: stronger versions of EWD

emantics Hyp 00000 000 ons and Co A

Arithmetic Refle

calculi Re oc

Denoting theories

• Iterated reflection/comprehension often gives rise to infinite collections

mantics Hype

ons and Co A

Arithmetic Refl

calculi Re

Denoting theories

- Iterated reflection/comprehension often gives rise to infinite collections
- GLP cannot account for denoting such collections

Wormshop, nutshell, history

Turing progressions

Semantics

Hyperations and C

Co Arithmet

Reflection calculi

Recent 00000

RC: Axioms and rules

Dashkov, Beklemishev

Formulas built from propositional variables, conjunctions and consistency statements denote theories

 $\begin{array}{ccc} \varphi \vdash \top & \varphi \land \psi \vdash \varphi \\ \varphi \vdash \varphi & \varphi \land \psi \vdash \psi \\ \hline \varphi \vdash \psi & \psi \vdash \chi \\ \hline \varphi \vdash \chi & \varphi \vdash \psi \land \chi \end{array}$

Wormshop, nutshell, history

Turing progressions

Semantics

Hyperations and C

Co Arithmet

Reflection calculi

Recent 00000

RC: Axioms and rules

Dashkov, Beklemishev

Formulas built from propositional variables, conjunctions and consistency statements denote theories

$$\begin{array}{cccc} \varphi \vdash \top & \varphi \land \psi \vdash \varphi \\ \varphi \vdash \varphi & \varphi \land \psi \vdash \psi \\ \hline \varphi \vdash \psi & \psi \vdash \chi \\ \hline \varphi \vdash \chi & \varphi \vdash \psi & \varphi \vdash \chi \\ \hline \varphi \vdash \chi & \varphi \vdash \psi & \varphi \vdash \chi \\ \hline \varphi \vdash \psi & \chi \\ \hline \end{array}$$

Semantics

Hyperations and C

Co Arithmet

Recent 00000

RC: Axioms and rules

Dashkov, Beklemishev

Formulas built from propositional variables, conjunctions and consistency statements denote theories

$$\begin{array}{cccc} \varphi \vdash \top & \varphi \land \psi \vdash \varphi \\ \varphi \vdash \varphi & \varphi \land \psi \vdash \psi \\ \hline \varphi \vdash \psi & \psi \vdash \chi \\ \hline \varphi \vdash \chi & \varphi \vdash \psi & \varphi \vdash \chi \\ \hline \varphi \vdash \chi & \varphi \vdash \psi \land \chi \end{array} & \left(\begin{array}{c} \varphi \vdash \psi \\ \varphi \vdash \chi \\ \varphi \vdash \psi & \varphi \vdash \chi \\ \hline \varphi \vdash \psi & \chi \end{array} \right)$$

$$\langle \alpha \rangle \varphi \wedge \langle \beta \rangle \psi \vdash \langle \alpha \rangle (\varphi \wedge \langle \beta \rangle \psi) \quad \alpha > \beta$$

Semantics H

yperations and Co

Arithmetic 0000000

Reflection calculi

Recent 00000

Simple calculi

• RC is much better behaved than GLP

Semantics 000000 Hyperations and Co 000000000000

 Arithmetic 0000000 Reflection calculi

Recent 00000

- RC is much better behaved than GLP
- Frame complete

Semantics 000000 Hyperations and Co 000000000000

 Arithmetic 0000000 Reflection calculi

Recent 00000

- RC is much better behaved than GLP
- Frame complete
- Finite model property

Hyperations and Co

o Arithmetic

Reflection calculi

Recent 00000

- RC is much better behaved than GLP
- Frame complete
- Finite model property
- PTIME decidable versus PSPACE

hyperations and Co

Arithmetic 0000000

- RC is much better behaved than GLP
- Frame complete
- Finite model property
- PTIME decidable versus PSPACE
- Worms are closed under conjunctions

Hyperations and Co 000000000000

Arithmetic

Reflection calculi

- RC is much better behaved than GLP
- Frame complete
- Finite model property
- PTIME decidable versus PSPACE
- Worms are closed under conjunctions
- de Almeida Borges, JjJ: Worm calculus
 There is a reflection calculus based solely on worms (A ⊢ B) deciding all GLP ⊢ A → B theorems

Hyperations and C

Co Arithmeti

Recent

QRC₁: Axioms and rules

Strictly positive formulas φ, ψ, χ using only universal quantifiers, conjunctions and consistency statements:

$\varphi \vdash \chi$	$\varphi \vdash \psi \wedge \chi$
$\underline{\varphi \vdash \psi \psi \vdash \chi}$	$\underline{\varphi \vdash \psi \varphi \vdash \chi}$
$\varphi\vdash\varphi$	$\varphi \wedge \psi \vdash \psi$
$\varphi \vdash \top$	$\varphi \wedge \psi \vdash \varphi$

Hyperations and C

Co Arithmetic

 $\Diamond \Diamond \varphi \vdash \Diamond \varphi \qquad \frac{\varphi \vdash \psi}{\Diamond \varphi \vdash \Diamond \psi}$

QRC₁: Axioms and rules

Strictly positive formulas φ, ψ, χ using only universal quantifiers, conjunctions and consistency statements:

$\overline{\varphi \vdash \chi}$	$\overline{ \varphi \vdash \psi \land \chi }$
$\varphi \vdash \psi \psi \vdash \chi$	$\varphi \vdash \psi \varphi \vdash \chi$
$\varphi\vdash\varphi$	$\varphi \wedge \psi \vdash \psi$
$\varphi \vdash \top$	$\varphi \wedge \psi \vdash \varphi$

Hyperations and Co

Co Arithmetic

 $(\circ \vdash y /)$

QRC₁: Axioms and rules

Strictly positive formulas φ, ψ, χ using only universal quantifiers, conjunctions and consistency statements:

$\varphi \vdash \top$	$\varphi \wedge \psi \vdash \varphi$	$\Diamond \Diamond \varphi \vdash \Diamond \varphi$	$\frac{\varphi+\varphi}{\Diamond\varphi\vdash\Diamond\psi}$
$\varphi\vdash\varphi$	$\varphi \wedge \psi \vdash \psi$		$(a[x \leftarrow t] \vdash a)$
$\underline{\varphi \vdash \psi \psi \vdash \chi}$	$\underline{\varphi \vdash \psi \varphi \vdash \chi}$	$\frac{\varphi \vdash \psi}{\varphi \vdash \forall \mathbf{x} \psi}$	$\frac{\varphi[\mathbf{x}\leftarrow\iota]\vdash\psi}{\forall\mathbf{x}\varphi\vdash\psi}$
$\varphi \vdash \chi$	$\varphi \vdash \psi \land \chi$	$x \notin fv \varphi$	t free for x in φ

Hyperations and Co

Co Arithmetic

 $(\circ \vdash y /)$

QRC₁: Axioms and rules

Strictly positive formulas φ, ψ, χ using only universal quantifiers, conjunctions and consistency statements:

JjJ (UB)

Semantics H 000000 c

Hyperations and Co

Arithmetic

Reflection calculi

Recent 00000

Some provable and unprovable statements

$$\Diamond \, \forall \, x \, \varphi \vdash \forall \, x \, \Diamond \varphi$$

 $\forall \, x \, \Diamond \varphi \not\vdash \Diamond \, \forall \, x \, \varphi$

$$\frac{\varphi \vdash \psi[\mathbf{x} \leftarrow \mathbf{c}]}{\varphi \vdash \forall \, \mathbf{x} \, \psi}$$

 ${\it x}$ not free in φ and ${\it c}$ not in φ nor ψ

Semantics 000000

Hyperations and C

Co Arithmeti 0000000

Reflection calculi

Recent 00000

Arithmetical semantics

The arithmetical realizations $(\cdot)^*$ for $\mathcal{L}_{\Diamond,\forall}$:

formulas in $\mathcal{L}_{\Diamond,\forall} \rightarrow$ axiomatisations of c.e. theories in \mathcal{L}_{PA} variables $x_i \rightarrow$ variables y_i constants $c_i \rightarrow$ variables z_i

Arithmetical semantics

The arithmetical realizations $(\cdot)^*$ for $\mathcal{L}_{\Diamond,\forall}$:

formulas in $\mathcal{L}_{\Diamond,\forall} \rightarrow$ axiomatisations of c.e. theories in \mathcal{L}_{PA} variables $x_i \rightarrow$ variables y_i constants $c_i \rightarrow$ variables z_i $(\top)^* := \tau_{PA}(u)$ $(S(x,c))^* := \sigma(y, z, u) \lor \tau_{PA}(u)$ with $\sigma \in \Sigma_1$ $(\psi(x,c) \land \delta(x,c))^* := (\psi(x,c))^* \lor (\delta(x,c))^*$ $(\Diamond \psi(x,c))^* := \tau_{PA}(u) \lor (u = \lceil \operatorname{Con}_{(\psi(x,c))^*} \top \rceil)$ $(\forall x_i \psi(x,c))^* := \exists y_i (\psi(x,c))^* \quad \Sigma_1\text{-collection guarantees closure!}$

Arithmetical semantics

The arithmetical realizations ()* for $\mathcal{L}_{\Diamond,\forall}$:

formulas in $\mathcal{L}_{\triangle,\forall} \rightarrow$ axiomatisations of c.e. theories in \mathcal{L}_{PA} variables $x_i \rightarrow$ variables y_i constants $c_i \rightarrow$ variables z_i $(\top)^* := \tau_{\mathsf{PA}}(u)$ $(S(x,c))^* := \sigma(y,z,u) \lor \tau_{\mathsf{PA}}(u)$ with $\sigma \in \Sigma_1$ $(\psi(x,c) \wedge \delta(x,c))^* := (\psi(x,c))^* \vee (\delta(x,c))^*$ $(\Diamond \psi(x,c))^* := \tau_{\mathsf{PA}}(u) \lor (u = \lceil \mathsf{Con}_{(\psi(x,c))^*} \top \rceil)$ $(\forall x_i \psi(x, c))^* := \exists y_i (\psi(x, c))^* \Sigma_1$ -collection guarantees closure! $(\varphi(x,c) \vdash \psi(x,c))^* := \forall \,\theta, y, z \,(\Box_{\psi^*(y,z)}\theta \to \Box_{\omega^*(y,z)}\theta)$

Semantics F

Hyperations and Co

Arithmetic

Reflection calculi

Recent 00000

Arithmetical soundness and completeness

Theorem (Arithmetical soundness)

$$\mathsf{QRC}_1 \subseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have}$$

 $\mathsf{PA} \vdash \forall \theta, y, z (\Box_{\psi^*(y,z)} \theta \to \Box_{\varphi^*(y,z)} \theta) \}$

Semantics | 000000

Hyperations and Co

Arithmetic

Reflection calculi

Recent 00000

Arithmetical soundness and completeness

Theorem (Arithmetical soundness)

$$\mathsf{QRC}_1 \subseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have} \\ \mathsf{PA} \vdash \forall \theta, y, z \left(\Box_{\psi^*(y,z)} \theta \to \Box_{\varphi^*(y,z)} \theta \right) \}$$

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

Where T is a sound r.e. theory extending $I\Sigma_1$.

Adapt Solovay's completeness proof:

Need Kripke completeness for QRC1
Arithmetic

Reflection calculi

Recent 00000

Arithmetical soundness and completeness

Theorem (Arithmetical soundness)

$$\mathsf{QRC}_1 \subseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have} \\ \mathsf{PA} \vdash \forall \theta, y, z \left(\Box_{\psi^*(y,z)} \theta \to \Box_{\varphi^*(y,z)} \theta \right) \}$$

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

Where T is a sound r.e. theory extending $I\Sigma_1$.

Adapt Solovay's completeness proof:

- Need Kripke completeness for QRC₁
- Countermodels should be finite, transitive, irreflexive, rooted, and have constant domain

Arithmetic

Reflection calculi

Recent 00000

Arithmetical soundness and completeness

Theorem (Arithmetical soundness)

$$\mathsf{QRC}_1 \subseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have} \\ \mathsf{PA} \vdash \forall \theta, y, z \left(\Box_{\psi^*(y,z)} \theta \to \Box_{\varphi^*(y,z)} \theta \right) \}$$

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

Where T is a sound r.e. theory extending $I\Sigma_1$.

Adapt Solovay's completeness proof:

- Need Kripke completeness for QRC₁
- Countermodels should be finite, transitive, irreflexive, rooted, and have constant domain
- Embed such models in arithmetic using the Solovay sentences λ_i ...

JjJ (UB)

My worms, my friends

antics Hyperati 000 000000 and Co Arith

netic Reflection calculi

Recent 00000

Heyting arithmetic

• de Almeida Borges, JjJ (thanks to Visser and de Jongh): Proof can be adapted to Heyting Arithmetic

Heyting arithmetic

- de Almeida Borges, JjJ (thanks to Visser and de Jongh): Proof can be adapted to Heyting Arithmetic
- Simple fragment of PL(HA);

(To be contrasted with recent work of Mojtahedi on full $\mathsf{PL}(\mathsf{HA}))$

Arithmetic

Heyting arithmetic

- de Almeida Borges, JjJ (thanks to Visser and de Jongh): Proof can be adapted to Heyting Arithmetic
- Simple fragment of PL(HA);

(To be contrasted with recent work of Mojtahedi on full PL(HA))

• Jump in complexity from Π_2^0 -complete (Vardanyan) to decidable;

Co Arithmeti

Reflection calcu

Recent 00000

Pathological orderings

• Tentative: $|U|_{Con} := \min\{ \operatorname{ot}(\prec) \mid \mathsf{PRA} + \mathsf{TI}(\prec, \mathsf{PRIM}) \vdash \mathsf{Con}(U) \}$

Pathological orderings

- Tentative: $|U|_{\mathsf{Con}} := \min\{\mathsf{ot}(\prec) \mid \mathsf{PRA} + \mathsf{TI}(\prec, \mathsf{PRIM}) \vdash \mathsf{Con}(U)\}$
- What is a natural well-order on the natural numbers?

Pathological orderings

- Tentative: $|U|_{\mathsf{Con}} := \min\{\mathsf{ot}(\prec) \mid \mathsf{PRA} + \mathsf{TI}(\prec, \mathsf{PRIM}) \vdash \mathsf{Con}(U)\}$
- What is a natural well-order on the natural numbers?
- Kreisel's pathological ordering

$$\begin{array}{rcl} n \prec_{\mathsf{ZFC}} m & := & n < m & \text{if} & \forall i < \max_{<}(m,n) \neg \mathsf{Proof}_{\mathsf{ZFC}}(i, \ulcorner 0 = 1\urcorner), \\ & m < n & \text{if} & \exists i < \max_{<}(m,n) \operatorname{Proof}_{\mathsf{ZFC}}(i, \ulcorner 0 = 1\urcorner). \end{array}$$

00000

Pathological orderings

- Tentative: $|U|_{Con} := \min\{ot(\prec) \mid PRA + TI(\prec, PRIM) \vdash Con(U)\}$
- What is a natural well-order on the natural numbers?
- Kreisel's pathological ordering

 $n \prec_{\mathsf{ZFC}} m := n < m$ if $\forall i < \max_{\leq} (m, n) \neg \mathsf{Proof}_{\mathsf{ZFC}}(i, \lceil 0 = 1 \rceil)$, m < n if $\exists i < \max_{\leq} (m, n) \operatorname{Proof}_{\operatorname{ZFC}}(i, \lceil 0 = 1 \rceil)$.

• By induction along \prec_{ZFC} prove $\forall y < x \neg \mathsf{Proof}_{\mathsf{ZFC}}(y, \lceil 0 = 1 \rceil)$

Pathological orderings

- Tentative: $|U|_{\mathsf{Con}} := \min\{\mathsf{ot}(\prec) \mid \mathsf{PRA} + \mathsf{TI}(\prec, \mathsf{PRIM}) \vdash \mathsf{Con}(U)\}$
- What is a natural well-order on the natural numbers?
- Kreisel's pathological ordering

 $\begin{array}{rcl} n\prec_{\mathsf{ZFC}}m &:=& n < m \quad \text{if} \quad \forall \, i < \max_{<}(m,n) \, \neg \mathsf{Proof}_{\mathsf{ZFC}}(i, \ulcorner 0 = 1\urcorner), \\ & m < n \quad \text{if} \quad \exists \, i < \max_{<}(m,n) \, \mathsf{Proof}_{\mathsf{ZFC}}(i, \ulcorner 0 = 1\urcorner). \end{array}$

- By induction along \prec_{ZFC} prove $\forall y < x \neg \mathsf{Proof}_{\mathsf{ZFC}}(y, \lceil 0 = 1 \rceil)$
- $\mathsf{PRA} + \mathsf{TI}(\prec_{\mathsf{ZFC}}, \mathsf{PRIM}) \vdash \mathsf{Con}(\mathsf{ZFC})$

Pathological orderings

- Tentative: $|U|_{\mathsf{Con}} := \min\{\mathsf{ot}(\prec) \mid \mathsf{PRA} + \mathsf{TI}(\prec, \mathsf{PRIM}) \vdash \mathsf{Con}(U)\}$
- What is a natural well-order on the natural numbers?
- Kreisel's pathological ordering

 $\begin{array}{rcl} n\prec_{\mathsf{ZFC}}m &:=& n < m \quad \text{if} \quad \forall \, i < \max_{<}(m,n) \, \neg \mathsf{Proof}_{\mathsf{ZFC}}(i, \ulcorner 0 = 1\urcorner), \\ m < n \quad \text{if} \quad \exists \, i < \max_{<}(m,n) \, \mathsf{Proof}_{\mathsf{ZFC}}(i, \ulcorner 0 = 1\urcorner). \end{array}$

- By induction along \prec_{ZFC} prove $\forall y < x \neg \mathsf{Proof}_{\mathsf{ZFC}}(y, \lceil 0 = 1 \rceil)$
- $\mathsf{PRA} + \mathsf{TI}(\prec_{\mathsf{ZFC}}, \mathsf{PRIM}) \vdash \mathsf{Con}(\mathsf{ZFC})$
- Likewise, Beklemishev: for each $\alpha < \omega_1^{\rm CK}$ there is \prec^* of order type α so that

$$\mathsf{PRA} + \mathsf{TI}(\prec^*, \mathsf{PRIM}) \nvDash \mathsf{Con}(\mathsf{PA})$$

Pathological orderings

- Tentative: $|U|_{\mathsf{Con}} := \min\{\mathsf{ot}(\prec) \mid \mathsf{PRA} + \mathsf{TI}(\prec, \mathsf{PRIM}) \vdash \mathsf{Con}(U)\}$
- What is a natural well-order on the natural numbers?
- Kreisel's pathological ordering

 $\begin{array}{rcl} n\prec_{\mathsf{ZFC}}m &:=& n < m \quad \text{if} \quad \forall \, i < \max_{<}(m,n) \, \neg \mathsf{Proof}_{\mathsf{ZFC}}(i, \ulcorner 0 = 1\urcorner), \\ & m < n \quad \text{if} \quad \exists \, i < \max_{<}(m,n) \, \mathsf{Proof}_{\mathsf{ZFC}}(i, \ulcorner 0 = 1\urcorner). \end{array}$

- By induction along \prec_{ZFC} prove $\forall y < x \neg \mathsf{Proof}_{\mathsf{ZFC}}(y, \lceil 0 = 1 \rceil)$
- $\mathsf{PRA} + \mathsf{TI}(\prec_{\mathsf{ZFC}}, \mathsf{PRIM}) \vdash \mathsf{Con}(\mathsf{ZFC})$
- Likewise, Beklemishev: for each $\alpha < \omega_1^{\rm CK}$ there is \prec^* of order type α so that

$$\mathsf{PRA} + \mathsf{TI}(\prec^*, \mathsf{PRIM}) \nvDash \mathsf{Con}(\mathsf{PA})$$

• Various other proof theoretical notions also suffer from pathological orders

JjJ (UB)

Semantics 000000 Hyperations and C 0000000000000 Arithmetic

Reflection calc

Recent 0●000

Banning the pathological

• Pakhomov, Walsh:

Banning the pathological

- Pakhomov, Walsh:
- Definition: $T \prec_{\Pi_1^1} U$ if U proves Π_1^1 -soundness of T

Banning the pathological

- Pakhomov, Walsh:
- Definition: $T \prec_{\Pi_1^1} U$ if U proves Π_1^1 -soundness of T
- The relation $\prec_{\Pi^1_1}$ is well-founded on $\Pi^1_1\text{-sound theories}$

Recent 0●000

Banning the pathological

- Pakhomov, Walsh:
- Definition: $T \prec_{\Pi_1^1} U$ if U proves Π_1^1 -soundness of T
- The relation $\prec_{\Pi^1_1}$ is well-founded on Π^1_1 -sound theories
- Thus, to each Π^1_1 sound theory U extending ${\rm ACA}_0$ one can assign a $\Pi^1_1\text{-}{\rm rank}$

 $|U|_{ACA_0}$

Banning the pathological

- Pakhomov, Walsh:
- Definition: $T \prec_{\Pi_1^1} U$ if U proves Π_1^1 -soundness of T
- The relation $\prec_{\Pi^1_1}$ is well-founded on Π^1_1 -sound theories
- Thus, to each Π^1_1 sound theory U extending ${\rm ACA}_0$ one can assign a $\Pi^1_1\text{-}{\rm rank}$

$|U|_{ACA_0}$

• Thm: For any Π_1^1 sound extension U of ACA₀⁺ the reflection rank $|U|_{ACA_0}$ coincides with $|U|_{WO}$

Banning the pathological

- Pakhomov, Walsh:
- Definition: $T \prec_{\Pi_1^1} U$ if U proves Π_1^1 -soundness of T
- The relation $\prec_{\Pi_1^1}$ is well-founded on Π_1^1 -sound theories
- Thus, to each Π^1_1 sound theory U extending ${\rm ACA}_0$ one can assign a $\Pi^1_1\text{-}{\rm rank}$

$$|U|_{ACA_0}$$

- Thm: For any Π^1_1 sound extension U of ${\rm ACA}^+_0$ the reflection rank $|U|_{\rm ACA_0}$ coincides with $|U|_{\rm WO}$
- They moreover showed how techniques à la Schmerl/Beklemishev could be employed to prove:

$$|\mathbf{R}_{\Pi_{1}^{1}}^{\alpha}(\mathsf{ACA}_{0})|_{\mathsf{ACA}_{0}} = \alpha \text{ and } |\mathbf{R}_{\Pi_{1}^{1}}^{\alpha}(\mathsf{ACA}_{0})|_{\mathsf{WO}} = \varepsilon_{\alpha}$$

s Semantics

Hyperations and Co

Arithmetic

Reflection calc

Recent 00000

Dilators revived

• Introduced by Girard

Arithmetic

Recent 00000

- Introduced by Girard
- Idea: Uniform transformations of well-orderings to well-orderings

- Introduced by Girard
- Idea: Uniform transformations of well-orderings to well-orderings
- Freund: Π^1_1 comprehension can be reversed in terms of dilators

Arithmetic

- Introduced by Girard
- Idea: Uniform transformations of well-orderings to well-orderings
- Freund: Π^1_1 comprehension can be reversed in terms of dilators
- Aguilera, Pakhomov: characterise Π^1_2 consequences of a theory with the use of dilators to replace ordinals

Arithmetic

- Introduced by Girard
- Idea: Uniform transformations of well-orderings to well-orderings
- Freund: Π^1_1 comprehension can be reversed in terms of dilators
- Aguilera, Pakhomov: characterise Π¹₂ consequences of a theory with the use of dilators to replace ordinals
- Provenzano provides a natural category theoretical treatment of hyperations in the framework of dilators

- Introduced by Girard
- Idea: Uniform transformations of well-orderings to well-orderings
- Freund: Π^1_1 comprehension can be reversed in terms of dilators
- Aguilera, Pakhomov: characterise Π^1_2 consequences of a theory with the use of dilators to replace ordinals
- Provenzano provides a natural category theoretical treatment of hyperations in the framework of dilators
- and then proves a reversal over RCA₀ of hyperations preserving well-foundedness to $\Pi_3^1 \omega \text{RFN}(\Pi_1^1 BI)$

Approximations from below starting high

• Iterating reflection starting very high up could empower ordinal analyses of very strong theories

Approximations from below starting high

- Iterating reflection starting very high up could empower ordinal analyses of very strong theories
- Pakhomov: Ordinal analysis of Kripke-Platek set theory via Schmerl formula (TPS 2018 Ghent)

Approximations from below starting high

- Iterating reflection starting very high up could empower ordinal analyses of very strong theories
- Pakhomov: Ordinal analysis of Kripke-Platek set theory via Schmerl formula (TPS 2018 Ghent)
- Over $KP_0\omega$ foundation can be expressed as iterated reflection:

$$\mathsf{KP}\omega \equiv \mathsf{RFN}_{\Pi_2^0}^{\varepsilon \boldsymbol{o}_{n+1}}\mathsf{KP}_0\omega$$

Arithmetic Re 0000000 0

Long live worms