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Happy birthday

• Thank you Bern: Sixth edition!

• First edition: 2012 Barcelona

• Second edition: 2014 Mexico City

• Third edition: 2016 Tbilisi

• Fourth edition: 2017 Moscow

• Fifth edition: 2019 Barcelona
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Some photos
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Three milestones

• A. Turing’s idea: iteration of adding consistency statements
1938, Systems of logic based on ordinals.

• U. R. Schmerl: adding different kinds of consistency statements
1978: A fine structure generated by reflection formulas over primitive
recursive arithmetic

• L. D. Beklemishev: casting the project in polymodal provability logic
2004: Provability algebras and proof theoretic ordinals, I
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Turing progressions

• We fix an ordinal notation up to Λ

• T 0 := T where T is an initial theory.
• Tα+1 := Tα ∪ {Con(Tα)};
• Tλ :=

⋃
β<λ T

β , for λ a limit ordinal.

• Stronger consistency notions,

Conn(T )

denotes the natural formalisation of

The theory T together with all true Π0
n formulas is consistent.

• • T 0
n := T where T is an initial theory.

• Tα+1
n := Tα

n ∪ {Con(Tα
n )};

• Tλ
n :=

⋃
β<λ T

β
n , for λ a limit ordinal.
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Schmerl

• (Tα)β ≡ Tα+β

Examples: (T 1)ω ≡ Tω

(Tω)1 ≡ Tω+1

• (Tα
n )

β
n ≡ Tα+β

n

• Tα
n+1 ≡Πn+1 T

ωα

n for α ≻ 0

• Transfinite Turing progressions can be related to transfinite induction
principles, like

• [TI]nα ≡Π0
n+1

Tα
n for α a large enough limit number
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Beklemishev

• Provability logics can be employed to approximate Turing progressions
and to compute ordinal analysis of PA and its kin

• Here ⟨n⟩ models n-consistency and [n] models n-provability

• For numbers n,m we have Tm
n ≡ T + ⟨n⟩mT⊤

• Tω
n ̸≡ ⟨n + 1⟩T⊤

• Thm: For each number n and for each α < ε0, there is an iteration of
consistency statements A (worm) so that

Tα
n ≡Π0

n+1
T + (A)∗.

• In particular Tω
n ≡Π0

n+1
⟨n + 1⟩T⊤
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Beklemishev: proof theoretic ordinals

• Picture: approach from below

• For ‘natural’ notations:

|T |n := sup{α | EAαn ⊆Π0
n+1

T}

• Kreisel, Levy, Leivant, Beklemishev: IΣn ≡ EA + ⟨n + 1⟩EA⊤ so that

PA ≡ {⟨1⟩EA⊤, ⟨2⟩EA⊤, ⟨3⟩EA⊤, . . .}

• Observe, worms can denote approximations of Turing progressions,
but also, natural fragments of arithmetic

• And clearly also, elements of a modal logic
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Wormshop, nutshell, history Turing progressions Semantics Hyperations and Co Arithmetic Reflection calculi Recent

Beklemishev: proof theoretic ordinals

• Picture: approach from below

• For ‘natural’ notations:

|T |n := sup{α | EAαn ⊆Π0
n+1

T}

• Kreisel, Levy, Leivant, Beklemishev: IΣn ≡ EA + ⟨n + 1⟩EA⊤ so that

PA ≡ {⟨1⟩EA⊤, ⟨2⟩EA⊤, ⟨3⟩EA⊤, . . .}

• Observe, worms can denote approximations of Turing progressions,
but also, natural fragments of arithmetic

• And clearly also, elements of a modal logic

JjJ (UB) My worms, my friends 31 - 10 - 2023 14 / 64



Wormshop, nutshell, history Turing progressions Semantics Hyperations and Co Arithmetic Reflection calculi Recent

Beklemishev: proof theoretic ordinals

• Picture: approach from below

• For ‘natural’ notations:

|T |n := sup{α | EAαn ⊆Π0
n+1

T}

• Kreisel, Levy, Leivant, Beklemishev: IΣn ≡ EA + ⟨n + 1⟩EA⊤ so that

PA ≡ {⟨1⟩EA⊤, ⟨2⟩EA⊤, ⟨3⟩EA⊤, . . .}

• Observe, worms can denote approximations of Turing progressions,
but also, natural fragments of arithmetic

• And clearly also, elements of a modal logic

JjJ (UB) My worms, my friends 31 - 10 - 2023 14 / 64



Wormshop, nutshell, history Turing progressions Semantics Hyperations and Co Arithmetic Reflection calculi Recent

Beklemishev: proof theoretic ordinals

• Picture: approach from below

• For ‘natural’ notations:

|T |n := sup{α | EAαn ⊆Π0
n+1

T}

• Kreisel, Levy, Leivant, Beklemishev: IΣn ≡ EA + ⟨n + 1⟩EA⊤ so that

PA ≡ {⟨1⟩EA⊤, ⟨2⟩EA⊤, ⟨3⟩EA⊤, . . .}

• Observe, worms can denote approximations of Turing progressions,
but also, natural fragments of arithmetic

• And clearly also, elements of a modal logic

JjJ (UB) My worms, my friends 31 - 10 - 2023 14 / 64



Wormshop, nutshell, history Turing progressions Semantics Hyperations and Co Arithmetic Reflection calculi Recent

Beklemishev: proof theoretic ordinals

• Picture: approach from below

• For ‘natural’ notations:

|T |n := sup{α | EAαn ⊆Π0
n+1

T}

• Kreisel, Levy, Leivant, Beklemishev: IΣn ≡ EA + ⟨n + 1⟩EA⊤ so that

PA ≡ {⟨1⟩EA⊤, ⟨2⟩EA⊤, ⟨3⟩EA⊤, . . .}

• Observe, worms can denote approximations of Turing progressions,
but also, natural fragments of arithmetic

• And clearly also, elements of a modal logic

JjJ (UB) My worms, my friends 31 - 10 - 2023 14 / 64



Wormshop, nutshell, history Turing progressions Semantics Hyperations and Co Arithmetic Reflection calculi Recent

Polymodal provability logic

• (Dzh)Japaridze: The propositional polymodal logic GLP:

• [n](A→ B)→ ([n]A→ [n]B);
• [n]([n]A→ A)→ [n]A;
• [n]A→ [m]A n < m;
• ⟨n⟩A→ [m]⟨n⟩A n < m;
• Rules: Modus Ponens and Necessitation A

[n]A .

• A happy coincidence?: for worms A,B we can define

A <n B := GLP ⊢ B → ⟨n⟩A

and then (Ignatiev, Beklemishev)

(ε0,≺) ∼ (W/∼, <0)

JjJ (UB) My worms, my friends 31 - 10 - 2023 15 / 64
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Long live worms

• Worms are extremely versatile and can denote

• Approximations of Turing progressions;
• Fragments of arithmetic;
• Elements of a modal logic;
• Ordinals.

• Beklemishev: modal logics empower computations for an ordinal
analysis and

|PA|n = ε0

giving rise to fine grained ordinal analyses, e.g.,
|PA + Con(PA)|0 = ε0 · 2
• Long live worms!

, but not too long (Beklemishev):

• Every worm dies

• is a combinatorial (Hydra like) principle not provable in PA
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Fine structure principles

• (Tα)β ≡ Tα+β

Examples: (T 1)ω ≡ Tω

(Tω)1 ≡ Tω+1

• (Tα
n )

β
n ≡ Tα+β

n

• Tα
n+1 ≡Πn+1 T

ωα

n for α ≻ 0

• (Tα
m+k)

β
m ≡Πm+1 T

ωα
k ·(1+β)

m for α ≻ 0
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A logic for Turing progressions

• Hermo Reyes, JjJ: A complete calculus (closed fragment) for Turing
progressions can be given

• A picture says more than a honderd words:
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Roadmap
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Legenda for identities and conservation results

• Confluent paths denote identities;

• Conservation is flagged by being at the same level;
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The closed fragment

• GLP is frame-incomplete

• However, since Ignatiev we know:
the closed fragment does admit a decent universal model

• We define an Ignatiev sequence to be a sequence of ordinals < ε0,

⟨α0, α1, α2, . . .⟩ with αn+1 ≤ l(αn).

where l(α+ ωβ) = β and l(0) = 0.

• Example: ⟨ωω, 3⟩

(we omit the tail of zeros)

• but also ⟨ωω, ω, 0⟩
• and ⟨ωω, ω, 1⟩

JjJ (UB) My worms, my friends 31 - 10 - 2023 28 / 64
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Stepping down in Ignatiev’s model

• For two Ignatiev sequences α⃗ and β⃗ we define an accessibility relation
<n:

• α⃗ <n β⃗ if and only if

• αm = βm for all m < n
• αn < βn

• Example: ⟨ωω+1, ω + 1⟩ >1 ⟨ωω+1, ω⟩
• but also ⟨ωω+1, ω + 1⟩ >1 ⟨ωω+1, ω, 1⟩
• We define ⊩ by α⃗ ⊩ ⊤, and

for no α⃗, α⃗ ⊩ ⊥.
• ⊩ commutes with Boolean connectives: α⃗ ⊩ A ∧ B if and only if
α⃗ ⊩ A and α⃗ ⊩ B, etc

• α⃗ ⊩ ⟨n⟩A if and only if there is some β⃗ with α⃗ >n β⃗ so that β⃗ ⊩ A
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Ignatiev’s model

• Theorem(Ignatiev): GLP0
ω ⊢ A ⇔ I |= A

• Beklemishev, Vervoort, JjJ: Soundness and completeness can be
formalised in EA.

• Worms can be associated with special points (main axis) in the
Ignatiev model so:

• Worms can denote:
modal formulas, fragments of arithmetic, ordinals, approximations of
Turing progressions, special elements in Ignatiev’s model
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A universal model
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Spectra or Turing-Taylor expansions

• For U a formal arithmetic theory we define its Turing-Taylor
expansion by

• tt(U) := ⟨|U|Π0 , |U|Π1 , . . . , |U|Πn , |U|Πn+1 , . . .⟩

• In case U ≡
⋃∞

n=0 T
|U|Πn+1
n we say that U has a convergent

Turing-Taylor expansion.

• For each worm A : T + A ≡
⋃∞

n=0 T
on(A)
n (JjJ)

whenever T is a Π0
1 extension of EA + supexp

the on(A) is the n-order type of A as defined in terms of modal logic
later
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The many faces of Ignatiev’s model

• The monomials in Turing-Taylor progressions are the Tα
n

• They are not entirely independent:

•
T 1
1 + Tω+1

0 ≡ T 1
1 + Tω·2

0

• Theorem (JjJ) The Ignatiev sequences exactly correspond to those
sub-theories of PA that have a convergent Turing-Taylor expansion
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Going beyond GLPω

• The success of a worm-project was a happy coincidence for PA?

• Beklemishev 2005: define GLPΛ.
• Fernández Duque, JjJ: Ignatiev’s model can be generalised for GLPΛ

and likewise for the topological (Icard) semantics
• This required the development of a theory of transfinitely iterating

ordinal functions
• An Ignatiev sequence of Length α is a function f : α→ On
• so that for all ξ < ζ < α we have
• f (ζ) ≤ l−ξ+ζ f (ξ)
• The first non-trivial ones longer than omega:

⟨ε0, ε0, . . . , 1⟩

and

⟨ε0, ε0, . . . , 0⟩
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Heads and tails

• Definition (ξ-head):

1 hξ⊤ := ⊤
2 hξζA := ⊤ if ζ < ξ;
3 hξζA := ζhξA if ζ ≥ ξ;

• Definition (ξ-remainder):

1 rξ⊤ := ⊤
2 rξζA := ζA if ζ < ξ;
3 rξζA := rξA if ζ ≥ ξ;

• Examples:

• h2(3210321) = 32;
• r2(3210321) = 10321;
• h3(3210321) = 3;
• h0(3210321) = 3210321;

• The chopped worm theorem
A ≡ hξ(A) ∧ rξ(A)
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Well orders in the Japaridze Algebra

• Definition: (as before)

A <ξ B :⇔ B ⊢ ξA

• Theorem (Beklemishev (DfD, JjJ)):

⟨On, <⟩ ≃ ⟨Wξ/ ≡, <ξ⟩

Here Wξ is the class of worms whose modalities are all at least ξ
• Theorem (DfD, JjJ): Each <ξ is a well-founded order on W
• Definition:

oξ(A) := sup{oξ(B) + 1 | B <ξ A}
• Theorem (DfD, JjJ):

oξ(A) = oξ
(
hξ(A)

)
• The order types tell ‘how many’ successors a modal world should have
• Generalise the GLPω sequences iterating exponents/logarithms
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Hyperations and order types

• Hyperations is exactly what is needed to compute order types

• By ξ ↑ A we denote the worm obtained by replacing any modality ζ in
A by ξ + ζ

• Example: 2 ↑ 0ω = 2ω.
• Theorem ((Bekl), DfD, JjJ): The following is a complete calculus

to compute o

• o(⊤) = 0;
• o(A0B) = o(B) + 1 + o(A);
• o(ξ ↑ A) = eξ(o(A)).

• Intuitively: eξ is the ξ times iteration of α 7→ −1 + ωα

• Hyperations are a natural refinement of Veblen functions

• eω
β
(ξ) = φβ(ξ)
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Explicit definition for hyperations (DfD, JjJ)

Don’t read:

• Definition Let e(ξ) = −1 + ωξ. Then, we define the
hyperexponential eζξ by the following recursion:

• e0ξ = ξ

• eξ0 = 0

• e1 = e

• eω
ρ+ξ = eω

ρ
eξ, where ξ < ωρ + ξ

• eω
ρ
(ξ + 1) = lim

ζ→ωρ
eζ(eω

ρ
(ξ) + 1), provided ρ > 0

• eω
ρ
ξ = lim

ζ→ξ
eω

ρ
ζ for ξ ∈ Lim, ρ > 0.
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• Likewise, we have a recursive calculus for transfinitely iterating
end-logarithms which is a left-inverse of hyperations

• lα
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W
o
��

A 7→0A //W
o
��

On
+1 // On
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W×W
o
��

⟨A,B⟩7→A0B// W
o
��

On× On
⟨α,β⟩7→β+1+α// On
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W
o
��

1↑ //W1

o
��

On
e // On

W
o
��

α↑ //Wα

o
��

On
eα // On
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W1

o
��

1↓ //W
o
��

On
l // On

Wα

o
��

α↓ //W
o
��

On
lα // On
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W
o
��

h1 //W
o
��

On
e◦l // On

W
o
��

hα //W
o
��

On
eα◦lα // On
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• So, Worms are just as good as the regular ordinals

• In addition we can use their algebraic/logical structure

• So the multiple roles of worms carries over to the transfinite
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Hierarchies of provability

• GLPω is sound and complete for a range of readings of [n]

• Most prominently:

• [n] stands for

‘provable in T together with all true Π0
n formulas’

• [n] stands for

‘provable in T using at most n nestings of the ω-rule’

• The latter naturally suggests a generalisation to the transfinite
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The omega-rule interpretation

• (DfD, JjJ)

• One can formalise transfinite omega-rule provability [ξ] in second-order
logic with a ∆1

1 formula;
• To prove major facts, introspectivity was used: ‘there exist a provability

class’
• Soundness of GLPΛ wrt to T moreover requires T ⊢ wo(Λ) and

T ⊆ ACA0

• Soundness and completeness proven for a wide range of theories

• Certain drawbacks:

• strong base theory needed;
• no easy fine structure theorem à la Schmerl available;
• runs out of phase with the Turing jumps
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• runs out of phase with the Turing jumps

JjJ (UB) My worms, my friends 31 - 10 - 2023 47 / 64



Wormshop, nutshell, history Turing progressions Semantics Hyperations and Co Arithmetic Reflection calculi Recent

The omega-rule interpretation

• (DfD, JjJ)
• One can formalise transfinite omega-rule provability [ξ] in second-order

logic with a ∆1
1 formula;

• To prove major facts, introspectivity was used: ‘there exist a provability
class’

• Soundness of GLPΛ wrt to T moreover requires T ⊢ wo(Λ) and
T ⊆ ACA0

• Soundness and completeness proven for a wide range of theories

• Certain drawbacks:

• strong base theory needed;
• no easy fine structure theorem à la Schmerl available;
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Predicativity through reflection

• Recall:
PA ≡ EA + {⟨1⟩EA⊤, ⟨2⟩EA⊤, ⟨3⟩EA⊤, . . .}

• Cordón-Franco, Lara-Mart́ın, DfD, JjJ:

ATR0 ≡ ECA0+“Λ-OracleCons(ECA0) holds for every well-order Λ”,

• Here ‘oracle provability’ [α|X ]ΛT is defined as nested omega provability
where the oracle X injects complexity in the axiom set

AxiomT |X (φ) := AxiomT (φ) ∨ ∃ x<φ (φ = ⌜O(x)⌝ ∧ x ∈ X )
∨ ∃ x<φ (φ = ⌜¬O(x)⌝ ∧ x /∈ X )
∨ φ = ⌜∃Y ∀x

(
x ∈Y ↔ O(x)

)
⌝

• As before, link between consistency and reflection

ATR0 ≡ ECA0+Pred-O-Cons(ECA0) ≡ ECA0+Pred-O-RFNΠ1
2
(ACA).
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Turing jumps through provability

• Most prominently readings of [n]:

• [n] stands for

‘provable in T together with all true Π0
n formulas’

• [n] stands for

‘provable in T using at most n nestings of the ω-rule’

• The latter has various drawbacks, so we tried something similar to the
first

• Enriching the language with new truth-predicates seemed not elegant

• Employing the fact that □T is Σ0
1-complete
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Münchhausen provability

• Main idea:

[ζ]ΛTϕ :⇔ □Tϕ ∨ ∃ψ ∃ ξ<ζ
(
⟨ξ⟩ΛTψ ∧ □T (⟨ξ⟩ΛTψ → ϕ)

)
.

• Soundness and completeness almost ‘automatically’ follow from the
defining equivalence

• Again, can be implemented in Second Order Arithmetic

• Runs in phase with Turing jumps and thus seems to allow for fine
structures
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Iterated truth predicates

• Beklemishev; Pakhomov: First order theories of iterated truth
predicates

• EA + UTBα has a new truth predicate Tα for formulas of lower
complexity that do not contain Tα
• Fine structure (Reduction property) is restored

• Ordinal analysis is performed for a myriad of theories

• Most notably transfinitely iterated comprehension

• DfD, JjJ, Pakhomov, Papafillipou, Weierman: stronger versions of
EWD
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Denoting theories

• Iterated reflection/comprehension often gives rise to infinite
collections

• GLP cannot account for denoting such collections
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RC: Axioms and rules

Dashkov, Beklemishev
Formulas built from propositional variables, conjunctions and consistency

statements denote theories

φ ⊢ ⊤ φ ∧ ψ ⊢ φ

φ ⊢ φ φ ∧ ψ ⊢ ψ

φ ⊢ ψ ψ ⊢ χ
φ ⊢ χ

φ ⊢ ψ φ ⊢ χ
φ ⊢ ψ ∧ χ

⟨α⟩⟨α⟩φ ⊢ ⟨α⟩φ φ ⊢ ψ
⟨α⟩φ ⊢ ⟨α⟩ψ

⟨α⟩φ ∧ ⟨β⟩ψ ⊢ ⟨α⟩(φ ∧ ⟨β⟩ψ) α > β
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Simple calculi

• RC is much better behaved than GLP

• Frame complete

• Finite model property

• PTIME decidable versus PSPACE

• Worms are closed under conjunctions

• de Almeida Borges, JjJ: Worm calculus
There is a reflection calculus based solely on worms (A ⊢ B) deciding
all GLP ⊢ A→ B theorems
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QRC1: Axioms and rules

Strictly positive formulas φ,ψ, χ using only universal quantifiers,
conjunctions and consistency statements:

φ ⊢ ⊤ φ ∧ ψ ⊢ φ

φ ⊢ φ φ ∧ ψ ⊢ ψ

φ ⊢ ψ ψ ⊢ χ
φ ⊢ χ

φ ⊢ ψ φ ⊢ χ
φ ⊢ ψ ∧ χ

♢♢φ ⊢ ♢φ
φ ⊢ ψ

♢φ ⊢ ♢ψ

φ ⊢ ψ
φ ⊢ ∀ x ψ

φ[x←t] ⊢ ψ
∀ x φ ⊢ ψ

x /∈ fvφ t free for x in φ

φ ⊢ ψ
φ[x←t] ⊢ ψ[x←t]

φ[x←c] ⊢ ψ[x←c]

φ ⊢ ψ
t free for x in φ and ψ c not in φ nor ψ
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Some provable and unprovable statements

♢∀ x φ ⊢ ∀ x ♢φ

∀ x ♢φ ̸⊢ ♢∀ x φ

φ ⊢ ψ[x←c]

φ ⊢ ∀ x ψ
x not free in φ and c not in φ nor ψ

JjJ (UB) My worms, my friends 31 - 10 - 2023 56 / 64



Wormshop, nutshell, history Turing progressions Semantics Hyperations and Co Arithmetic Reflection calculi Recent

Arithmetical semantics

The arithmetical realizations (·)∗ for L♢,∀:

formulas in L♢,∀ → axiomatisations of c.e. theories in LPA
variables xi → variables yi

constants ci → variables zi

(⊤)∗ := τPA(u)

(S(x , c))∗ := σ(y , z , u) ∨ τPA(u) with σ ∈ Σ1

(ψ(x , c) ∧ δ(x , c))∗ := (ψ(x , c))∗ ∨ (δ(x , c))∗

(♢ψ(x , c))∗ := τPA(u) ∨ (u = ⌜Con(ψ(x ,c))∗⊤⌝)
(∀ xi ψ(x , c))∗ := ∃ yi (ψ(x , c))∗ Σ1-collection guarantees closure!

(φ(x , c) ⊢ ψ(x , c))∗ := ∀ θ, y , z (□ψ∗(y ,z)θ → □φ∗(y ,z)θ)
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Arithmetical soundness and completeness

Theorem (Arithmetical soundness)

QRC1 ⊆ {φ ⊢ ψ | for any (·)∗, we have

PA ⊢ ∀ θ, y , z (□ψ∗(y ,z)θ → □φ∗(y ,z)θ)}

Theorem (Arithmetical completeness)

QRC1 ⊇ {φ ⊢ ψ | for any (·)∗, we have T ⊢ (φ ⊢ ψ)∗}

Where T is a sound r.e. theory extending IΣ1.

Adapt Solovay’s completeness proof:

• Need Kripke completeness for QRC1

• Countermodels should be finite, transitive, irreflexive, rooted, and
have constant domain
• Embed such models in arithmetic using the Solovay sentences λi . . .
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Heyting arithmetic

• de Almeida Borges, JjJ (thanks to Visser and de Jongh): Proof can
be adapted to Heyting Arithmetic

• Simple fragment of PL(HA);

(To be contrasted with recent work of Mojtahedi on full PL(HA))

• Jump in complexity from Π0
2-complete (Vardanyan) to decidable;
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Pathological orderings

• Tentative: |U|Con := min{ot(≺) | PRA + TI(≺,PRIM) ⊢ Con(U)}

• What is a natural well-order on the natural numbers?

• Kreisel’s pathological ordering

n ≺ZFC m := n < m if ∀ i<max<(m, n)¬ProofZFC(i , ⌜0 = 1⌝),
m < n if ∃ i<max<(m, n) ProofZFC(i , ⌜0 = 1⌝).

• By induction along ≺ZFC prove ∀ y<x¬ProofZFC(y , ⌜0 = 1⌝)

• PRA + TI(≺ZFC,PRIM) ⊢ Con(ZFC)

• Likewise, Beklemishev: for each α < ωCK
1 there is ≺∗ of order type α

so that
PRA + TI(≺∗,PRIM) ⊬ Con(PA)

• Various other proof theoretical notions also suffer from pathological
orders
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Wormshop, nutshell, history Turing progressions Semantics Hyperations and Co Arithmetic Reflection calculi Recent

Pathological orderings

• Tentative: |U|Con := min{ot(≺) | PRA + TI(≺,PRIM) ⊢ Con(U)}
• What is a natural well-order on the natural numbers?

• Kreisel’s pathological ordering

n ≺ZFC m := n < m if ∀ i<max<(m, n)¬ProofZFC(i , ⌜0 = 1⌝),
m < n if ∃ i<max<(m, n) ProofZFC(i , ⌜0 = 1⌝).

• By induction along ≺ZFC prove ∀ y<x¬ProofZFC(y , ⌜0 = 1⌝)

• PRA + TI(≺ZFC,PRIM) ⊢ Con(ZFC)

• Likewise, Beklemishev: for each α < ωCK
1 there is ≺∗ of order type α

so that
PRA + TI(≺∗,PRIM) ⊬ Con(PA)

• Various other proof theoretical notions also suffer from pathological
orders

JjJ (UB) My worms, my friends 31 - 10 - 2023 60 / 64



Wormshop, nutshell, history Turing progressions Semantics Hyperations and Co Arithmetic Reflection calculi Recent

Pathological orderings

• Tentative: |U|Con := min{ot(≺) | PRA + TI(≺,PRIM) ⊢ Con(U)}
• What is a natural well-order on the natural numbers?

• Kreisel’s pathological ordering

n ≺ZFC m := n < m if ∀ i<max<(m, n)¬ProofZFC(i , ⌜0 = 1⌝),
m < n if ∃ i<max<(m, n) ProofZFC(i , ⌜0 = 1⌝).

• By induction along ≺ZFC prove ∀ y<x¬ProofZFC(y , ⌜0 = 1⌝)

• PRA + TI(≺ZFC,PRIM) ⊢ Con(ZFC)

• Likewise, Beklemishev: for each α < ωCK
1 there is ≺∗ of order type α

so that
PRA + TI(≺∗,PRIM) ⊬ Con(PA)

• Various other proof theoretical notions also suffer from pathological
orders

JjJ (UB) My worms, my friends 31 - 10 - 2023 60 / 64



Wormshop, nutshell, history Turing progressions Semantics Hyperations and Co Arithmetic Reflection calculi Recent

Pathological orderings

• Tentative: |U|Con := min{ot(≺) | PRA + TI(≺,PRIM) ⊢ Con(U)}
• What is a natural well-order on the natural numbers?

• Kreisel’s pathological ordering

n ≺ZFC m := n < m if ∀ i<max<(m, n)¬ProofZFC(i , ⌜0 = 1⌝),
m < n if ∃ i<max<(m, n) ProofZFC(i , ⌜0 = 1⌝).

• By induction along ≺ZFC prove ∀ y<x¬ProofZFC(y , ⌜0 = 1⌝)

• PRA + TI(≺ZFC,PRIM) ⊢ Con(ZFC)

• Likewise, Beklemishev: for each α < ωCK
1 there is ≺∗ of order type α

so that
PRA + TI(≺∗,PRIM) ⊬ Con(PA)

• Various other proof theoretical notions also suffer from pathological
orders

JjJ (UB) My worms, my friends 31 - 10 - 2023 60 / 64



Wormshop, nutshell, history Turing progressions Semantics Hyperations and Co Arithmetic Reflection calculi Recent

Pathological orderings

• Tentative: |U|Con := min{ot(≺) | PRA + TI(≺,PRIM) ⊢ Con(U)}
• What is a natural well-order on the natural numbers?

• Kreisel’s pathological ordering

n ≺ZFC m := n < m if ∀ i<max<(m, n)¬ProofZFC(i , ⌜0 = 1⌝),
m < n if ∃ i<max<(m, n) ProofZFC(i , ⌜0 = 1⌝).

• By induction along ≺ZFC prove ∀ y<x¬ProofZFC(y , ⌜0 = 1⌝)

• PRA + TI(≺ZFC,PRIM) ⊢ Con(ZFC)

• Likewise, Beklemishev: for each α < ωCK
1 there is ≺∗ of order type α

so that
PRA + TI(≺∗,PRIM) ⊬ Con(PA)

• Various other proof theoretical notions also suffer from pathological
orders

JjJ (UB) My worms, my friends 31 - 10 - 2023 60 / 64



Wormshop, nutshell, history Turing progressions Semantics Hyperations and Co Arithmetic Reflection calculi Recent

Pathological orderings

• Tentative: |U|Con := min{ot(≺) | PRA + TI(≺,PRIM) ⊢ Con(U)}
• What is a natural well-order on the natural numbers?

• Kreisel’s pathological ordering

n ≺ZFC m := n < m if ∀ i<max<(m, n)¬ProofZFC(i , ⌜0 = 1⌝),
m < n if ∃ i<max<(m, n) ProofZFC(i , ⌜0 = 1⌝).

• By induction along ≺ZFC prove ∀ y<x¬ProofZFC(y , ⌜0 = 1⌝)

• PRA + TI(≺ZFC,PRIM) ⊢ Con(ZFC)

• Likewise, Beklemishev: for each α < ωCK
1 there is ≺∗ of order type α

so that
PRA + TI(≺∗,PRIM) ⊬ Con(PA)

• Various other proof theoretical notions also suffer from pathological
orders

JjJ (UB) My worms, my friends 31 - 10 - 2023 60 / 64



Wormshop, nutshell, history Turing progressions Semantics Hyperations and Co Arithmetic Reflection calculi Recent

Pathological orderings

• Tentative: |U|Con := min{ot(≺) | PRA + TI(≺,PRIM) ⊢ Con(U)}
• What is a natural well-order on the natural numbers?

• Kreisel’s pathological ordering

n ≺ZFC m := n < m if ∀ i<max<(m, n)¬ProofZFC(i , ⌜0 = 1⌝),
m < n if ∃ i<max<(m, n) ProofZFC(i , ⌜0 = 1⌝).

• By induction along ≺ZFC prove ∀ y<x¬ProofZFC(y , ⌜0 = 1⌝)

• PRA + TI(≺ZFC,PRIM) ⊢ Con(ZFC)

• Likewise, Beklemishev: for each α < ωCK
1 there is ≺∗ of order type α

so that
PRA + TI(≺∗,PRIM) ⊬ Con(PA)

• Various other proof theoretical notions also suffer from pathological
orders

JjJ (UB) My worms, my friends 31 - 10 - 2023 60 / 64



Wormshop, nutshell, history Turing progressions Semantics Hyperations and Co Arithmetic Reflection calculi Recent

Banning the pathological

• Pakhomov, Walsh:

• Definition: T ≺Π1
1
U if U proves Π1

1-soundness of T

• The relation ≺Π1
1
is well-founded on Π1

1-sound theories

• Thus, to each Π1
1 sound theory U extending ACA0 one can assign a

Π1
1-rank

|U|ACA0

• Thm: For any Π1
1 sound extension U of ACA+

0 the reflection rank
|U|ACA0 coincides with |U|WO

• They moreover showed how techniques à la Schmerl/Beklemishev
could be employed to prove:

|Rα
Π1
1
(ACA0)|ACA0 = α and |Rα

Π1
1
(ACA0)|WO = εα
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1
is well-founded on Π1

1-sound theories

• Thus, to each Π1
1 sound theory U extending ACA0 one can assign a

Π1
1-rank

|U|ACA0

• Thm: For any Π1
1 sound extension U of ACA+

0 the reflection rank
|U|ACA0 coincides with |U|WO

• They moreover showed how techniques à la Schmerl/Beklemishev
could be employed to prove:

|Rα
Π1
1
(ACA0)|ACA0 = α and |Rα

Π1
1
(ACA0)|WO = εα

JjJ (UB) My worms, my friends 31 - 10 - 2023 61 / 64



Wormshop, nutshell, history Turing progressions Semantics Hyperations and Co Arithmetic Reflection calculi Recent

Dilators revived

• Introduced by Girard

• Idea: Uniform transformations of well-orderings to well-orderings

• Freund: Π1
1 comprehension can be reversed in terms of dilators

• Aguilera, Pakhomov: characterise Π1
2 consequences of a theory with

the use of dilators to replace ordinals

• Provenzano provides a natural category theoretical treatment of
hyperations in the framework of dilators

• and then proves a reversal over RCA0 of hyperations preserving
well-foundedness to Π1

3−ωRFN(Π1
1−BI )
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Approximations from below starting high

• Iterating reflection starting very high up could empower ordinal
analyses of very strong theories

• Pakhomov: Ordinal analysis of Kripke-Platek set theory via Schmerl
formula (TPS 2018 Ghent)

• Over KP0ω foundation can be expressed as iterated reflection:

KPω ≡ RFN
εOn+1

Π0
2

KP0ω
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Long live worms
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