An attempt at disentangling logical and semantical necessity

Second Workshop on Worlds and Truth Values, Barcelona

Iris van der Giessen, Joost J. Joosten, Paul Mayaux, Vicent Navarro Arroyo

University of Barcelona

Tuesday 11-06-2024

Semantic justification

- ► If \models A stands for A is true at any possible world.
- and, if the semantics of □A is stipulated by □A is true at some possible world w if and only if A is true at all possible worlds of w.
- ▶ Then the Necessitation rule $\frac{A}{\Box A}$ has a clear justification.

A common misconception

- The rule of Necessitation If I know that A, then, I may conclude that □A.
- Wrong application of Necessitation:

$$\frac{\frac{[\varphi]^1}{\Box \varphi} \operatorname{Nec}}{\varphi \to \Box \varphi} \to \operatorname{I}, \ 1$$

Epistemic justification of Necessity

- ▶ How to interpret modal reasoning ⊢
- If ⊢ is just an artifact to model ⊨ then as before, Necessitation is clear
- If we try to endow ⊢ with an independent epistemic justification for reasoning about Necessity, then
- ▶ the Rule of Necessity seems to impose some Necessary status of *reasoning/logic*:
 - If I can justify the validity of A using my reasoning system then since this reasoning is necessary necessarily A is also justified for my reasoning system
- ▶ The conclusion seems to be: logic is necessary
- However, the possible world semantics allows for different possible worlds ruled by different logics

Defining the Language and Derivations

- ▶ Language $\mathcal{L}_{\square} := p \mid \bot \mid A \land A \mid A \lor A \mid A \rightarrow A \mid \Box A$
- ▶ Set Form of formulas in \mathcal{L}_{\square}
- ▶ $(\Gamma, \varphi \subseteq \mathsf{Form}_{\square})$ A classical derivation \mathcal{D} from Γ to φ is a sequence of formulas $\varphi_1, \varphi_2, ..., \varphi_k$ s.t $\forall i \in \{1, 2, ..., k\}$:
 - φ_i ∈ Γ or
 - $lackbox{} arphi_i$ is in the form of a Classical tautology in the language \mathcal{L}_\square or
 - ▶ There is j, l < i such that φ_i is of the form $\varphi_l \to \varphi_i$

Defining the Language and Derivations

- ▶ $(\Gamma, \varphi \subseteq \mathsf{Form}_{\square})$ An *Intuitionistic derivation* \mathcal{D} from Γ to φ is a sequence of formulas $\varphi_1, \varphi_2, ..., \varphi_k$ s.t $\forall i \in \{1, 2, ..., k\}$:
 - $\triangleright \varphi_i \in \Gamma$ or
 - φ_i is in the form of an Intuitionistic tautology in the language \mathcal{L}_\square or
 - ▶ There is j, l < i such that φ_j is of the form $\varphi_l \rightarrow \varphi_i$
- $ightharpoonup dash_c^{\mathcal{L}_{\square}} / dash_i^{\mathcal{L}_{\square}}$ represents a classical/intuitionistic derivation in \mathcal{L}_{\square}
- $lackbox \overline{\mathsf{T}}^{c_\square}/\overline{\mathsf{T}}^{i_\square}$ is the closure of T over $\vdash^{\mathcal{L}_\square}_\mathsf{c}/\vdash^{\mathcal{L}_\square}_\mathsf{i}$

Defining the models

▶ A Mixed model is a tuple $\mathcal{M} := \langle W, R, e \rangle$ where $\langle W, R \rangle$ is a Kripke Frame and e is an extension $e: W \to \mathcal{P}(\mathsf{Form}_{\square}) \times \{i, c\} \ (\mathsf{denoted} \ e(w) = \langle T_w, I_w \rangle)$ such that:

- 1. $\perp \notin T_w$; 2. $T_w \vdash_{\mathbb{L}_{-}}^{\mathcal{L}_{\square}} \varphi \Rightarrow \varphi \in T_w$;
- 3. $\Box \varphi \in T_w \iff \forall v(wRv \Rightarrow \varphi \in T_w)$:
- 4. $\neg \Box \varphi \in T_w \iff \exists u (wRu \land \varphi \notin T_u).$

First examples of Mixed Models

$$\begin{array}{c} w_{1}(c) \quad w_{2}(i) \\ & \bullet \\ & \bullet \\ & F_{w_{2}} = \overline{\{p,q\} \cup \{\Box \varphi \mid \varphi \in \mathbf{Form}_{\Box}\}^{i_{\Box}};} \\ & \bullet \quad F_{w_{1}} = \{\neg q\} \cup \{\Box \varphi \mid \varphi \in F_{w_{2}}\} \cup \{\neg \Box \psi \mid \psi \in \mathbf{Form}_{\Box}/F_{w_{2}}\}^{c_{\Box}} \\ & w_{2}(i) \\ & w_{1}(c) \\ & \bullet \\ & F_{w_{3}} = \overline{\{p\} \cup \{\Box \varphi \mid \varphi \in \mathbf{Form}_{\Box}\}^{c_{\Box}}} \\ & \bullet \quad F_{w_{3}} = \overline{\{p,q\} \cup \{\Box \varphi \mid \varphi \in \mathbf{Form}_{\Box}\}^{i_{\Box}}} \\ & \bullet \quad F_{w_{1}} = \\ & \overline{\{\neg p \lor q\} \cup \{\Box \varphi \mid \varphi \in F_{w_{2}} \cap F_{w_{3}}\} \cup \{\neg \Box \psi \mid \psi \in \mathbf{Form}_{\Box}/F_{w_{2}} \cap F_{w_{3}}\}^{c_{\Box}}} \\ \end{array}$$

Intuitionistic logic and Modal logic

- ► Intuitionistic propositional logic IPC:
 - ► Language: $A ::= p \mid \bot \mid A \land A \mid A \lor A \mid A \rightarrow A$
 - Intuitionistic tautologies
 - ► Rules: Modus Ponens
- Classical modal logic K:
 - ▶ Language: $A ::= p \mid \bot \mid A \land A \mid A \lor A \mid A \rightarrow A \mid \Box A \mid \Diamond A$
 - Classical tautologies
 - ► K-axiom: $\Box(A \to B) \to \Box A \to \Box B$
 - Rules: Modus Ponens and Necessitation

Intuitionistic logic and Modal logic: Semantics

- Kripke semantics for IPC:
 - $M = (W, \leq, V)$ (Monotonicity w.r.t. V)
 - \blacktriangleright $M, w \Vdash A \rightarrow B$ iff for all $v \ge w$: $M, v \Vdash A$ implies $M, v \Vdash B$
- Possible world semantics for K:
 - ightharpoonup M = (W, R, V)
 - ► $M, w \Vdash \Box A$ iff for all v s.t. wRv: $M, v \Vdash A$ $M, w \Vdash \Diamond A$ iff there exists v s.t. wRv and $M, v \Vdash A$

Some examples

Intuitionistic modal logics

Quest to intuitionistic meaning of \Box and \Diamond

Classical consequences of the K-axiom:

- (k1) $\Box(A \rightarrow B) \rightarrow \Box A \rightarrow \Box B$
- $(k2) \ \Box(A \to B) \to \Diamond A \to \Diamond B$
- (k3) $\Diamond (A \vee B) \rightarrow \Diamond A \vee \Diamond B$
- $(\mathsf{k4})\ (\Diamond A \to \Box B) \to \Box (A \to B)$
- (k5) ¬◇⊥

Different intuitionistic/constructive modal logics:

- ightharpoonup iK := IPC + (k1)
- ightharpoonup CK := IPC + (k1) + (k2)
- \blacktriangleright IK := IPC + (k1) + (k2) + (k3) + (k4) + (k5)
- **.**..

Intermezzo

Theorem

iK and CK prove the same ⋄-free theorems

Theorem (Das&Marin, 2023)

iK and IK do <u>not</u> have the same ◊-free theorems

For example:
$$\neg\neg\Box\bot \rightarrow \Box\bot \in \mathsf{IK} \setminus \mathsf{iK}$$

$$\neg\neg\Box p \to \Box p \in \mathsf{IK} \setminus \mathsf{iK}$$

Birelational semantics for iK

- $M = (W, \leq, R, V)$ (Monotonicity w.r.t. V)
- Frame property (F0):

▶ $M, w \Vdash \Box A$ iff for all v s.t. wRv: $M, v \Vdash A$

Birelational semantics for IK

- $ightharpoonup M = (W, \leq, R, V)$ (Monotonicity w.r.t. V)
- ► Frame properties (F1) and (F2):

► $M, w \Vdash \Box A$ iff for all $w' \ge w$ and all v s.t. w'Rv: $M, v \Vdash A$ $M, w \Vdash \Diamond A$ iff there exists v s.t. wRv and $M, v \Vdash A$

Concrete models

- Concrete Models:
 - From a KF $F = \langle W, R \rangle$ and function $\lambda : W \to \{c, i\}$, we assign to each $w \in W$ a rooted intuitionistic Kripke Model $\langle U_w, \leq_w, V_w \rangle$ (root: $\overline{w} \in U_w$) st $\lambda(w) = c \Rightarrow U_w = \{\overline{w}\}$
- ▶ \Vdash is defined on $\Theta := \bigcup_{w \in W} U_w$ (for $x \in U_w$):
 - 1. $x \not\Vdash \bot$ and $x \Vdash \top$:
 - 2. $x \Vdash p \text{ iff } x \in V_w(p)$;
 - 3. $x \Vdash A \land B \text{ iff } x \Vdash A \text{ and } x \Vdash B$;
 - 4. $x \Vdash A \lor B \text{ iff } x \Vdash A \text{ or } x \Vdash B$;
 - 5. $x \Vdash A \to B$ iff $\forall y \in U_w (x \leq y \to y \nvDash A \text{ or } y \Vdash B)$;
 - 6. $x \Vdash \neg A \text{ iff } x \Vdash A \rightarrow \bot$;
 - 7. $x \Vdash \Box A \text{ iff } \forall v (wRv \rightarrow \overline{v} \Vdash A).$

Predicate models for IK

- ▶ iK embeds into K via the Kuroda translation,
- ► IK embeds into K via the Gödel-Gentzen translation, moreover,
- ► IK embeds into IQC by the standard translation:

$$ST(A) := \forall x ST_x(A) \text{ with } ST_x(\Box A) := \forall y (xRy \to ST_y(A))$$

 $ST_x(\Diamond A) := \exists y (xRy \land ST_y(A))$

▶ Predicate models ⇒ birelational semantics with (F1) and (F2)

Predicate models for IK

We observe that Concrete Mix Models are dual to predicate models of IK!

 $M, w \Vdash \forall x \varphi$ iff for all $w' \ge w$ and all $d \in D_{w'}$: $M, w' \Vdash \varphi[x/d]$ $M, w \Vdash \exists x \varphi$ iff there exists $d \in D_w$ s.t. $M, w \Vdash \varphi[x/d]$

Conjecture for Concrete models

- ▶ Theorem: Let $\Gamma_w := \{ \varphi \mid w \Vdash \varphi \}$. The KF F together with the extention e defined $e(w) = \langle \Gamma_w; \lambda(w) \rangle$ defines a Mixed Model, called Concrete Model.
- Example of a non-concrete Mixed Model: $F = \langle \{w\}, R \rangle$, $R = \emptyset$, $I_w = c$, $T_w = \overline{\{p \lor q\} \cup \{\Box \varphi \mid \varphi \in \mathbf{Form}_{\Box}\}^c}$
- ▶ Conjecture: The class \mathcal{CM} of all Concrete Models is the class of all Mixed Models such that for all $M \in \mathcal{CM}$, $w \in M$:
 - If $I_w = c$, T_w is a maximal theory
 - If $I_w = i$, T_w is a prime theory $(\varphi \lor \psi \in T_w \Rightarrow \varphi \in T_w \text{ or } \psi \in T_w)$.

Soundness for $\mathcal{M}\mathcal{M}$

- Soundness: $iK + \Box A \lor \neg \Box A$ is sound with respect to the class \mathcal{MM} of all Mixed Models.
- Results of interest:
 - ▶ (Necessitation) $M \models A$ implies $M \models \Box A$;
 - ▶ (Distributivity) $M \vDash \Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$.

Quick proof of Distributivity(k-axiom)

- $(M \in \mathcal{MM}) \text{ We want } M \vDash \Box(A \to B) \to (\Box A \to \Box B)$ (i.e $\forall w \in M, \Box(A \to B) \to (\Box A \to \Box B) \in T_w$)
 - $\blacktriangleright (\mathbb{A} \square (A \to B) \in F_w)$
 - ▶ If $\Box A \in F_w$, $\forall y \in M(A, A \to B \in F_y \Rightarrow B \in F_y) \Rightarrow \Box B \in F_w \Rightarrow \Box (A \to B) \to (\Box A \to \Box B)$
 - ▶ If $\Box A \notin F_w$, $\Box A \to \bot \in F_w$, and by reductio ad absurdum, $\Box A \to \Box B \in F_w \Rightarrow \Box (A \to B) \to (\Box A \to \Box B) \in T_w$
 - (($\mathbb{A} \square (A \to B) \notin F_w$), then $\square (A \to B) \to \bot \in F_w$ and by reductio ad absurdum, $\square (A \to B) \to (\square A \to \square B) \in T_w$

Frame condition and possible completeness

▶ Frame condition for $\Box A \lor \neg \Box A$ (F3):

- ► Completeness of \mathcal{MM} with regards to $iK+\Box A \vee \neg \Box A$ Would require:
 - ▶ Completeness of Birelational models \mathcal{BM} with (F0+F3) with regards to iK+ $\Box A \lor \neg \Box A$
 - ▶ Transition from \mathcal{BM} to \mathcal{MM} Models (Unraveling)

Combining various logics

- Incomparable, for example
 - ► Gödel-Dummett logic LC of linear Kripke frames

$$(p \rightarrow q) \lor (q \rightarrow p)$$

▶ Intuitionistic Logic of bounded depth two BD₂

$$p \lor (p \rightarrow (q \lor \neg q))$$

- Many valued
- Etc.

On the structure of time

- Locally, time can behave differently than globally
- Universal time versus black-hole horizon, etc.
- combining different temporal logics

Other logics Temporal logics

Thank you for your attention and feedback