Challenges to Instrumentalism

Juan Pablo Aguilera Joost J. Joosten José Martínez Fernández

University of Ghent (1), Universitat de Barcelona (2 & 3)

The Proof Society Workshop Utrecht November 10, 2022

• John Dewey as exponent of American Pragmatism (Peirce!) coined the term *Instrumentalism*

¹Robert de Neufville, Brittanica entry on Instrumentalism ²Anjan Chakravartty, SEP entry on Scientific Realism

Aguilera, Joosten, Martínez (UB+)

Challenges to Instrumentalism

- John Dewey as exponent of American Pragmatism (Peirce!) coined the term *Instrumentalism*
- ... the view that the value of scientific concepts and theories is determined ... by the extent to which they help to make accurate empirical predictions or to resolve conceptual problems.¹

Aguilera, Joosten, Martínez (UB+)

Challenges to Instrumentalism

 $^{^1 \}mbox{Robert}$ de Neufville, Brittanica entry on Instrumentalism $^2 \mbox{Anjan}$ Chakravartty, SEP entry on Scientific Realism

- John Dewey as exponent of American Pragmatism (Peirce!) coined the term *Instrumentalism*
- ... the view that the value of scientific concepts and theories is determined ... by the extent to which they help to make accurate empirical predictions or to resolve conceptual problems.¹
- In the traditional form of instrumentalism, terms for unobservables have no meaning all by themselves; construed literally, statements involving them are not even candidates for truth or falsity²

²Anjan Chakravartty, SEP entry on Scientific Realism

Aguilera, Joosten, Martínez (UB+)

¹Robert de Neufville, Brittanica entry on Instrumentalism

- John Dewey as exponent of American Pragmatism (Peirce!) coined the term *Instrumentalism*
- ... the view that the value of scientific concepts and theories is determined ... by the extent to which they help to make accurate empirical predictions or to resolve conceptual problems.¹
- In the traditional form of instrumentalism, terms for unobservables have no meaning all by themselves; construed literally, statements involving them are not even candidates for truth or falsity²
- Vraag niet hoe het kan maar profiteer ervan

²Anjan Chakravartty, SEP entry on Scientific Realism

Aguilera, Joosten, Martínez (UB+)

Challenges to Instrumentalism

¹Robert de Neufville, Brittanica entry on Instrumentalism

• First question: what would be the counterpart of *observable* in mathematics?

- First question: what would be the counterpart of *observable* in mathematics?
- Some candidates:

- First question: what would be the counterpart of *observable* in mathematics?
- Some candidates:
 - Arithmetical formulas

- First question: what would be the counterpart of *observable* in mathematics?
- Some candidates:
 - Arithmetical formulas
 - Decidable arithmetic formulas

- First question: what would be the counterpart of *observable* in mathematics?
- Some candidates:
 - Arithmetical formulas
 - Decidable arithmetic formulas
 - Σ₁ formulas

- First question: what would be the counterpart of *observable* in mathematics?
- Some candidates:
 - Arithmetical formulas
 - Decidable arithmetic formulas
 - Σ_1 formulas
 - Σ_1 formulas with feasible witnesses

- First question: what would be the counterpart of *observable* in mathematics?
- Some candidates:
 - Arithmetical formulas
 - Decidable arithmetic formulas
 - Σ₁ formulas
 - Σ_1 formulas with feasible witnesses
 - Finitistically provable statements (Observation involves deduction (the moon is as big as she appears))

- First question: what would be the counterpart of *observable* in mathematics?
- Some candidates:
 - Arithmetical formulas
 - Decidable arithmetic formulas
 - Σ₁ formulas
 - Σ_1 formulas with feasible witnesses
 - Finitistically provable statements (Observation involves deduction (the moon is as big as she appears))
 - PRA

• Second question: how to speak of *usefulness* of certain instruments in mathematics?

- Second question: how to speak of *usefulness* of certain instruments in mathematics?
- Some candidates:

- Second question: how to speak of *usefulness* of certain instruments in mathematics?
- Some candidates:
 - Shorter proofs

- Second question: how to speak of *usefulness* of certain instruments in mathematics?
- Some candidates:
 - Shorter proofs
 - Uniform framework

- Second question: how to speak of *usefulness* of certain instruments in mathematics?
- Some candidates:
 - Shorter proofs
 - Uniform framework
 - applicability to other areas

- Second question: how to speak of *usefulness* of certain instruments in mathematics?
- Some candidates:
 - Shorter proofs
 - Uniform framework
 - applicability to other areas
 - providing bridges between otherwise unrelated areas

- Second question: how to speak of *usefulness* of certain instruments in mathematics?
- Some candidates:
 - Shorter proofs
 - Uniform framework
 - applicability to other areas
 - providing bridges between otherwise unrelated areas

• Third question: should instrumentalism in mathematics really be an analogue of instrumentalism in the Philosophy of Science?

- Second question: how to speak of *usefulness* of certain instruments in mathematics?
- Some candidates:
 - Shorter proofs
 - Uniform framework
 - applicability to other areas
 - providing bridges between otherwise unrelated areas

• Third question: should instrumentalism in mathematics really be an analogue of instrumentalism in the Philosophy of Science?

• In this talk: Speedup over PRA

	Useful results for speed-up •	
FrameTitle		

• For each theory T (usual definition) and each number n, we can find ψ_n so that

	Useful results for speed-up	
FrameTitle		

- For each theory T (usual definition) and each number n, we can find ψ_n so that
 - $T \vdash \psi_n$, BUT

	Useful results for speed-up	
FrameTitle		

- For each theory T (usual definition) and each number n, we can find ψ_n so that
 - $T \vdash \psi_n$, BUT
 - $T \nvDash_n \psi_n$.

	Useful results for speed-up	
FrameTitle		

- For each theory T (usual definition) and each number n, we can find ψ_n so that
 - $T \vdash \psi_n$, BUT
 - $T \nvDash_n \psi_n$.
- Proof idea:

 $\psi_n \quad \longleftrightarrow \quad \neg \exists p \leq \overline{n} \operatorname{Proof}_T(p, \psi_n)$

	Useful results for speed-up	
FrameTitle		

- For each theory T (usual definition) and each number n, we can find $\psi_{\rm n}$ so that
 - $T \vdash \psi_n$, BUT
 - $T \nvDash_n \psi_n$.
- Proof idea:

 $\psi_n \quad \longleftrightarrow \quad \neg \exists p \leq \overline{n} \operatorname{Proof}_T(p, \psi_n)$

• Pudlák: can polynomially be related to $Con_{\overline{n}}(T)$

	Useful results for speed-up	
FrameTitle		

- For each theory T (usual definition) and each number n, we can find ψ_n so that
 - $T \vdash \psi_n$, BUT
 - $T \nvDash_n \psi_n$.
- Proof idea:

 $\psi_n \quad \longleftrightarrow \quad \neg \exists p \leq \overline{n} \operatorname{Proof}_T(p, \psi_n)$

- Pudlák: can polynomially be related to $Con_{\overline{n}}(T)$
- Can be generalised in various directions, for example

$$\psi_{(n,f)} \iff \neg \exists p \leq f(\overline{n}) \operatorname{Proof}_{T}(p,\psi_{(n,f)})$$

for recursive f.

	Three scenarios ●○○	
A la Solovay		

• Mycielski:

	Three scenarios ●00	
A la Solovay		

- Mycielski:
 - IF T is a theory and,

	Three scenarios ●00	
A la Solovay		

- Mycielski:
 - IF T is a theory and,
 - IF λ is independent of T,

	Three scenarios ●○○	
A la Solovay		

- Mycielski:
 - IF T is a theory and,
 - IF λ is independent of T,
 - THEN both

	Three scenarios ●00	
A la Solovay		

- Mycielski:
 - IF T is a theory and,
 - IF λ is independent of T,
 - THEN both
 - $T + \lambda$ has non-recursive speed-up over T, AND

	Three scenarios ●00	
A la Solovay		

- Mycielski:
 - IF T is a theory and,
 - IF λ is independent of T,
 - THEN both
 - $T + \lambda$ has non-recursive speed-up over T, AND
 - $T + \neg \lambda$ has non-recursive speed-up over T

	Three scenarios ●00	
A la Solovay		

- Mycielski:
 - IF T is a theory and,
 - IF λ is independent of T,
 - THEN both
 - $T + \lambda$ has non-recursive speed-up over T, AND
 - $T + \neg \lambda$ has non-recursive speed-up over T
- Proof idea: $\{\lambda \lor \varphi_i\}_{i \in \omega}$ and $\{\neg \lambda \lor \varphi_i\}_{i \in \omega}$ yield speed-up respectively for suitable choice of φ_i

	Three scenarios ●00	
A la Solovay		

- Mycielski:
 - IF T is a theory and,
 - IF λ is independent of T,
 - THEN both
 - $T + \lambda$ has non-recursive speed-up over T, AND
 - $T + \neg \lambda$ has non-recursive speed-up over T
- Proof idea: {λ ∨ φ_i}_{i∈ω} and {¬λ ∨ φ_i}_{i∈ω} yield speed-up respectively for suitable choice of φ_i
- Similar in spirit to Solovay's response to Nelson's proposal for Predicativism

	Three scenarios ●00	
A la Solovay		

- Mycielski:
 - IF T is a theory and,
 - IF λ is independent of T,
 - THEN both
 - $T + \lambda$ has non-recursive speed-up over T, AND
 - $T + \neg \lambda$ has non-recursive speed-up over T
- Proof idea: {λ ∨ φ_i}_{i∈ω} and {¬λ ∨ φ_i}_{i∈ω} yield speed-up respectively for suitable choice of φ_i
- Similar in spirit to Solovay's response to Nelson's proposal for Predicativism
- Would this be a scenario in favour of Instrumentalism?

	Three scenarios ●00	
A la Solovay		

- Mycielski:
 - IF T is a theory and,
 - IF λ is independent of T,
 - THEN both
 - $T + \lambda$ has non-recursive speed-up over T, AND
 - $T + \neg \lambda$ has non-recursive speed-up over T
- Proof idea: {λ ∨ φ_i}_{i∈ω} and {¬λ ∨ φ_i}_{i∈ω} yield speed-up respectively for suitable choice of φ_i
- Similar in spirit to Solovay's response to Nelson's proposal for Predicativism
- Would this be a scenario in favour of Instrumentalism?
- Does this result suggest *dialetheism* to the instrumentalist?

	Three scenarios ●○○	
A la Solovay		

- Mycielski:
 - IF T is a theory and,
 - IF λ is independent of T,
 - THEN both
 - $T + \lambda$ has non-recursive speed-up over T, AND
 - $T + \neg \lambda$ has non-recursive speed-up over T
- Proof idea: {λ ∨ φ_i}_{i∈ω} and {¬λ ∨ φ_i}_{i∈ω} yield speed-up respectively for suitable choice of φ_i
- Similar in spirit to Solovay's response to Nelson's proposal for Predicativism
- Would this be a scenario in favour of Instrumentalism?
- Does this result suggest *dialetheism* to the instrumentalist?
- Technical improvements are possible: {φ_i}_i provided in a simple fashion; speed-up for formulas of lower complexity; and the same sequence for both choices, can we take Orey sentences, etc.

Aguilera, Joosten, Martínez (UB+)

Challenges to Instrumentalism

A false statement providing speed-up

- Through the previous result, for example using ¬Con(T) for consistent T
- Re-prompts the recurrent issue related to Gödel 2: reasoning to the extent that the instrument really is false need not be recognised by the standards of the instrumentalist as meaningful
- Technical curiosity: can we make the speed-up by the false statement be much larger than the one through its negation?

7/10

A disprovable statement yielding speed-up

- Given T let α be so that
 - α is refutable in *T*, BUT
 - the smallest proof of $\neg \alpha$ in T is of α stronimical size
 - Then, $T + \alpha$ has non-recursive speed-up over T
 - Again, by considering $\{\alpha \lor \varphi_n\}_{n \in \omega}$ for suitable φ_n .
- Does this force some sort of notion of *ultra-finitism* upon the Instrumentalist?

Conclusions

- The basic intuitions behind Instrumentalism seem to have some bearing on mathematics too
- Not yet entirely clear how and how this interacts with mathematical results

Thank you for your attention

THANKS!

Aguilera, Joosten, Martínez (UB+)