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Post’s Theorem

▶ Let A ⊆ N; Post’s Theorem says that the following are
equivalent:

▶ A is c.e. in ∅(n) iff;
▶ A is many-one reducible to ∅(n+1) iff;
▶ A is definable on the standard model by a Σn+1 formula.

▶ This can be seen as

Turing jumps through syntax

▶ How to generalize to transfinite Turing jumps?
▶ Ingredients to our solution:

▶ Provability;
▶ Friedman-Goldfarb-Harrington Theorem and generalizations;
▶ Recursively apply the FGH theorem to eliminate auxiliary

syntactical notions.
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Friedman-Goldfarb-Harrington

Theorem (FGH theorem)

Let T be any computably enumerable theory extending EA. For
each σ ∈ Σ1 we have that there is some ρ ∈ Σ1 so that

EA ⊢ 3T⊤ →
(
σ ↔ 2Tρ

)
.
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Generalizing FGH

▶ Generalizations of the FGH theorem:

▶ Let [n]ΠTρ denote a natural formalization of “ρ is provable in
T together with all true Π0

n sentences”.

▶ For each σ ∈ Σn+1 we have that there is some ρ ∈ Σn+1 so
that

IΣn ⊢ ⟨n⟩ΠT⊤ →
(
σ ↔ [n]ΠTρ

)
.

▶ For each σ(x) ∈ Σn+1 we have that there is some
ρ(x) ∈ Σn+1 so that

IΣn ⊢ ⟨n⟩ΠT⊤ →
(
σ(x)↔ [n]ΠTρ(ẋ)

)
.
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)
.

Joost J. Joosten Turing Jumps vs Provability 5 / 22



Provability and logics
Münchhausen
Turing Jumps

Turing jumps through syntax
Syntax parametrized provability
Provability parametrized provability

Generalizing FGH

▶ Generalizations of the FGH theorem:

▶ Let [n]ΠTρ denote a natural formalization of “ρ is provable in
T together with all true Π0

n sentences”.

▶ For each σ ∈ Σn+1 we have that there is some ρ ∈ Σn+1 so
that

IΣn ⊢ ⟨n⟩ΠT⊤ →
(
σ ↔ [n]ΠTρ

)
.

▶ For each σ(x) ∈ Σn+1 we have that there is some
ρ(x) ∈ Σn+1 so that

IΣn ⊢ ⟨n⟩ΠT⊤ →
(
σ(x)↔ [n]ΠTρ(ẋ)
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FGH and finite Turing jumps

Corollary

Let T be any sound c.e. theory and let A ⊆ N. The following are
equivalent

▶ A is c.e. in ∅(n);

▶ A is many-one reducible to ∅(n+1);

▶ A is definable on the standard model by a Σn+1 formula;

▶ A is definable on the standard model by a formula of the form
[n]ΠTρ(ẋ);
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Joost J. Joosten Turing Jumps vs Provability 6 / 22



Provability and logics
Münchhausen
Turing Jumps

Turing jumps through syntax
Syntax parametrized provability
Provability parametrized provability

FGH and finite Turing jumps

Corollary

Let T be any sound c.e. theory and let A ⊆ N. The following are
equivalent

▶ A is c.e. in ∅(n);
▶ A is many-one reducible to ∅(n+1);

▶ A is definable on the standard model by a Σn+1 formula;

▶ A is definable on the standard model by a formula of the form
[n]ΠTρ(ẋ);
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Joost J. Joosten Turing Jumps vs Provability 6 / 22



Provability and logics
Münchhausen
Turing Jumps

Turing jumps through syntax
Syntax parametrized provability
Provability parametrized provability

Provability recursions

[0]2Tϕ := 2Tϕ, and

[n + 1]2Tϕ := 2Tϕ ∨ ∃ψ
∨

0≤m≤n

(
⟨m⟩2Tψ ∧ 2(⟨m⟩2Tψ → ϕ)

)
.

(1)
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Provability and finite Turing jumps

Corollary

Let T be any sound c.e. theory and let A ⊆ N. The following are
equivalent

▶ A is c.e. in ∅(n);
▶ A is many-one reducible to ∅(n+1);

▶ A is definable on the standard model by a Σn+1 formula;

▶ A is definable on the standard model by a formula of the form
[n + 1]2Tρ(ẋ);
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Provability recursions

[0]2Tϕ := 2Tϕ, and

[n + 1]2Tϕ := 2Tϕ ∨ ∃ψ
∨

0≤m≤n

(
⟨m⟩2Tψ ∧ 2(⟨m⟩2Tψ → ϕ)

)
.

(2)

Main idea:

[ξ]2Tφ :↔ 2Tφ ∨ ∃ ζ<ξ ∃ψ (⟨ζ⟩2Tψ ∧ 2T (⟨ζ⟩2Tψ → φ))
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A schematic approach

Definition (Münchhausen theory and predicate)

Let T be a theory and let Λ denote an ordinal equipped with a
representation in the language of T with corresponding represented
ordering ≺. For this representation, it is required that

T ⊢ “≺ is transitive, right-discrete and has a minimal element”,
T ⊢ (ξ ≺ ζ)→ [ζ]ΛT (ξ ≺ ζ),
T ⊢ ¬(ξ ≺ ζ)→ [ζ]ΛT¬(ξ ≺ ζ),
ξ < ζ < Λ implies T ⊢ ξ ≺ ζ.

We call T a Λ-One-Münchhausen Theory whenever there is a
binary predicate [ξ]ΛTφ with free variables ξ and φ so that

T ⊢ ∀ϕ ∀ζ≺Λ
(
[ζ]ΛTϕ ↔ 2Tϕ ∨ ∃ψ ∃ ξ≺ζ

(
⟨ξ⟩ΛTψ ∧2T ( ⟨ξ⟩ΛTψ → ϕ)

) )
.
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Polymodal provability logic, transfinite

Definition
For Λ an ordinal or the class of all ordinals, the logic GLPΛ is given
by the following axioms:

1. all propositional tautologies,

2. Distributivity: [ξ](φ→ ψ)→ ([ξ]φ→ [ξ]ψ) for all ξ < Λ,

3. Transitivity: [ξ]φ→ [ξ][ξ]φ for all ξ < Λ,

4. Löb: [ξ]([ξ]φ→ φ)→ [ξ]φ for all ξ < Λ,

5. Monotonicity: [ξ]φ→ [ζ]φ for ξ < ζ < Λ,

6. Negative introspection: ⟨ξ⟩φ→ [ζ]⟨ξ⟩φ for ξ < ζ < Λ.

The rules are Modus Ponens and Necessitation for each modality:
φ

[ξ]φ
.

Joost J. Joosten Turing Jumps vs Provability 11 / 22
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Soundness for GLP

Theorem (GLP Soundness for Munchhausen)

Let T be a Λ-One-Münchhausen theory and let [α]ΛT be a
corresponding provability predicate.

If T proves transfinite Π0
1([α]

Λ
T ) induction along Λ we have that T

proves that all the rules and axioms of GLPΛ are sound wr.t. T by
interpreting [α] as [α]ΛT .

Joost J. Joosten Turing Jumps vs Provability 12 / 22
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Weakening the base theory

[α]⊠Tφ ↔ 2Tφ∨∃σ ∃ τ
(
|σ| = |τ | ∧ ∀ i<|τ | τi≺α ∧ ∀ i<|σ| ⟨τi ⟩⊠Tσ(i)

∧ 2T

(
∀ i<|σ| ⟨τi ⟩⊠Tσ(i) → φ

))
. (3)

Theorem
Let T be a Λ-Münchhausen theory and let [α]⊠T be a corresponding
Münchhausen provability predicate. Then, GLPΛ is sound for T
when the [α] -modalities (α ≺ Λ) are interpreted as [α]⊠T .
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Complete for Turing jumps

▶ Transfinite Turing jumps can be related to Münchausen
provability

Theorem
Given a well-behaved primitive recursive ordinal notation system
for some limit ordinal ⟨Λ,≺⟩, let T be a sound theory proving (3).
For each α ≺ Λ there is a formula ψα(x) so that

x ∈ ∅(1+α) ⇐⇒ N |= [α]⊠Tψα(x).

Moreover, ψα can be obtained by primitive recursion from α.

Joost J. Joosten Turing Jumps vs Provability 14 / 22
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Proof ingredients

Lemma
Let T be a Münchhausen theory with corresponding provability
predicate [ξ]θ and let U ⊇ T so that U ⊢ BΣ1([α]φ). We then
have

U ⊢ ∀β ∀φ∃ρ
(
⟨β + 1⟩⊤ →

[
∃x⟨β⟩φ(ẋ) ←→ [β + 1]ρ

])
,

Joost J. Joosten Turing Jumps vs Provability 15 / 22
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More proof ingredients

Lemma
There is a computable function g so that for α, λ ≺ Λ and λ a
limit ordinal we have

1.
x ∈ ∅(1+α+1) ⇐⇒ ∃s g(s, x) /∈ ∅(1+α);

2. Something for limits.

Joost J. Joosten Turing Jumps vs Provability 16 / 22
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Combining: the successor case

x ∈ ∅1+α+1 ⇔ ∃s g(s, x) /∈ ∅(1+α)

⇔ ∃s ¬
(
g(s, x) ∈ ∅(1+α)

)
⇔ ∃s ¬[α]ψα

(
g(ṡ, ẋ)

)
(by the IH)

⇔ ∃s ⟨α⟩¬ψα

(
g(ṡ, ẋ)

)
⇔ [α+ 1]ρ(ẋ)
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Fundamental sequences

Lemma
Let λ be a limit ordinal with fixed fundamental sequence
{λJxK}x∈ω. Moreover, let T be a Münchhausen theory with
corresponding provability predicate [ξ]θ and let U ⊇ T so that
U ⊢ BΣ1([α]φ). We then have

U ⊢ ∀φ∃ρ
(
⟨λ⟩⊤ →

[
∃x⟨λJxK⟩φ(ẋ) ←→ [λ]ρ(ẋ)

])
.

Moreover, ρ can be obtained from λ and φ in a primitive recursive
way.
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More proof ingredients

Lemma
There are a computable functions g , h so that for α, λ ≺ Λ and λ a
limit ordinal we have

1. There is a computable function g so that

x ∈ ∅(1+α+1) ⇐⇒ ∃s g(s, x) /∈ ∅(1+α);

2.
x ∈ ∅(λ) ⇐⇒ ∃s h(s, x) /∈ ∅(1+λJsK).
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Combining: the successor case

x ∈ ∅λ ⇔ ∃s h(s, x) /∈ ∅(1+λJsK)

⇔ ∃s ¬
(
h(s, x) ∈ ∅(1+λJsK))

⇔ ∃s ¬[λJsK]ψλJsK
(
h(ṡ, ẋ)

)
(by the IH)
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(
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)
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Wrapping up

Theorem
. . .

x ∈ ∅(1+α) ⇐⇒ N |= [α]⊠Tψα(x).

using our earlier results and

Lemma (Computable Recursion Theorem)

Let ⟨Λ,≺⟩ be a primitive recursive ordinal notation system. For
every combination of primitive recursions b, g and h of the right
arities there is a unique primitive recursion f that satisfies the
following equations:

f (0, x) = b(x);
f (α+ 1, x) = g(α, x , f (α, x));
f (λ, x) = h({f (α, x) | α ≺ λ}, x) for limit λ.
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