Provability Logics and Applications Day 1 Provability as modality

David Fernández Duque¹ and Joost J. Joosten²

Universidad de Sevilla;
 Universitat de Barcelona

Monday 13-08-2012 ESSLLI Tutorial, Opole

< □→ < □→ < □→

Idea: Given a formal theory *T* over a language *L*, we interpret $\Box \phi$ as

```
"\phi is provable in T".
```

In symbols we write $T \vdash \phi$.

This interpretation of modal logic was first suggested by Kurt Gödel.

It can be used to reason about Gödel's famous incompleteness theorems.

|▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Gödel suggests that provability may be seen as an interpretation of modal logic: $\Box \phi \equiv "\phi$ is provable"

< 同 > < 回 > < 回 > <

Gödel suggests that provability may be seen as an interpretation of modal logic: $\Box \phi \equiv "\phi$ is provable"

• $\vdash \phi \leftrightarrow \neg \Box \phi$: Liar paradox

크

▲御▶ ▲理▶ ▲理▶

Gödel suggests that provability may be seen as an interpretation of modal logic: $\Box \phi \equiv "\phi$ is provable"

- $\vdash \phi \leftrightarrow \neg \Box \phi$: Liar paradox
- $\Diamond \top \rightarrow \Diamond \Box \bot$: Second incompleteness theorem

▲御▶ ▲理▶ ▲理▶

Henkin asks, "What can we say about formulas that assert their own provability"?

Truth-teller paradox: $\phi \leftrightarrow \Box \phi$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Henkin asks, "What can we say about formulas that assert their own provability"?

Truth-teller paradox: $\phi \leftrightarrow \Box \phi$

Löb answers Henkin's question (they are themselves derivable) and gives basic modal-like axioms for a provability predicate

Henkin asks, "What can we say about formulas that assert their own provability"?

Truth-teller paradox: $\phi \leftrightarrow \Box \phi$

Löb answers Henkin's question (they are themselves derivable) and gives basic modal-like axioms for a provability predicate

Löb's rule:
$$\frac{\Box \phi \rightarrow \phi}{\phi}$$

<回><モン<

2

▲□ → ▲ □ → ▲ □ → □

3

1971 Segerberg proves Kripke completeness.

1971 Segerberg proves Kripke completeness.

1975 De Jongh and Sambin proved the fixpoint theorem:

< 回 > < 回 > < 回 > -

1971 Segerberg proves Kripke completeness.

1975 De Jongh and Sambin proved the fixpoint theorem: If *p* appears only "boxed" in $\psi(p)$ then

$$\exists \phi \mathsf{GL} \vdash \phi \leftrightarrow \psi(\phi)$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ① ● ○ ● ●

Some history: The arithmetical completeness theorem

Kripke completeness is useful, but is provability logic complete for its intended interpretation?

 $\Box\phi\mapsto ``\mathsf{PA}\vdash\phi"$

< □ > < □ > < □ > .

2

Some history: The arithmetical completeness theorem

Kripke completeness is useful, but is provability logic complete for its intended interpretation?

 $\Box \phi \mapsto "\mathsf{PA} \vdash \phi"$

In 1976, Solovay proves completeness for the arithmetical interpretation of provability logic.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Some history: The arithmetical completeness theorem

Kripke completeness is useful, but is provability logic complete for its intended interpretation?

$$\Box \phi \mapsto \mathbf{``PA} \vdash \phi\mathbf{''}$$

In 1976, Solovay proves completeness for the arithmetical interpretation of provability logic.

▲□ → ▲ □ → ▲ □ → □

$$\mathsf{GL} \vdash \phi \Leftrightarrow \forall f \big(\mathbb{N} \models f(\phi) \big)$$

1981 Esakia proposes the topological derived-set semantics.

・ロト ・四ト ・ヨト ・ヨト

3

- 1981 Esakia proposes the topological derived-set semantics.
- 1985 Abashide shows that GL is complete for its topological interpretation on any ordinal $\geq \omega^{\omega}$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

- 1981 Esakia proposes the topological derived-set semantics.
- 1985 Abashide shows that GL is complete for its topological interpretation on any ordinal $\geq \omega^{\omega}$
- 1986 Japaridze proposes a polymodal version of provability logic.

- 1981 Esakia proposes the topological derived-set semantics.
- 1985 Abashide shows that GL is complete for its topological interpretation on any ordinal $\geq \omega^{\omega}$
- 1986 Japaridze proposes a polymodal version of provability logic.

크

No Kripke models!

▲□ → ▲ □ → ▲ □ → □

More recently,

 Beklemishev showed that it is also consistent that GLP₂ is complete for its canonical ordinal models

э

More recently,

- Beklemishev showed that it is also consistent that GLP₂ is complete for its canonical ordinal models
- Bagaria has related existence of non-trivial ordinal models of GLP_n to a family of large cardinal axioms.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

More recently,

- Beklemishev showed that it is also consistent that GLP₂ is complete for its canonical ordinal models
- Bagaria has related existence of non-trivial ordinal models of GLP_n to a family of large cardinal axioms.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

э

1993 Ignatiev gives Kripke models for the closed fragment.

Gödel's provability logic does not distinguish well between reasonably strong formal theories, but Japaridze's extension does.

▲御▶ ▲理▶ ▲理▶

Gödel's provability logic does not distinguish well between reasonably strong formal theories, but Japaridze's extension does.

In 2004, Lev Beklemishev showed how Japaridze's system GLP_{ω} can be used to give an ordinal analysis of Peano Arithmetic.

2005 Beklemishev proposes extending to GLP_{Λ} , which uses transfinite modalities.

▲□ → ▲ □ → ▲ □ → □

2005 Beklemishev proposes extending to GLP_{Λ} , which uses transfinite modalities.

2009 Icard defines topological models of the closed fragment.

▲□ → ▲ □ → ▲ □ → □

2005 Beklemishev proposes extending to GLP_{Λ} , which uses transfinite modalities.

2009 Icard defines topological models of the closed fragment.

2011 Beklemishev and Gabelaia prove topological completeness for GLP_{ω}

▲□ → ▲ □ → ▲ □ → □

We have been generalizing many of these results to GLP_{Λ} .

- Ignatiev models
- Icard topologies
- Fixpoint theorem
- ▶ ...

With this we hope to use provability logics to analyze stronger and stronger theories.

We will need:

- 1. A formal language L to speak about arithmetic.
- 2. A formal theory T that reasons about arithmetic
- 3. A provability predicate $\mathtt{Prv}_{\mathcal{T}}$ which talks about provability within L

4. A modal logic where $\Box \approx \text{Prv}_{\mathcal{T}}$

An arithmetic interpretation of a first- or higher-order language L is an L-model $\mathfrak{N} = \langle \mathbb{N}, I \rangle$ such that:

- there is an L-term 0 with I(0) = 0
- ▶ there is a unary function symbol *S* such that for all $n \in \mathbb{N}$, $I(\overline{n}) = n$, where

$$\overline{n} = \underbrace{\mathrm{SS} \ldots \mathrm{S}}_{n} 0$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

- ► there are binary function symbols plus, times, exp such that, given n, m ∈ N,
 - $I(plus(\overline{n}, \overline{m})) = n + m$
 - $I(\text{times}(\overline{n},\overline{m})) = n \times m$
 - $I(\exp(\overline{n},\overline{m})) = n^m$

We will usually write $\mathbb{N} \models \phi$ instead of $\mathfrak{N} \models \phi$.

The arithmetic hierarchy

A bounded quantifier is one of the form $\forall x(x < t \rightarrow \phi)$ or $\exists x(x < t \land \phi)$.

A formula ϕ is elementary or Δ_0 if all quantifiers appearing in ϕ are bounded.

Then, define by induction:

- $\blacktriangleright \ \Pi_0 = \Sigma_0 = \Delta_0$
- if $\phi \in \Sigma_n$ then $\forall x_0 \forall x_1 \dots \forall x_m \phi \in \Pi_{n+1}$
- if $\phi \in \Pi_n$ then $\exists x_0 \exists x_1 \dots \exists x_m \phi \in \Sigma_{n+1}$

Fact: Every first-order formula is provably equivalent in FOL to either a Π_n -formula or a Σ_n -formula.

Any finite sequence of numbers

 $n_1, n_2, \dots n_k$

can itself be represented as a natural number.

There are many ways to do this:

- use binary and twos as commas
- products of prime powers
- using the Chinese remainder theorem

The representation can be picked so there are formulas

- seq(x) expressing "x represents a sequence"
- len(x, y) expressing "y is the length of x"
- entry(x, y, z) expressing "y is the zth entry of x"

▲ 문 ▶ ▲ 문 ▶ …

A Gödel numbering is an assignment $\phi \mapsto \ulcorner \phi \urcorner$ mapping an L-formula to a natural number.

This allows us to reason about formal languages within arithmetic.

Trick:

- 1. Enumerate all symbols
- 2. View formulas as sequences of symbols

< □ > < □ > < □ > .

Substitution

Many standard syntactic operations are primitive recursive and hence can be represented by a Δ_0 formula.

Proposition

In any arithmetical language L there is a Δ_0 formula subs(w, x, y, z) such that for all tuples of natural numbers a, b, n, m,

 $\mathbb{N} \models \mathsf{subs}(\overline{a}, \overline{b}, \overline{n}, \overline{m})$

if and only if there is is a formula $\alpha,$ a term t and a variable v with

$$a = \ulcorner \alpha \urcorner$$
 $n = \ulcorner t \urcorner$ $m = \ulcorner v \urcorner$

and

 $b = \lceil \alpha[x/t] \rceil.$

(本部) (本語) (本語) (二語)

Formal theories

A formal theory *T* is usually presented as a family of *rules* and *axioms*.

Definition

David

A derivation of ϕ is a sequence $\langle \phi_0, \dots, \phi_N \rangle$ such that $\phi_N = \phi$ and each ϕ_n is either an axiom or follows by the rules from $\phi_0, \dots, \phi_{n-1}$.

If ϕ is derivable in *T* we write $T \vdash \phi$.

All theories will be assumed closed under generalization and modus ponens:

$$\frac{\phi}{\forall x \phi} \qquad \frac{\phi \quad \phi \to \psi}{\psi}$$
Fernández Duque¹ and Joost J. Joosten²
Provability as modality

L is an arithmetically interpreted language, T is a theory over L.

Definition

The theory T is arithmetically sound if whenever $T \vdash \phi$, $\mathbb{N} \models \phi$ The theory T is arithmetically complete if, whenever $\mathbb{N} \models \phi$, $T \vdash \phi$.

There are also relative versions of these notions. For example, if Γ is a set of formulas, *T* is Γ -sound if every theorem of *T* that also belongs to Γ is true.

We will be mainly interested in arithmetically sound theories.

・ 戸 ト ・ 三 ト ・ 三 ト

Peano arithmetic

Abbreviated PA, it is axiomatized by FOL and:

- $\forall x(x = x)$
- $\forall x \forall y \forall z (x = y \land y = z \rightarrow x = z)$
- $\forall x \forall y (x = y \leftrightarrow Sx = Sy)$
- ▶ $\neg \exists x (0 = Sx)$
- $\forall x sum(x, 0) = x$
- $\forall x \forall y (sum(x, Sy) = S(sum(x, y)))$
- ∀xtimes(x, 0) = 0
- ▶ ∀x∀ytimes(x,Sy) = sum(times(x,y),x)
- $\forall x \exp(x, 0) = S0$
- ► ∀x∀yexp(x,Sy) = times(exp(x,y),x)

Induction: $\phi(0) \land \forall x(\phi(x) \to \phi(Sx)) \to \forall x\phi(x).$

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● � � � �

Reasonable requirement: Proofs are checkable.

Better: Easy to check.

Craig's trick: If the axioms and rules of T are Σ_1 -definable, then there is an elementarily presented family of axioms and rules which give the same theorems as T.

・白・・ヨ・・ モー

Provability predicates

Derivations are sequences of formulas so they can be assigned Gödel numbers too, which allows us to study logic within any arithmetically interpreted language.

Proposition (Gödel)

If *T* is elementarily presented there is a Δ_0 -formula $prv_T(x, y)$ such that for all $n, m \in \mathbb{N}$, $\mathbb{N} \models prv_T(\overline{n}, \overline{m})$ if and only if there is a derivation *d* of a formula ϕ with $n = \ulcorner \phi \urcorner$ and $m = \ulcorner d \urcorner$.

With this we can define

• ϕ is provable in T:

$$\operatorname{Prv}_T(x) := \exists \operatorname{y} \operatorname{prv}_T(x, y).$$

► *T* is consistent:

$$\operatorname{Cons}(T) := \neg \operatorname{Prv}_T(\overline{0} = \operatorname{SO}^{\neg})$$

ヨト・モラト

Self-reference often leads to paradox:

- This sentence is false.
- The smallest number not definable with ten words or less.

同下 イヨト イヨト

The result of substituting this sentence for x in "The sentence "x" is true" is false.

Fortunately, this is impossible to do directly in arithmetic.

Gödel numbers do lead to an indirect version of self-reference:

÷

A D A D A D A

- 1. There are infinitely many prime numbers.
- 2. Every number has a unique sucessor.
- 3. Two plus two is five.

1000. Sentence 1000 is not provable.

This type of self-reference is available in arithmetic.

Proposition

Given an arithmetic formula $\psi(\mathbf{n},\vec{\mathbf{x}}),$ there exists a formula ϕ such that

$$T \vdash \forall \vec{\mathbf{x}} \big(\phi \leftrightarrow \psi \big(\overline{\ulcorner \phi \urcorner}, \vec{\mathbf{x}} \big) \big)$$

▲御▶ ▲理▶ ▲理▶

크

for every sound and sufficiently strong arithmetic theory T.

Theorem (First incompleteness theorem)

No elementarily presentable theory is arithmetically sound and complete.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Theorem (First incompleteness theorem)

No elementarily presentable theory is arithmetically sound and complete.

Theorem (Second incompleteness theorem)

If an elementarily presentable theory T is arithmetically sound and provably Σ_1 -complete, then

 $T \not\vdash \text{Cons}(T).$

・ 同 ト ・ ヨ ト ・ ヨ ト ・