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Provability as modality
Modal logics
Löb revisited

Arithmetical soundness of GL

Formalized Modus Ponens and Deduction
Sigma completeness of PA
Löb’s theorem

I From now on: no distinction between A, pAq, pAq, etc.

I If the context allows us to

I If we allow ourselves to...

I Easy to see:

N |= PrvPA(A→ B) ∧ PrvPA(A)→ PrvPA(B)

I For example via Hilbert style implementation of PrvPA.

I We can construct prvPA(z ,B)
given prvPA(x ,A→ B) and prvPA(y ,A)

I Thus:

PA ` PrvPA(A→ B) ∧ PrvPA(A)→ PrvPA(B)

I Provable/Formalized Modus Ponens
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Löb’s theorem

I From now on: no distinction between A, pAq, pAq, etc.

I If the context allows us to

I If we allow ourselves to...

I Easy to see:

N |= PrvPA(A→ B) ∧ PrvPA(A)→ PrvPA(B)

I For example via Hilbert style implementation of PrvPA.

I We can construct prvPA(z ,B)
given prvPA(x ,A→ B) and prvPA(y ,A)

I Thus:

PA ` PrvPA(A→ B) ∧ PrvPA(A)→ PrvPA(B)

I Provable/Formalized Modus Ponens

David Fernández Duque1 and Joost J. Joosten2 Provability as modality



Provability as modality
Modal logics
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Löb revisited

Arithmetical soundness of GL

Formalized Modus Ponens and Deduction
Sigma completeness of PA
Löb’s theorem

I Provable/Formalized Modus Ponens

I We also have a formalized version of the Deduction Theorem

I Theorem

N |= PrvPA+A(B) ↔ PrvPA(A→ B)

I Proof: ← is easy;

I → follows from induction on the length of a proof;

I Hilbert style calculus: only deal with Modus Ponens.

I Note, PA can perform this induction!

I So:
PA ` PrvPA+A(B) ↔ PrvPA(A→ B)
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Arithmetical soundness of GL

Formalized Modus Ponens and Deduction
Sigma completeness of PA
Löb’s theorem

I Gödel I: PA is incomplete

I That is, there is some true sentence π with PA 0 π
I We have seen such a π:

The Gödel sentence λ

I Note that λ ∈ Π1

I Thus: PA is Π1-incomplete

I We shall now see that this is optimal

I Theorem PA is Σ1-complete

I N |= σ ⇒ PA ` σ for σ ∈ Σ1
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The Gödel sentence λ

I Note that λ ∈ Π1

I Thus: PA is Π1-incomplete

I We shall now see that this is optimal

I Theorem PA is Σ1-complete

I N |= σ ⇒ PA ` σ for σ ∈ Σ1

David Fernández Duque1 and Joost J. Joosten2 Provability as modality



Provability as modality
Modal logics
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I Gödel I: PA is incomplete

I That is, there is some true sentence π with PA 0 π
I We have seen such a π: The Gödel sentence λ
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Löb’s theorem
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I Note that λ ∈ Π1

I Thus: PA is Π1-incomplete

I We shall now see that this is optimal

I Theorem PA is Σ1-complete

I N |= σ ⇒ PA ` σ for σ ∈ Σ1

David Fernández Duque1 and Joost J. Joosten2 Provability as modality



Provability as modality
Modal logics
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Formalized Modus Ponens and Deduction
Sigma completeness of PA
Löb’s theorem

I N |= σ ⇒ PA ` σ for σ ∈ Σ1

I Proof: by induction on the complexity of σ
I True atomic sentences can all be proved in PA
I t1 = t2 and t1 < t2
I By induction on the complexity of t1 and sufficient for t1 = n

I For example, in a + b = S

n times︷ ︸︸ ︷
S . . . S 0

I b = 0, then a + 0 = a and by induction PA ` a = S

n times︷ ︸︸ ︷
S . . . S 0;

and using an axiom: PA ` a + b = S

n times︷ ︸︸ ︷
S . . . S 0

I b = Sb′, then a + Sb′ = S(a + b′) whence by IH

PA ` a + b′ =

n times︷ ︸︸ ︷
S . . . S 0

and using an axiom: PA ` a + b = S

n times︷ ︸︸ ︷
S . . . S 0
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Löb’s theorem

I N |= σ ⇒ PA ` σ for σ ∈ Σ1

I Proof: by induction on the complexity of σ

I True atomic sentences can all be proved in PA
I t1 = t2 and t1 < t2
I By induction on the complexity of t1 and sufficient for t1 = n

I For example, in a + b = S

n times︷ ︸︸ ︷
S . . . S 0

I b = 0, then a + 0 = a and by induction PA ` a = S

n times︷ ︸︸ ︷
S . . . S 0;

and using an axiom: PA ` a + b = S

n times︷ ︸︸ ︷
S . . . S 0

I b = Sb′, then a + Sb′ = S(a + b′) whence by IH

PA ` a + b′ =

n times︷ ︸︸ ︷
S . . . S 0

and using an axiom: PA ` a + b = S

n times︷ ︸︸ ︷
S . . . S 0

David Fernández Duque1 and Joost J. Joosten2 Provability as modality



Provability as modality
Modal logics
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Löb’s theorem

I N |= σ ⇒ PA ` σ for σ ∈ Σ1

I Proof: by induction on the complexity of σ
I True atomic sentences can all be proved in PA
I t1 = t2 and t1 < t2
I By induction on the complexity of t1 and sufficient for t1 = n

I For example, in a + b = S

n times︷ ︸︸ ︷
S . . . S 0

I b = 0, then a + 0 = a and by induction PA ` a = S

n times︷ ︸︸ ︷
S . . . S 0;

and using an axiom: PA ` a + b = S

n times︷ ︸︸ ︷
S . . . S 0

I b = Sb′, then a + Sb′ = S(a + b′) whence by IH

PA ` a + b′ =

n times︷ ︸︸ ︷
S . . . S 0

and using an axiom: PA ` a + b = S

n times︷ ︸︸ ︷
S . . . S 0

David Fernández Duque1 and Joost J. Joosten2 Provability as modality



Provability as modality
Modal logics
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Sigma completeness of PA
Löb’s theorem

I True atomic sentences can all be proved in PA

I We have seen one simple case

I Many more cases but equally simple

I Next step: bounded quantification ∀ x<y ψ(x)

I For each natural number y

PA ` ∀ x<y ψ(x) ↔

y+1 conjuncts︷ ︸︸ ︷
ψ(0) ∧ . . . ∧ ψ(y)

I Thus, we can apply our IH

I Likewise for ∃ x<y ψ(x)
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Löb revisited

Arithmetical soundness of GL

Formalized Modus Ponens and Deduction
Sigma completeness of PA
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Löb revisited

Arithmetical soundness of GL

Formalized Modus Ponens and Deduction
Sigma completeness of PA
Löb’s theorem

I Boolean connectives: by an easy call to the IH

I Unbounded existential quantification: ∃x ψ(x)

I also directly from the IH

I This finishes the proof

N |= σ ⇒ PA ` σ for σ ∈ Σ1
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Löb revisited

Arithmetical soundness of GL

Formalized Modus Ponens and Deduction
Sigma completeness of PA
Löb’s theorem

I Some remarks on Sigma completeness:

I Goldbach’s conjecture: each even number above two is the
sum of two prime numbers

I This is a Π1 statement

I Thus: If Goldbach’s conjecture is independent of PA, then it
is true

I Theorem: If PA ` ϕ, then PA ` PrvPA(ϕ)

I Proof: Remember, representing “provability in PA ” implies

p is the code of a PA proof of ϕ ⇐⇒ N |= prvPA(p, ϕ)

I As PrvPA(ϕ) ∈ Σ1 we have

PA ` ϕ ⇒ N |= PrvPA(ϕ) ⇒ PA ` PrvPA(ϕ)
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Löb’s theorem

I Some remarks on Sigma completeness:

I Goldbach’s conjecture: each even number above two is the
sum of two prime numbers

I This is a Π1 statement

I Thus: If Goldbach’s conjecture is independent of PA, then it
is true

I Theorem: If PA ` ϕ, then PA ` PrvPA(ϕ)

I Proof: Remember, representing “provability in PA ” implies

p is the code of a PA proof of ϕ ⇐⇒ N |= prvPA(p, ϕ)

I As PrvPA(ϕ) ∈ Σ1 we have

PA ` ϕ ⇒ N |= PrvPA(ϕ) ⇒ PA ` PrvPA(ϕ)

David Fernández Duque1 and Joost J. Joosten2 Provability as modality



Provability as modality
Modal logics
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Sigma completeness of PA
Löb’s theorem

I Sigma completeness: N |= σ ⇒ PA ` σ for σ ∈ Σ1

I The proof gives us slightly more:

I Theorem PA ` “N |= σ ⇒ PA ` σ′′ for σ ∈ Σ1

I That is: PA ` σ → PrvT (σ) for σ ∈ Σ1

I Proof: formalizing exactly the previous proof of
Sigma-completeness in PA

I We have a sufficient amount of induction

I Note that we can do bounded quantification as we have the
totality of exponentiation

I Corollary: PA ` PrvPA(ϕ)→ PrvPA(PrvPA(ϕ))
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Löb revisited

Arithmetical soundness of GL

Formalized Modus Ponens and Deduction
Sigma completeness of PA
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Formalized Modus Ponens and Deduction
Sigma completeness of PA
Löb’s theorem

I Provable Σ1-completeness:

PA ` PrvPA(ϕ)→ PrvPA(PrvPA(ϕ))

I Corollary: Gödel II: If a theory is consistent, it will not prove
its own consistency.

I Proof We see that PA ` λ↔ ¬PrvPA(⊥)

I Clearly, inside PA we have ¬PrvPA(λ)→ ¬PrvPA(⊥).

I For the other direction reason in PA and assume ¬PrvPA(⊥)

I Moreover, for a contradiction assume PrvPA(λ)

I By provable Σ1 completeness: PrvPA(PrvPA(λ)), that is
PrvPA(¬λ)

David Fernández Duque1 and Joost J. Joosten2 Provability as modality



Provability as modality
Modal logics
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I Clearly, inside PA we have ¬PrvPA(λ)→ ¬PrvPA(⊥).

I For the other direction reason in PA and assume ¬PrvPA(⊥)

I Moreover, for a contradiction assume PrvPA(λ)

I By provable Σ1 completeness: PrvPA(PrvPA(λ)), that is
PrvPA(¬λ)
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I By Gödel 2 for PA + ¬ϕ we get

PA + ¬ϕ 0 ConPA+¬ϕ

By deduction (and the formalized version)

PA 0 ¬ϕ→ ConPA(¬ϕ)

I And ConPA(¬ϕ) is just ¬PrvPA(ϕ)

David Fernández Duque1 and Joost J. Joosten2 Provability as modality



Provability as modality
Modal logics
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Provability as modality
Modal logics
Löb revisited

Arithmetical soundness of GL

Syntax of modal logics
Various modal logics

I PA ` PrvPA(A→ B) ∧ PrvPA(A)→ PrvPA(B)

I Note, this holds for any (possibly non-standard) formulas A
and B

I We would like to collect all such principles

I If possible

I We have to find a suitable signature where to collect such
principles

I Propositional modal logics
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Provability as modality
Modal logics
Löb revisited

Arithmetical soundness of GL

Syntax of modal logics
Various modal logics

I Language of propositional modal logic:

I countable set of propositional variables P;
I Two logical constants > and ⊥.

I Operators of propositional modal logic:

I Boolean connectives: →,∧;
I Unary modal operator: 2.

I All other Boolean connectives are defined as usual:

I ¬ψ := ψ → ⊥;
I ψ ∨ ϕ := ¬(¬ψ ∧ ¬ϕ);
I etc.

I The dual modal operator 3 is defined as ¬2¬
I 2 and 3 bind as ¬ and the rest as usual

I For us:

2 for provable and 3 as consistent
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Löb revisited

Arithmetical soundness of GL

Syntax of modal logics
Various modal logics

I Language of propositional modal logic:
I countable set of propositional variables P;
I Two logical constants > and ⊥.

I Operators of propositional modal logic:
I Boolean connectives: →,∧;
I Unary modal operator: 2.

I All other Boolean connectives are defined as usual:

I ¬ψ := ψ → ⊥;
I ψ ∨ ϕ := ¬(¬ψ ∧ ¬ϕ);

I etc.

I The dual modal operator 3 is defined as ¬2¬
I 2 and 3 bind as ¬ and the rest as usual

I For us:

2 for provable and 3 as consistent

David Fernández Duque1 and Joost J. Joosten2 Provability as modality



Provability as modality
Modal logics
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Modal logics
Löb revisited

Arithmetical soundness of GL

Syntax of modal logics
Various modal logics

I Various properties become naturally expressible

I Formalized Modus Ponens

2(p → q) → (2p → 2q)

I Uniform reflection
2p → p

I Gödel’s second incompleteness theorem:

3> → ¬23>
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Provability as modality
Modal logics
Löb revisited

Arithmetical soundness of GL

Syntax of modal logics
Various modal logics

I The logic K

I All axioms of the form 2(A→ B)→ (2A→ 2B)
I All propositional tautologies as axioms

I The only rules are Modus Ponens and Necessitation
I Non valid reasoning:

I Assume p
I Derive 2p by Necessitation
I Thus, conclude p → 2p

I Note: 2p ∨ ¬2p is also an axiom
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Löb revisited

Arithmetical soundness of GL

Syntax of modal logics
Various modal logics

I The logic K

I All axioms of the form 2(A→ B)→ (2A→ 2B)
I All propositional tautologies as axioms

I The only rules are Modus Ponens and Necessitation
I Non valid reasoning:

I Assume p
I Derive 2p by Necessitation
I Thus, conclude p → 2p

I Note: 2p ∨ ¬2p is also an axiom

David Fernández Duque1 and Joost J. Joosten2 Provability as modality



Provability as modality
Modal logics
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Provability as modality
Modal logics
Löb revisited

Arithmetical soundness of GL

Syntax of modal logics
Various modal logics

I K ` 2A ∧2B ↔ 2(A ∧ B)

I Proof: A→ (B → A ∧ B) is a tautology

I Necessitation and K axiom twice to obtain

2A→ (2B → 2(A ∧ B))

I Use the tautology

(2A→ (2B → 2(A ∧ B)))→ (2A ∧2B → 2(A ∧ B))

I The other direction is similar starting with A ∧ B → A
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Löb revisited

Arithmetical soundness of GL

Syntax of modal logics
Various modal logics

I We shall see that

K+{2(2A→ A)→ 2A | A a modal formula} ` 2B → 22B.

I Proof:
K ` 2B → 2(2(2B ∧ B)→ 2B ∧ B)

I Next, apply Löb to 2B ∧ B.
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Modal logics
Löb revisited

Arithmetical soundness of GL

I We considered the liar λ:

λ↔ ¬PrvPA(λ)

I The liar is both true and independent

I What about the truth-teller?

: τ ↔ PrvPA(τ)

I Now that we have a link to modal logic, we shall often write
2PA for PrvPA

I By Löb we know PA ` 2PA(τ)→ τ =⇒ PA ` τ
I Thus, the truth-teller is both true and provable

I First proven by Löb
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Provability as modality
Modal logics
Löb revisited

Arithmetical soundness of GL

I We shall give Löb’s proof

I for the sake of practicing with fixpoints and for beauty
I based on a proof of the following theorem
I Theorem Sinterklaas (Saint Nicholas) exists
I Proof:
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Modal logics
Löb revisited

Arithmetical soundness of GL

I Sinterklaas (Saint Nicholas) exists

I Proof: If this sentence is true, then Sinterklaas exists

I A↔ (A→ S)

I Suppose A (Assumption 1)

I Then A→ S via Modus Ponens

I Using our assumption again, we get S

I We conclude A→ S discharging Assumption 1

I This is just A

I Applying twice Modus Ponens we get S
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Löb revisited

Arithmetical soundness of GL

I Sinterklaas (Saint Nicholas) exists

I Proof: If this sentence is true, then Sinterklaas exists

I A↔ (A→ S)

I Suppose A (Assumption 1)

I Then A→ S via Modus Ponens

I Using our assumption again, we get S

I We conclude A→ S discharging Assumption 1

I This is just A

I Applying twice Modus Ponens we get S

David Fernández Duque1 and Joost J. Joosten2 Provability as modality



Provability as modality
Modal logics
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Provability as modality
Modal logics
Löb revisited

Arithmetical soundness of GL

I Theorem (Löb) If PA ` 2PAψ → ψ, then PA ` ψ

I Proof We consider χ with PA ` χ ↔ (2PAχ→ ψ) and
reason in PA

I Thus, by necessitation and distribution

2PAχ → (2PA2PAχ→ 2ψ)

I By transitivity 2PAχ → (2PAχ→ 2ψ)

which is just 2PAχ→ 2ψ

I By assumption
2PAχ→ ψ (1)

I Thus χ, whence by Nec. 2χ and MP on (1) we get ψ
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Provability as modality
Modal logics
Löb revisited

Arithmetical soundness of GL

I Arithmetical realization: f : P→ SentPA

I We extend f to be defined on all modal formulas:

I f commutes with Boolean connectives;
I In particular, f (>) = > and f (⊥) = ⊥;
I f (2A) = 2PAf (A).

I Theorem If GL ` A, then for any arithmetical realization f ,
PA ` f (A)

I Proof By induction on the proof A in GL

I Let Löb’s rule be (2A→ A)/A

I It is easy to show that

K4 + LR ` 2(2A→ A)→ 2A
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