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Arithmetical semantics
Kripke semantics for GL

On arithmetical completeness

Soundness
Completeness

I Yesterday, we have seen that GL ` A =⇒ ∀f PA ` f (A)

I actually, this holds for any theory extending, say I∆0 + exp,
which is also called EA, or Kalmar Elementary Arithmetic

I extending in a very strong sense (like ZFC, etc)

I Thus, arithmetical soundness of GL is very stable
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Arithmetical semantics
Kripke semantics for GL

On arithmetical completeness

Soundness
Completeness

I Do we also have arithmetical completeness?

I That is, GL 0 A =⇒ ∃f PA 0 f (A) ?

I Goal of today: YES!

I Provability in PA is undecidable:

I GL is decidable

I How do we get so many (different) PA unprovable
statements?

I We get this via another kind of semantics for GL.
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Arithmetical semantics
Kripke semantics for GL

On arithmetical completeness

Kripke semantics
Soundness
Completeness

I GL allows possible world semantics

I A Kripke frame for GL is a pair 〈W ,�〉
I Where � makes W into a well-founded tree
I Thus:

I Transitive (x � y) ∧ (y � z) ⇒ (x � z)
I Irreflexive: ¬x � x
I Non-confluent: x ↑ is a linear order
I Where x ↑:= {y ∈W | y � x}
I Well-founded: impossible to have an infinite descending chain

x0 � x1 � x2 � . . .
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Arithmetical semantics
Kripke semantics for GL

On arithmetical completeness

Kripke semantics
Soundness
Completeness

I Note that our trees are like hang-trees

I

I Why do we use this unconventional Kripke frames
representation?

I To link to ordinals
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Arithmetical semantics
Kripke semantics for GL

On arithmetical completeness

Kripke semantics
Soundness
Completeness

I We do allow infinite increasing chains: x0 ≺ x1 ≺ x2 . . . in GL
frames

I To distinguish different kind of infinite chains we use ordinals

I “Shortest infinite increasing chain”: ω

I Then ω + 1, . . .

I ω + ω

= ω · 2

I ω · ω

= ω2

I and so forth

I On denotes the class of all ordinals

I Transfinite induction:
∀α∈On (∀β<α Φ(β)→ Φ(α)) −→ ∀α∈On Φ(α)
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Arithmetical semantics
Kripke semantics for GL

On arithmetical completeness

Kripke semantics
Soundness
Completeness

I A Kripke model for GL is a triple 〈W ,�,V 〉

I Where 〈W ,�〉 is a well-founded tree

I And V is a map, V : P→ P(W )

I V will tell us at which worlds a propositional variable p holds
I We extend truth at worlds to all formulas as usual:

I W ,w 
 ⊥ for no w ∈W ;
I W ,w 
 p iff w ∈ V (p);
I W ,w 
 A→ B iff (W ,w 
 B or not W ,w 
 A)
I W ,w 
 2A iff (∀v [w � v → v 
 A])
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 2A iff (∀v [w � v → v 
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Kripke semantics for GL
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Kripke semantics
Soundness
Completeness

I Now we have defined “A is true in some world w of W ”:
W ,w 
 A

I We also define “A is true in a model 〈W ,�,V 〉”:

〈W ,�,V 〉 |= A :⇐⇒ ∀w∈W W ,w 
 A

I W |= A for short

I And we define “A is true in a frame 〈W ,�〉”:

〈W ,�〉 |= A :⇐⇒ ∀V 〈W ,�,V 〉 |= A

I We also write W |= A for short

I Three notions of truth!
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Arithmetical semantics
Kripke semantics for GL

On arithmetical completeness

Kripke semantics
Soundness
Completeness

I We observe:

F |= Ax(GL) & GL ` A =⇒ F |= A

I Proof:

frame validity is closed under Modus Ponens and
Necessitation

I Application: GL 0 2p → p

I We shall formulate sufficient (and necessary) conditions for
F |= Ax(GL)
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Arithmetical semantics
Kripke semantics for GL

On arithmetical completeness

Kripke semantics
Soundness
Completeness

I The axioms 2(A→ B)→ (2A→ 2B) hold on any Kripke
frame, in particular, on tree-like, well-founded trees

I The axiom 2A→ 22A holds on all transitive frames

I Also, if a frame validates 2A→ 22A, then it must be
transitive
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Arithmetical semantics
Kripke semantics for GL

On arithmetical completeness

Kripke semantics
Soundness
Completeness

I If 〈W ,�〉 is well-founded and transitive, then

〈W ,�〉 |= Ax(GL)

I Proof: we only need to check Löb’s axiom.

I As � is well-founded, we can define for w ∈W

ord(w) := sup{ord(v) + 1 | w � v}

I sup ∅ = 0

I By transfinite induction on ord(w) we prove:

I 〈W ,�,V 〉,w 
 2(2A→ A)→ 2A for any w
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Arithmetical semantics
Kripke semantics for GL

On arithmetical completeness

Kripke semantics
Soundness
Completeness

I Some remarks:

I Dealing with well-foundedness within a decidable logic

I We can avoid the use of transfinite induction

I Recurrent theme:

2(2A→ A)→ 2A
versus

transfinite induction
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Arithmetical semantics
Kripke semantics for GL

On arithmetical completeness

Kripke semantics
Soundness
Completeness

I For
F |= Ax(GL)

it is sufficient that � is transitive and well-founded

I � is transitive and well-founded on F

I We shall now see: also necessary
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Kripke semantics for GL

On arithmetical completeness

Kripke semantics
Soundness
Completeness

I Theorem If 〈W ,�〉 |= Löb then � is transitive and
well-founded.

I Proof: We observed:

F |= Ax(GL) & GL ` A =⇒ F |= A

I Likewise, for any other modal logic L

F |= Ax(L) & L ` A =⇒ F |= A

I Löb proves 2A→ 22A

I So, if 〈W ,�〉 |= Löb, then � is transitive
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Arithmetical semantics
Kripke semantics for GL

On arithmetical completeness

Kripke semantics
Soundness
Completeness

I Theorem If 〈W ,�〉 |= Löb then � is transitive and
well-founded.

I Suppose � is transitive but ill-founded

I We’ll exhibit V so that an instance of Löb does not hold on
〈W ,�,V 〉

I Consider x0 � x1 � x2 � x3 � . . .
I Define

y ∈ V (p) :⇐⇒ y /∈ {x0, x1, x2, . . .}

I Now
〈W ,�,V 〉, x0 1 2(2p → p)→ 2p
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Arithmetical semantics
Kripke semantics for GL

On arithmetical completeness

Kripke semantics
Soundness
Completeness

I Soundness
GL ` A =⇒ F |= A

for any GL frame F

I Completeness:

∀GL frameF F |= A =⇒ GL ` A

also holds (Segerberg [1971])

I Actually we have completeness w.r.t. rooted finite trees

I A root is x so that ∀y (y 6= x → x � y)

I Application:
GL ` 2A ⇒ GL ` A
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Embedding Kripke models
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On the Solovay function

I Completeness: ∀f PA ` f (A) =⇒ GL ` A

I We shall prove: GL 0 A→ ∃f PA 0 f (A)

I How to get such sentences f (A)

I It took us already quite some effort to obtain one such
sentence Con(PA)!
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On the Solovay function

I We will embed Kripke models into arithmetic

I We fix a rooted tree 〈W ,�,V 〉, 1 0 A

I enumerate W := {1, 2, . . . , n}
I we assign to each i ∈W an arithmetical sentence λi that

“posseses the same algebraic properties as the worlds i ∈W ”

I PA ` λi → ¬λj for i 6= j ;
I PA ` λi →

∧
i�j ConPA(λj);

I PA ` λi → BewPA(p
∨

i�j λjq);

I By setting f (p) :=
∨

i
p λi we can prove Truth Lemma

I i 
 ψ =⇒ PA ` λi → f (ψ)
I Proof: By induction on ψ after induction building:

i 
 ¬ψ =⇒ PA ` λi → ¬f (ψ)

I If we can see (outside PA of course) that N |= ConPA(λ1) we
would be done
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On arithmetical completeness

Embedding Kripke models
Embedding a linear frame
On the Solovay function

I We can embed linear frames easily (ESSLLI 2003)

I Suppose we wish to embed 1 � 2 � 3 � . . . � n

I We can map i to Bewn+1−i
PA (p0 = 1q) ∧ Conn−i

PA (p1 = 1q)

I using arithmetical soundness of GL we can prove the three
properties

I Similarly, ConPA(λ1)↔ Conn+1
PA (p1 = 1q)

I Thus (outside PA)

N |= ConPA(λ1)
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Embedding Kripke models
Embedding a linear frame
On the Solovay function

I If the frame is not linear, an additional trick is needed for
N |= ConPA(λ1)

I Solovay (1976) achieves this in his beautiful proof by adding
an additional root 0 on top of the rest of the model.

I The λi will be constructed in a self-referential fashion

I Very much like the current European refugee regulations
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