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Transfinite provability logics
Worms

A very brief word on ordinals
The logics GLPΛ
A reduction to GLPω

I On ordering 〈W ,≺〉 is a well-order if

I ≺ is transitive: x ≺ y and y ≺ z implies x ≺ z
I ≺ is linear: x = y or x ≺ y or y ≺ x
I ≺ is well-founded on X : no infinite descending chain
. . . x3 ≺ x2 ≺ x1 ≺ x0 within X

under the axiom of choice equivalent to ”each non-empty
subset of X has a ≺-minimal element”

I Two order-types 〈W1,≺1〉 and 〈W2,≺2〉 are (order)
isomorphic whenever there is a bijection f : W1 →W2 with

x ≺1 y ⇔ f (x) ≺2 f (y).

I Ordinals can be seen as equivalence classes of well-orders
under order isomorphisms

I Calling the first infinite ordinal ω, let’s see some pictures of ω,
ω + ω = ω · 2, etc

In particular: 1 + ω 6= ω + 1
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I Theorem [Cantor]: Each ordinal α can be uniquely written
as

α := ωα1 + . . . ωαn

where α1 ≥ . . . ≥ αn.

I Note that 0 is denoted by the empty sum!
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Transfinite provability logics
Worms

A very brief word on ordinals
The logics GLPΛ
A reduction to GLPω

I Beklemishev introduced GLPΛ for Λ > ω

I GLPΛ: Contains one modality [α] for each α < Λ.

I Axioms:

[α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ) (α < Λ)
[α]([α]ϕ→ ϕ)→ [α]ϕ (α < Λ)
[α]ϕ→ [β]ϕ (α < β < Λ)
〈α〉ϕ→ [β]〈α〉ϕ (α < β < Λ)

I Rules: Modus ponens and Necessitation for all modalities

I Intended reading of [α]:

“provable in T together with all true
hyperarithmetic sentences of level α”
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Transfinite provability logics
Worms

A very brief word on ordinals
The logics GLPΛ
A reduction to GLPω

I In a sense GLPΛ is as easy/hard as is GLPω

I For some formula ϕ of GLPΛ, let α0 < α1 < . . . < αn be all
the modalities that occur in ϕ

I We call a map c : Λ→ ω a condensation for ϕ if

c(αi ) < c(αj) for i < j .

I ϕc denotes the “c-image” of ϕ

I Proposition If GLPΛ ` ϕ, then GLPω ` ϕc for some
condensation c for ϕ

I Proof: By induction on the length of the GLPΛ proof of ϕ
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A very brief word on ordinals
The logics GLPΛ
A reduction to GLPω

I For some formula ϕ of GLPΛ, let α0 < α1 < . . . < αn be all
the modalities that occur in ϕ

I We call the condensation of ϕ that maps αi 7→ i the ground
condensation

I By ϕ we denote the “image” of ϕ under the ground
condensation

I Thm: GLPΛ ` ϕ ⇐⇒ GLPω ` ϕ
I Proof: By semantical methods to be discussed later

I Corrolaries: decidability, PSPACE completeness,
interpolation, fixpoint theorem, etc.
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interpolation, fixpoint theorem, etc.
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Transfinite provability logics
Worms

Turing progressions
Mighty worms
Worms and Turing progressions
Basic worm manipulations

I Gödel 2: for sound recursive theories T that can code syntax:

I T 0 Con(T )

I Turing progressions:

I

T0 := T ;
Tα+1 := Tα + Con(Tα);
Tλ :=

⋃
α<λ Tα for limit λ.

I Turing progressions can be used for an ordinal analysis:

I “how often should I iterate a finitistic base theory T as to
approximate a target theory U: Tξ ≈ U”
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Transfinite provability logics
Worms

Turing progressions
Mighty worms
Worms and Turing progressions
Basic worm manipulations

I Poly-modal provability logics turn out to be suitably well
equipped to talk about Turing progressions

I We often not distinguish a modal formula and its
interpretation

I Already just the language with one modality [0] is expressive

I For n ∈ N we see Tn ≡ T + 3n
T>

I Transfinite progressions are not expressible in the modal
language with just one modal operator.

I However:

I Proposition: T + 〈n + 1〉T> is a Πn+1 conservative
extension of T + {〈n〉kT> | k ∈ ω}.
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Transfinite provability logics
Worms

Turing progressions
Mighty worms
Worms and Turing progressions
Basic worm manipulations

For Ordinal analyses and Turing progressions a particular interest
lies in GLP0

Λ: the closed fragment

Closed fragment: only considering formulas without propositional
variables
Just built up from > and ⊥ using modal and Boolean operators

Definition (Worms, Worm, Wormα)

By Worm we denote the set of worms of GLP which is inductively
defined as > ∈Worm and A ∈Worm⇒ 〈α〉A ∈Worm.

Similarly, we inductively define for each ordinal α the set of worms
Wormα where all ordinals are at least α as > ∈Wormα and
A ∈Wormα ∧ β ≥ α⇒ 〈β〉A ∈Wormα.
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Transfinite provability logics
Worms

Turing progressions
Mighty worms
Worms and Turing progressions
Basic worm manipulations

I Worms form the backbone of GLP0

I Each closed formula is provably equivalent to a Boolean
combination of worms

I GLP0
Λ is decidable if Λ is

I Decision procedure factors through the worms

I Various axioms can be restricted to worms

I The computation of a proof-theoretic ordinal is largely done
via worms

I Worms owe their name to the heroic worm battle
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Transfinite provability logics
Worms

Turing progressions
Mighty worms
Worms and Turing progressions
Basic worm manipulations

I Worms of GLPω are known to be useful for Turing
progressions:

I Proposition For each ordinal α < ε0 there is some
GLPω-worm A such that T + A is Π1 equivalent to Tα.

I To get generalizations of this lemma beyond ε0 one should
consider more than ω modalities.
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I Sloppy notations for worms:

I ω0ω,

I 〈ω〉0ω,

I or 〈ω〉〈0〉〈ω〉>.
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Turing progressions
Mighty worms
Worms and Turing progressions
Basic worm manipulations

Lemma

1. For worms A and B, GLP ` AB → A

2. For worms A and B, if β < α, then
GLP ` (〈α〉A ∧ 〈β〉B)↔ 〈α〉(A ∧ 〈β〉B);

3. If A ∈Wormα+1, then GLP ` A ∧ 〈α〉B ↔ AαB;
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Transfinite provability logics
Worms

Turing progressions
Mighty worms
Worms and Turing progressions
Basic worm manipulations

I ‘The axiom 〈α〉ψ → [β]〈α〉ψfor α < β, implies the existence
of many smaller worms’:

I GLP ` 〈1〉> → 〈0〉n> for any n ∈ ω
I But also GLP ` 〈1〉〈0〉〈1〉> → 〈0〉〈1〉>
I We will order the worms based on these sort of implications
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