Provability Logics and Applications Day 3 Polymodal logics

David Fernández Duque¹ and Joost J. Joosten²

1: Universidad de Sevilla;

2: Universitat de Barcelona

Monday 13-08-2012 ESSLLI Tutorial, Opole

A (1) > A (1) > A

A very brief word on ordinals The logics ${\rm GLP}_\Lambda$ A reduction to ${\rm GLP}_\omega$

▲□→ ▲圖→ ▲厘→ ▲厘→

æ

▶ On ordering $\langle W, \prec \rangle$ is a well-order if

David Fernández Duque¹ and Joost J. Joosten² Polymodal logics

A very brief word on ordinals The logics ${\rm GLP}_\Lambda$ A reduction to ${\rm GLP}_\omega$

イロン イヨン イヨン イヨン

- ▶ On ordering $\langle W, \prec \rangle$ is a well-order if
 - \prec is transitive: $x \prec y$ and $y \prec z$ implies $x \prec z$

A very brief word on ordinals The logics ${\rm GLP}_\Lambda$ A reduction to ${\rm GLP}_\omega$

イロン イヨン イヨン イヨン

- ▶ On ordering $\langle W, \prec \rangle$ is a well-order if
 - \prec is transitive: $x \prec y$ and $y \prec z$ implies $x \prec z$
 - \prec is linear: x = y or $x \prec y$ or $y \prec x$

 A very brief word on ordinals

 Worms
 The logics GLP_A

 A reduction to GLP_{ω}

- On ordering $\langle W, \prec \rangle$ is a well-order if
 - \prec is transitive: $x \prec y$ and $y \prec z$ implies $x \prec z$
 - \prec is linear: x = y or $x \prec y$ or $y \prec x$
 - ► \prec is well-founded on X: no infinite descending chain ... $x_3 \prec x_2 \prec x_1 \prec x_0$ within X

イロト イヨト イヨト イヨト

 $\begin{array}{c} \mbox{Transfinite provability logics} \\ \mbox{Worms} \end{array} \qquad \begin{array}{c} \mbox{A very brief word on ordinals} \\ \mbox{The logics } {\rm GLP}_{\Lambda} \\ \mbox{A reduction to } {\rm GLP}_{\omega} \end{array}$

- On ordering $\langle W, \prec \rangle$ is a well-order if
 - \prec is transitive: $x \prec y$ and $y \prec z$ implies $x \prec z$
 - \prec is linear: x = y or $x \prec y$ or $y \prec x$
 - ► \prec is well-founded on X: no infinite descending chain ... $x_3 \prec x_2 \prec x_1 \prec x_0$ within X

under the axiom of choice equivalent to "each non-empty subset of X has a \prec -minimal element"

イロン イヨン イヨン イヨン

 $\begin{array}{c} \mbox{Transfinite provability logics} \\ \mbox{Worms} \end{array} \qquad \begin{array}{c} \mbox{A very brief word on ordinals} \\ \mbox{The logics GLP}_{\Lambda} \\ \mbox{A reduction to GLP}_{\omega} \end{array}$

- On ordering $\langle W, \prec \rangle$ is a well-order if
 - \prec is transitive: $x \prec y$ and $y \prec z$ implies $x \prec z$
 - \prec is linear: x = y or $x \prec y$ or $y \prec x$
 - ✓ is well-founded on X: no infinite descending chain ... x₃ ≺ x₂ ≺ x₁ ≺ x₀ within X under the axiom of choice equivalent to "each non-empty subset of X has a ≺-minimal element"
- ► Two order-types (W₁, ≺₁) and (W₂, ≺₂) are (order) isomorphic whenever there is a bijection f : W₁ → W₂ with

$$x \prec_1 y \Leftrightarrow f(x) \prec_2 f(y).$$

イロト イヨト イヨト イヨト

 $\begin{array}{c} \mbox{Transfinite provability logics} \\ \mbox{Worms} \end{array} \qquad \begin{array}{c} \mbox{A very brief word on ordinals} \\ \mbox{The logics GLP}_{\Lambda} \\ \mbox{A reduction to GLP}_{\omega} \end{array}$

- On ordering $\langle W, \prec \rangle$ is a well-order if
 - \prec is transitive: $x \prec y$ and $y \prec z$ implies $x \prec z$
 - \prec is linear: x = y or $x \prec y$ or $y \prec x$
 - ✓ is well-founded on X: no infinite descending chain ... x₃ ≺ x₂ ≺ x₁ ≺ x₀ within X under the axiom of choice equivalent to "each non-empty subset of X has a ≺-minimal element"
- ► Two order-types (W₁, ≺₁) and (W₂, ≺₂) are (order) isomorphic whenever there is a bijection f : W₁ → W₂ with

$$x \prec_1 y \Leftrightarrow f(x) \prec_2 f(y).$$

イロン イヨン イヨン イヨン

2

 Ordinals can be seen as equivalence classes of well-orders under order isomorphisms

A very brief word on ordinals Transfinite provability logics

▶ On ordering $\langle W, \prec \rangle$ is a well-order if

▶ \prec is transitive: $x \prec y$ and $y \prec z$ implies $x \prec z$

•
$$\prec$$
 is linear: $x = y$ or $x \prec y$ or $y \prec x$

- \blacktriangleright \prec is well-founded on X: no infinite descending chain $\ldots x_3 \prec x_2 \prec x_1 \prec x_0$ within X under the axiom of choice equivalent to "each non-empty subset of X has a \prec -minimal element"
- ▶ Two order-types $\langle W_1, \prec_1 \rangle$ and $\langle W_2, \prec_2 \rangle$ are (order) isomorphic whenever there is a bijection $f: W_1 \rightarrow W_2$ with

$$x \prec_1 y \Leftrightarrow f(x) \prec_2 f(y).$$

Ordinals can be seen as equivalence classes of well-orders under order isomorphisms

• Calling the first infinite ordinal ω , let's see some pictures of ω , $\omega + \omega = \omega \cdot 2$. etc ・ロン ・回 と ・ ヨ と ・ ヨ と

 $\begin{array}{c} \mbox{Transfinite provability logics} \\ \mbox{Worms} \end{array} \qquad \begin{array}{c} \mbox{A very brief word on ordinals} \\ \mbox{The logics } \mbox{GLP}_{\Lambda} \\ \mbox{A reduction to } \mbox{GLP}_{\omega} \end{array}$

- On ordering $\langle W, \prec \rangle$ is a well-order if
 - \prec is transitive: $x \prec y$ and $y \prec z$ implies $x \prec z$
 - \prec is linear: x = y or $x \prec y$ or $y \prec x$
 - ✓ is well-founded on X: no infinite descending chain ... x₃ ≺ x₂ ≺ x₁ ≺ x₀ within X under the axiom of choice equivalent to "each non-empty subset of X has a ≺-minimal element"
- ► Two order-types (W₁, ≺₁) and (W₂, ≺₂) are (order) isomorphic whenever there is a bijection f : W₁ → W₂ with

$$x \prec_1 y \Leftrightarrow f(x) \prec_2 f(y).$$

 Ordinals can be seen as equivalence classes of well-orders under order isomorphisms

► Calling the first infinite ordinal ω , let's see some pictures of ω , $\omega + \omega = \omega \cdot 2$, etc In particular: $1 + \omega \neq \omega + 1$

3

Theorem [Cantor]: Each ordinal α can be uniquely written as

$$\alpha := \omega^{\alpha_1} + \dots \omega^{\alpha_n}$$

where $\alpha_1 \geq \ldots \geq \alpha_n$.

イロト イヨト イヨト イヨト

æ

Theorem [Cantor]: Each ordinal α can be uniquely written as

$$\alpha := \omega^{\alpha_1} + \dots \omega^{\alpha_n}$$

where $\alpha_1 \geq \ldots \geq \alpha_n$.

Note that 0 is denoted by the empty sum!

A very brief word on ordinals The logics GLP_{Λ} A reduction to GLP_{ω}

æ

\blacktriangleright Beklemishev introduced ${\sf GLP}_\Lambda$ for $\Lambda>\omega$

 $\begin{array}{c} \mbox{Transfinite provability logics}\\ \mbox{Worms} \end{array} \qquad \begin{array}{c} \mbox{A very brief word on ordinals}\\ \mbox{The logics } {\rm GLP}_{\Lambda}\\ \mbox{A reduction to } {\rm GLP}_{\omega} \end{array}$

- Beklemishev introduced GLP_{Λ} for $\Lambda > \omega$
- GLP_Λ: Contains one modality [α] for each α < Λ.</p>

・ロト ・回ト ・ヨト ・ヨト

 $\begin{array}{c} \mbox{Transfinite provability logics}\\ \mbox{Worms} \end{array} \qquad \begin{array}{c} \mbox{A very brief word on ordinals}\\ \mbox{The logics GLP}_{\Lambda}\\ \mbox{A reduction to GLP}_{\omega} \end{array}$

- Beklemishev introduced GLP_{Λ} for $\Lambda > \omega$
- GLP_A: Contains one modality [α] for each $\alpha < \Lambda$.
- Axioms:

・ロン ・回と ・ヨン ・ヨン

- Beklemishev introduced GLP_{Λ} for $\Lambda > \omega$
- GLP_Λ: Contains one modality [α] for each α < Λ.
- Axioms:

$$[\alpha](\varphi \to \psi) \to ([\alpha]\varphi \to [\alpha]\psi) \qquad (\alpha < \Lambda)$$

・ロン ・回と ・ヨン ・ヨン

- Beklemishev introduced GLP_{Λ} for $\Lambda > \omega$
- GLP_Λ: Contains one modality [α] for each α < Λ.</p>
- Axioms:

$$\begin{split} & [\alpha](\varphi \to \psi) \to ([\alpha]\varphi \to [\alpha]\psi) & (\alpha < \Lambda) \\ & [\alpha]([\alpha]\varphi \to \varphi) \to [\alpha]\varphi & (\alpha < \Lambda) \end{split}$$

・ロン ・回と ・ヨン ・ヨン

- Beklemishev introduced GLP_{Λ} for $\Lambda > \omega$
- GLP_Λ: Contains one modality [α] for each α < Λ.</p>
- Axioms:

$$\begin{array}{ll} [\alpha](\varphi \to \psi) \to ([\alpha]\varphi \to [\alpha]\psi) & (\alpha < \Lambda) \\ [\alpha]([\alpha]\varphi \to \varphi) \to [\alpha]\varphi & (\alpha < \Lambda) \\ [\alpha]\varphi \to [\beta]\varphi & (\alpha < \beta < \Lambda) \end{array}$$

・ロン ・回と ・ヨン ・ヨン

- ▶ Beklemishev introduced GLP_{Λ} for $\Lambda > \omega$
- GLP_A: Contains one modality [α] for each $\alpha < \Lambda$.
- Axioms:

$$\begin{split} & [\alpha](\varphi \to \psi) \to ([\alpha]\varphi \to [\alpha]\psi) & (\alpha < \Lambda) \\ & [\alpha]([\alpha]\varphi \to \varphi) \to [\alpha]\varphi & (\alpha < \Lambda) \\ & [\alpha]\varphi \to [\beta]\varphi & (\alpha < \beta < \Lambda) \\ & \langle \alpha \rangle \varphi \to [\beta] \langle \alpha \rangle \varphi & (\alpha < \beta < \Lambda) \end{split}$$

・ロン ・回と ・ヨン ・ヨン

- Beklemishev introduced GLP_{Λ} for $\Lambda > \omega$
- GLP_Λ: Contains one modality [α] for each α < Λ.</p>
- Axioms:

$$\begin{split} & [\alpha](\varphi \to \psi) \to ([\alpha]\varphi \to [\alpha]\psi) & (\alpha < \Lambda) \\ & [\alpha]([\alpha]\varphi \to \varphi) \to [\alpha]\varphi & (\alpha < \Lambda) \\ & [\alpha]\varphi \to [\beta]\varphi & (\alpha < \beta < \Lambda) \\ & \langle \alpha \rangle \varphi \to [\beta] \langle \alpha \rangle \varphi & (\alpha < \beta < \Lambda) \end{split}$$

<ロ> (日) (日) (日) (日) (日)

æ

Rules: Modus ponens and Necessitation for all modalities

 $\begin{array}{c} \mbox{Transfinite provability logics}\\ \mbox{Worms} \end{array} \qquad \begin{array}{c} \mbox{A very brief word on ordinals}\\ \mbox{The logics } {\rm GLP}_{\Lambda}\\ \mbox{A reduction to } {\rm GLP}_{\omega} \end{array}$

- Beklemishev introduced GLP_{Λ} for $\Lambda > \omega$
- GLP_Λ: Contains one modality [α] for each α < Λ.</p>
- Axioms:

$$\begin{split} & [\alpha](\varphi \to \psi) \to ([\alpha]\varphi \to [\alpha]\psi) & (\alpha < \Lambda) \\ & [\alpha]([\alpha]\varphi \to \varphi) \to [\alpha]\varphi & (\alpha < \Lambda) \\ & [\alpha]\varphi \to [\beta]\varphi & (\alpha < \beta < \Lambda) \\ & \langle \alpha \rangle \varphi \to [\beta] \langle \alpha \rangle \varphi & (\alpha < \beta < \Lambda) \end{split}$$

イロン イヨン イヨン イヨン

æ

Rules: Modus ponens and Necessitation for all modalities
 Intended reading of [α]:

 $\begin{array}{c} \mbox{Transfinite provability logics}\\ \mbox{Worms} \end{array} \qquad \begin{array}{c} \mbox{A very brief word on ordinals}\\ \mbox{The logics } {\rm GLP}_{\Lambda}\\ \mbox{A reduction to } {\rm GLP}_{\omega} \end{array}$

- Beklemishev introduced GLP_{Λ} for $\Lambda > \omega$
- GLP_Λ: Contains one modality [α] for each α < Λ.</p>
- Axioms:

$$\begin{split} & [\alpha](\varphi \to \psi) \to ([\alpha]\varphi \to [\alpha]\psi) & (\alpha < \Lambda) \\ & [\alpha]([\alpha]\varphi \to \varphi) \to [\alpha]\varphi & (\alpha < \Lambda) \\ & [\alpha]\varphi \to [\beta]\varphi & (\alpha < \beta < \Lambda) \\ & \langle \alpha \rangle \varphi \to [\beta] \langle \alpha \rangle \varphi & (\alpha < \beta < \Lambda) \end{split}$$

- Rules: Modus ponens and Necessitation for all modalities
- Intended reading of [α]: "provable in T together with all true hyperarithmetic sentences of level α"

イロン イヨン イヨン イヨン

A very brief word on ordinal: The logics GLP_A A reduction to GLP_ω

< □ > < □ > < □ > < □ > < □ > .

æ

 \blacktriangleright In a sense ${\sf GLP}_\Lambda$ is as easy/hard as is ${\sf GLP}_\omega$

Transfinite provability logics Worms	A very brief word on ordinals The logics GLP_{Λ} A reduction to GLP_{ω}
---	--

- In a sense GLP_{Λ} is as easy/hard as is GLP_{ω}
- For some formula φ of GLP_Λ, let α₀ < α₁ < ... < α_n be all the modalities that occur in φ

A⊒ ▶ ∢ ∃

Transfinite provability logics	A very brief word on ordinals The logics ${\rm GLP}_{\Lambda}$
Worms	A reduction to ${\rm GLP}_{\omega}$

- In a sense GLP_Λ is as easy/hard as is GLP_ω
- For some formula φ of GLP_Λ, let α₀ < α₁ < ... < α_n be all the modalities that occur in φ
- We call a map $c : \Lambda \to \omega$ a *condensation* for φ if

$$c(\alpha_i) < c(\alpha_j)$$
 for $i < j$.

- In a sense GLP_{Λ} is as easy/hard as is GLP_{ω}
- For some formula φ of GLP_Λ, let α₀ < α₁ < ... < α_n be all the modalities that occur in φ
- We call a map $c : \Lambda \to \omega$ a *condensation* for φ if

$$c(\alpha_i) < c(\alpha_j)$$
 for $i < j$.

<ロ> (日) (日) (日) (日) (日)

• φ^c denotes the "*c*-image" of φ

 A very brief word on ordinals

 Transfinite provability logics
 The logics GLP $_{\Lambda}$

 Worms
 A reduction to GLP $_{\omega}$

- In a sense GLP_Λ is as easy/hard as is GLP_ω
- For some formula φ of GLP_Λ, let α₀ < α₁ < ... < α_n be all the modalities that occur in φ
- We call a map $c : \Lambda \to \omega$ a *condensation* for φ if

$$c(\alpha_i) < c(\alpha_j)$$
 for $i < j$.

イロン イヨン イヨン イヨン

- φ^c denotes the "*c*-image" of φ
- Proposition If GLP_Λ ⊢ φ, then GLP_ω ⊢ φ^c for some condensation c for φ

 A very brief word on ordinals

 Transfinite provability logics
 The logics GLP $_{\Lambda}$

 Worms
 A reduction to GLP $_{\omega}$

- In a sense GLP_{Λ} is as easy/hard as is GLP_{ω}
- For some formula φ of GLP_Λ, let α₀ < α₁ < ... < α_n be all the modalities that occur in φ
- We call a map $c : \Lambda \to \omega$ a *condensation* for φ if

$$c(\alpha_i) < c(\alpha_j)$$
 for $i < j$.

- φ^c denotes the "*c*-image" of φ
- Proposition If GLP_Λ ⊢ φ, then GLP_ω ⊢ φ^c for some condensation c for φ
- **Proof**: By induction on the length of the GLP_A proof of φ

イロン イヨン イヨン イヨン

 $\begin{array}{c} \mbox{Transfinite provability logics} \\ \mbox{Worms} \end{array} \begin{array}{l} \mbox{A very brief word on ordinals} \\ \mbox{The logics } \mbox{GLP}_{\Lambda} \\ \mbox{A reduction to } \mbox{GLP}_{\omega} \end{array}$

For some formula φ of GLP_Λ, let α₀ < α₁ < ... < α_n be all the modalities that occur in φ

・ロト ・回ト ・ヨト ・ヨト

- For some formula φ of GLP_Λ, let α₀ < α₁ < ... < α_n be all the modalities that occur in φ
- We call the condensation of φ that maps $\alpha_i \mapsto i$ the ground condensation

<ロ> (日) (日) (日) (日) (日)

- For some formula φ of GLP_Λ, let α₀ < α₁ < ... < α_n be all the modalities that occur in φ
- We call the condensation of φ that maps $\alpha_i \mapsto i$ the ground condensation

イロン イヨン イヨン イヨン

2

► By \(\overline{\varphi}\) we denote the "image" of \(\varphi\) under the ground condensation

- For some formula φ of GLP_Λ, let α₀ < α₁ < ... < α_n be all the modalities that occur in φ
- We call the condensation of φ that maps $\alpha_i \mapsto i$ the ground condensation

イロン イ部ン イヨン イヨン 三日

- ► By \(\overline{\varphi}\) we denote the "image" of \(\varphi\) under the ground condensation
- ► **Thm**: $\operatorname{GLP}_{\Lambda} \vdash \varphi \iff \operatorname{GLP}_{\omega} \vdash \overline{\varphi}$

- For some formula φ of GLP_Λ, let α₀ < α₁ < ... < α_n be all the modalities that occur in φ
- We call the condensation of φ that maps $\alpha_i \mapsto i$ the ground condensation

イロト イヨト イヨト イヨト

- ► By \(\overline{\varphi}\) we denote the "image" of \(\varphi\) under the ground condensation
- ▶ **Thm**: $\operatorname{GLP}_{\Lambda} \vdash \varphi \iff \operatorname{GLP}_{\omega} \vdash \overline{\varphi}$
- Proof: By semantical methods to be discussed later

- For some formula φ of GLP_Λ, let α₀ < α₁ < ... < α_n be all the modalities that occur in φ
- We call the condensation of φ that maps $\alpha_i \mapsto i$ the ground condensation

イロン イ部ン イヨン イヨン 三日

- ► By \(\overline{\varphi}\) we denote the "image" of \(\varphi\) under the ground condensation
- ▶ **Thm**: $\text{GLP}_{\Lambda} \vdash \varphi \iff \text{GLP}_{\omega} \vdash \overline{\varphi}$
- Proof: By semantical methods to be discussed later
- Corrolaries: decidability, PSPACE completeness, interpolation, fixpoint theorem, etc.

・ロト ・回ト ・ヨト ・ヨト

æ

▶ Gödel 2: for sound recursive theories *T* that can code syntax:

・ロト ・回ト ・ヨト ・ヨト

æ

Gödel 2: for sound recursive theories T that can code syntax:
T ⊬ Con(T)

- ► Gödel 2: for sound recursive theories *T* that can code syntax:
- ► $T \nvDash Con(T)$
- Turing progressions:

- ► Gödel 2: for sound recursive theories *T* that can code syntax:
- ► $T \nvDash Con(T)$
- Turing progressions:

► Gödel 2: for sound recursive theories *T* that can code syntax:

・ロン ・回と ・ヨン ・ヨン

æ

► $T \nvDash Con(T)$

Turing progressions:

 $T_0 := T;$

► Gödel 2: for sound recursive theories *T* that can code syntax:

イロト イヨト イヨト イヨト

æ

► $T \nvDash Con(T)$

►

Turing progressions:

$$\begin{array}{rcl} T_0 & := & T; \\ T_{\alpha+1} & := & T_{\alpha} + \operatorname{Con}(T_{\alpha}); \end{array}$$

- ► Gödel 2: for sound recursive theories *T* that can code syntax:
- ► $T \nvDash Con(T)$

►

Turing progressions:

$$\begin{array}{lll} T_0 & := & T; \\ T_{\alpha+1} & := & T_{\alpha} + \operatorname{Con}(T_{\alpha}); \\ T_{\lambda} & := & \bigcup_{\alpha < \lambda} T_{\alpha} & \text{ for limit } \lambda. \end{array}$$

イロト イヨト イヨト イヨト

- ► Gödel 2: for sound recursive theories *T* that can code syntax:
- ► $T \nvDash Con(T)$

Turing progressions:

$$\begin{array}{lll} T_0 & := & T; \\ T_{\alpha+1} & := & T_{\alpha} + \operatorname{Con}(T_{\alpha}); \\ T_{\lambda} & := & \bigcup_{\alpha < \lambda} T_{\alpha} & \text{ for limit } \lambda. \end{array}$$

イロト イヨト イヨト イヨト

æ

► Turing progressions can be used for an ordinal analysis:

- ► Gödel 2: for sound recursive theories *T* that can code syntax:
- ► $T \nvDash Con(T)$

►

Turing progressions:

<ロ> <同> <同> <同> < 同>

- Turing progressions can be used for an ordinal analysis:
- ► "how often should I iterate a finitistic base theory T as to approximate a target theory U: $T_{\mathcal{E}} \approx U$ "

æ

 Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions

- Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions
- We often not distinguish a modal formula and its interpretation

- Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions
- We often not distinguish a modal formula and its interpretation
- ► Already just the language with one modality [0] is expressive

- ∢ ⊒ →

- Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions
- We often not distinguish a modal formula and its interpretation
- ► Already just the language with one modality [0] is expressive

- ∢ ⊒ →

• For
$$n \in \mathbb{N}$$
 we see $T_n \equiv T + \diamondsuit_T^n \top$

- Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions
- We often not distinguish a modal formula and its interpretation
- ► Already just the language with one modality [0] is expressive

・ロト ・回ト ・ヨト ・ヨト

- For $n \in \mathbb{N}$ we see $T_n \equiv T + \diamondsuit_T^n \top$
- Transfinite progressions are not expressible in the modal language with just one modal operator.

- Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions
- We often not distinguish a modal formula and its interpretation
- ► Already just the language with one modality [0] is expressive

・ロン ・回と ・ヨン・

- For $n \in \mathbb{N}$ we see $T_n \equiv T + \diamondsuit_T^n \top$
- Transfinite progressions are not expressible in the modal language with just one modal operator.
- However:

- Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions
- We often not distinguish a modal formula and its interpretation
- ► Already just the language with one modality [0] is expressive
- For $n \in \mathbb{N}$ we see $T_n \equiv T + \diamondsuit_T^n \top$
- Transfinite progressions are not expressible in the modal language with just one modal operator.
- ► However:
- ▶ **Proposition:** $T + \langle n+1 \rangle_T \top$ is a \prod_{n+1} conservative extension of $T + \{\langle n \rangle_T^k \top \mid k \in \omega\}$.

(ロ) (同) (E) (E) (E)

For Ordinal analyses and Turing progressions a particular interest lies in GLP^0_Λ : the closed fragment

イロト イヨト イヨト イヨト

For Ordinal analyses and Turing progressions a particular interest lies in ${\sf GLP}^0_\Lambda$: the closed fragment Closed fragment: only considering formulas without propositional variables

For Ordinal analyses and Turing progressions a particular interest lies in GLP^0_{Λ} : the closed fragment

Closed fragment: only considering formulas without propositional variables

Just built up from \top and \bot using modal and Boolean operators

For Ordinal analyses and Turing progressions a particular interest lies in GLP^0_{Λ} : the closed fragment

Closed fragment: only considering formulas without propositional variables

Just built up from \top and \bot using modal and Boolean operators

Definition (Worms, Worm, Worm_{α})

By Worm we denote the set of *worms* of GLP which is inductively defined as $\top \in$ Worm and $A \in$ Worm $\Rightarrow \langle \alpha \rangle A \in$ Worm.

イロト イポト イヨト イヨト

For Ordinal analyses and Turing progressions a particular interest lies in GLP^0_{Λ} : the closed fragment

Closed fragment: only considering formulas without propositional variables

Just built up from \top and \bot using modal and Boolean operators

Definition (Worms, Worm, Worm_{α})

By Worm we denote the set of *worms* of GLP which is inductively defined as $\top \in$ Worm and $A \in$ Worm $\Rightarrow \langle \alpha \rangle A \in$ Worm.

Similarly, we inductively define for each ordinal α the set of worms $\operatorname{Worm}_{\alpha}$ where all ordinals are at least α as $\top \in \operatorname{Worm}_{\alpha}$ and $A \in \operatorname{Worm}_{\alpha} \land \beta \ge \alpha \Rightarrow \langle \beta \rangle A \in \operatorname{Worm}_{\alpha}$.

イロン イ部ン イヨン イヨン 三日

< □ > < □ > < □ > < □ > < □ > .

æ

▶ Worms form the backbone of GLP⁰

- ▶ Worms form the backbone of GLP⁰
- Each closed formula is provably equivalent to a Boolean combination of worms

- Worms form the backbone of GLP⁰
- Each closed formula is provably equivalent to a Boolean combination of worms
- GLP^0_{Λ} is decidable if Λ is

・ロト ・回ト ・ヨト

∃ >

- ▶ Worms form the backbone of GLP⁰
- Each closed formula is provably equivalent to a Boolean combination of worms
- GLP^0_{Λ} is decidable if Λ is
- Decision procedure factors through the worms

・ロト ・回ト ・ヨト

- Worms form the backbone of GLP⁰
- Each closed formula is provably equivalent to a Boolean combination of worms
- GLP^0_{Λ} is decidable if Λ is
- Decision procedure factors through the worms
- Various axioms can be restricted to worms

- Worms form the backbone of GLP⁰
- Each closed formula is provably equivalent to a Boolean combination of worms
- GLP^0_{Λ} is decidable if Λ is
- Decision procedure factors through the worms
- Various axioms can be restricted to worms
- The computation of a proof-theoretic ordinal is largely done via worms

- ▶ Worms form the backbone of GLP⁰
- Each closed formula is provably equivalent to a Boolean combination of worms
- GLP^0_{Λ} is decidable if Λ is
- Decision procedure factors through the worms
- Various axioms can be restricted to worms
- The computation of a proof-theoretic ordinal is largely done via worms
- ► Worms owe their name to the heroic *worm battle*

・ロト ・日本 ・ヨト ・ヨト

æ

► Worms of GLP_{\u03c6} are known to be useful for Turing progressions:

- ► Worms of GLP_{\u03c6} are known to be useful for Turing progressions:
- Proposition For each ordinal α < ε₀ there is some GLP_ω-worm A such that T + A is Π₁ equivalent to T_α.

- ► Worms of GLP_{\u03c6} are known to be useful for Turing progressions:
- Proposition For each ordinal α < ε₀ there is some GLP_ω-worm A such that T + A is Π₁ equivalent to T_α.
- To get generalizations of this lemma beyond ε₀ one should consider more than ω modalities.

Turing progressions
Mighty worms
Worms and Turing progressions
Basic worm manipulations

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

Sloppy notations for worms:

Turing progressions
Mighty worms
Worms and Turing progressions
Basic worm manipulations

< 口 > < 回 > < 回 > < 回 > < 回 > <

- Sloppy notations for worms:
- ► ω0ω,

	Turing progressions
Fransfinite provability logics	Mighty worms
Worms	Worms and Turing progressions
	Basic worm manipulations
	Dusic worth manipulations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Sloppy notations for worms:
- ▶ ω0ω,
 ♦ ⟨ω⟩0ω,

	Turing progressions
ransfinite provability logics	Mighty worms
Worms	Worms and Turing progressions
	Basic worm manipulations

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

- Sloppy notations for worms:
- ► ω0ω,
- $\langle \omega \rangle 0 \omega$,
- or $\langle \omega \rangle \langle 0 \rangle \langle \omega \rangle \top$.

Transfinite provability logics Mighty worms Worms Worms Basic worm manipulations

・ロト ・回ト ・ヨト ・ヨト

æ

Lemma

1. For worms A and B, $\mathsf{GLP} \vdash AB \rightarrow A$

æ

Lemma

- 1. For worms A and B, $\mathsf{GLP} \vdash AB \rightarrow A$
- 2. For worms A and B, if $\beta < \alpha$, then GLP $\vdash (\langle \alpha \rangle A \land \langle \beta \rangle B) \leftrightarrow \langle \alpha \rangle (A \land \langle \beta \rangle B);$

æ

Lemma

- 1. For worms A and B, $\mathsf{GLP} \vdash AB \rightarrow A$
- 2. For worms A and B, if $\beta < \alpha$, then GLP $\vdash (\langle \alpha \rangle A \land \langle \beta \rangle B) \leftrightarrow \langle \alpha \rangle (A \land \langle \beta \rangle B);$
- 3. If $A \in Worm_{\alpha+1}$, then $GLP \vdash A \land \langle \alpha \rangle B \leftrightarrow A \alpha B$;

▶ 'The axiom $\langle \alpha \rangle \psi \rightarrow [\beta] \langle \alpha \rangle \psi$ for $\alpha < \beta$, implies the existence of many smaller worms':

・ロ・ ・ 日・ ・ 日・ ・ 日・

▶ 'The axiom $\langle \alpha \rangle \psi \rightarrow [\beta] \langle \alpha \rangle \psi$ for $\alpha < \beta$, implies the existence of many smaller worms':

・ロ・ ・ 日・ ・ 日・ ・ 日・

•
$$\mathsf{GLP} \vdash \langle 1 \rangle \top \rightarrow \langle 0 \rangle^n \top$$
 for any $n \in \omega$

▶ 'The axiom $\langle \alpha \rangle \psi \rightarrow [\beta] \langle \alpha \rangle \psi$ for $\alpha < \beta$, implies the existence of many smaller worms':

イロト イヨト イヨト イヨト

æ

•
$$\mathsf{GLP} \vdash \langle 1 \rangle \top \rightarrow \langle 0 \rangle^n \top$$
 for any $n \in \omega$

• But also $\mathsf{GLP} \vdash \langle 1 \rangle \langle 0 \rangle \langle 1 \rangle \top \rightarrow \langle 0 \rangle \langle 1 \rangle \top$

- ▶ 'The axiom $\langle \alpha \rangle \psi \rightarrow [\beta] \langle \alpha \rangle \psi$ for $\alpha < \beta$, implies the existence of many smaller worms':
- $\mathsf{GLP} \vdash \langle 1 \rangle \top \rightarrow \langle 0 \rangle^n \top$ for any $n \in \omega$
- But also $\mathsf{GLP} \vdash \langle 1 \rangle \langle 0 \rangle \langle 1 \rangle \top \rightarrow \langle 0 \rangle \langle 1 \rangle \top$
- We will order the worms based on these sort of implications

イロン イヨン イヨン イヨン

2