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Turing progressions and orderings on worms
Arithmetic, Reflection and GLP

The reduction property
A consistency proof for PA

Turing progressions

I Recall:

I

T0 := T ;
Tα+1 := Tα + Con(Tα);
Tλ :=

⋃
α<λ Tα for limit λ.

I Proposition For each ordinal α < ε0 there is some
GLPω-worm A such that T + A is Π1 equivalent to Tα.

I In this lecture: compute order-types of worms
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Turing progressions and orderings on worms
Arithmetic, Reflection and GLP

The reduction property
A consistency proof for PA

I Definition: RFNΠn(T ) := {2Tπ(ẋ)→ π(x) | π ∈ Πn}

I Proposition : RFNΠn(T ) can be written as a single formula
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Turing progressions and orderings on worms
Arithmetic, Reflection and GLP

The reduction property
A consistency proof for PA

I Theorem : EA ` 〈n〉T> ≡ RFNΠn+1(T )

I Proof : Reason in EA and suppose both 〈n〉T> and 2Tπ.

Now ¬π, yields a contradiction by provable
Σn+1-completeness for [n]T .

I For the other direction, assume for a contradiction that [n]T⊥.

I Then for some π ∈ Π0
n with TrueΠn(π), we have that [0]T+π⊥

I Whence [0]T¬π thus TrueΠn+1(¬π) by reflection

I The latter contradicts the assumption that TrueΠn(π)
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I Theorem : RFNΠn+2(EA) ≡ IΣn

I Proof : Let σ(y , z) ∈ Σn

I As 2EA∀z
(
σ(0, z) ∧ ∀y (σ(y , z)→ σ(y + 1, z))→ σ(ẋ , z)

)
I Reflection yields:

∀z
(
σ(0, z) ∧ ∀y (σ(y , z)→ σ(y + 1, z))→ σ(ẋ , z)

)
I For the other direction use RFNΠn+2(EA) ≡ RFNΣn+1(EA)

I Thus consider a proof Π of some σ ∈ Σn+1

I Go to a cut-free proof Π′ and by Σn+1-induction on the length
of Π′ prove TrueΣn+1(σ)

I By standard techniques in proof-theory this can be lowered to
Σn induction
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Turing progressions and orderings on worms
Arithmetic, Reflection and GLP

The reduction property
A consistency proof for PA

I RFNΠn+2(EA) ≡ IΣn

I This uses cut-elimination, so only provable once
super-exponentiation is provably total

I EA+ is defined as EA + supexp

I Thus, EA+ ` RFNΠn+1(EA) ≡ IΣn

I We also saw EA ` 〈n〉EA> ≡ RFNΠn+1(EA)

I Thus, EA+ ` 〈n + 1〉EA> ≡ IΣn

I See how expressible the closed fragment is!
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Turing progressions and orderings on worms
Arithmetic, Reflection and GLP

The reduction property
A consistency proof for PA

Fundamental sequences
The reduction property and its formalization

I We already saw that

EA + 〈1〉EA> ≡Π1 EA + {〈0〉n> | n ∈ ω}

I This can be generalized
I Fundamental sequences for worms:

I Q0
n(ϕ) := 〈n〉ϕ

I Qk+1
n (ϕ) := 〈n〉(ϕ ∧ Qk

n (ϕ))

I Thus, Q0
n(ψ) = 〈n〉ψ

I Q1
n(ψ) = 〈n〉(ψ ∧ 〈n〉ψ)

I Q2
n(ψ) = 〈n〉(ψ ∧ 〈n〉(ψ ∧ 〈n〉ψ))

I etc
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I For any worm A and numbers k and n we have Qk
n (A) is

again a worm

I Moreover:
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n (A)

for any numbers k and n

I That is
Qk

n (A) <0 〈n + 1〉A

for any numbers k and n
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Arithmetic, Reflection and GLP

The reduction property
A consistency proof for PA

Proof-theoretical ordinals
A consistency proof for PA

I The Π0
1 proof theoretical ordinal of most theories T coincides

with other proof theoretical ordinals

I Gentzen’s Π1
1: minimal “natural” ordinal along which

transfinite induction suffices to prove Con(T )

coincides almost
always with supremum of order-types provably total

I Π0
2 ordinals: in terms of provable total recursive functions

I However, Π0
1 are much more fine-grained

I |PA + Con(PA)|Π0
1

= ε0 · 2
I whereas |PA|Π0

1
= ε0
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A consistency proof for PA

I Let 〈Γ,≺〉 be a natural arithmetical representation in EA of
some ordinal

I We denote by TI[X , Γ] the collection of transfinite induction
axioms for all formulas in X :

I

∀y
(
∀ y ′≺y ϕ(~x , y ′)→ ϕ(~x , y)

)
→ ∀y ϕ(~x , y)

I with ϕ(~x , y) ∈ X
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The reduction property
A consistency proof for PA

Proof-theoretical ordinals
A consistency proof for PA

I Theorem: EA+ + TI[Π0
1, ε0] ` Con(PA)

I Proof: We reason in EA+

I and observe that we have
PA ⊆ EA + {〈1〉EA>, 〈2〉EA>, 〈3〉EA>, 〈4〉EA>, . . .}

I Consequently,
Con(EA + {〈1〉EA>, 〈2〉EA>, 〈3〉EA>, 〈4〉EA>, . . .})→
Con(PA)

I We show Con(EA + {〈1〉EA>, 〈2〉EA>, 〈3〉EA>, 〈4〉EA>, . . .})
I For this, it suffices to show

∀n 〈0〉EA〈n〉EA>

I Let us drop the subscripts EA in the remainder of this proof
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The reduction property
A consistency proof for PA
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A consistency proof for PA

I It suffices to show ∀n 〈0〉〈n〉>

I By transfinite induction

I It is known that 〈Sω, <0〉 is provably in EA isomorphic to
〈ε0, <〉

I Thus we have access to transfinite induction over 〈Sω, <0〉
I We shall prove something slightly stronger:

I

∀A∈Sω 〈0〉A
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I We distinguish three cases:

1. A = > in which case we have 〈0〉> as EA+ proves the
consistency of EA.

2. A is of the form 〈0〉B for some worm B.

Easy, as EA+ ` RFNΣ0
1
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3. A is of the form 〈n + 1〉B for some worm B and natural
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I We have proven ∀A∈Sω (∀A′<0A 〈0〉A′ → 〈0〉A)

I By transfinite induction: ∀A∈Sω 〈0〉A
I Thus certainly ∀n 〈0〉〈n〉>
I Which we saw was equivalent to

Con(EA + {〈1〉>, 〈2〉>, 〈3〉>, 〈4〉>, . . .}) (∗)

I Whereas provably PA ⊆ EA + {〈1〉>, 〈2〉>, 〈3〉>, 〈4〉>, . . .}
I we had Con(EA + {〈1〉>, 〈2〉>, 〈3〉>, 〈4〉>, . . .})→ Con(PA)

I Which combined with (∗) gives us our result:

Con(PA)
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