Provability Logics and Applications Day 5 Ordinal analysis

David Fernández Duque¹ and Joost J. Joosten²

1: Universidad de Sevilla;

2: Universitat de Barcelona

Monday 13-08-2012 ESSLLI Tutorial, Opole

Turing progressions

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Turing progressions

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

æ

Recall:

Turing progressions

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

æ

Recall:

 $T_0 := T;$

Turing progressions

▲□→ ▲圖→ ▲厘→ ▲厘→

æ

Recall:

 $\begin{array}{rcl} T_0 & := & T; \\ T_{\alpha+1} & := & T_{\alpha} + \operatorname{Con}(T_{\alpha}); \end{array}$

Turing progressions

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

æ

► Recall:

$$\begin{array}{lll} T_0 & := & T; \\ T_{\alpha+1} & := & T_{\alpha} + \operatorname{Con}(T_{\alpha}); \\ T_{\lambda} & := & \bigcup_{\alpha < \lambda} T_{\alpha} & \text{ for limit } \lambda. \end{array}$$

Turing progressions

・ロト ・回ト ・ヨト ・ヨト

3

► Recall:

- $\begin{array}{lll} T_0 & := & T; \\ T_{\alpha+1} & := & T_{\alpha} + \operatorname{Con}(T_{\alpha}); \\ T_{\lambda} & := & \bigcup_{\alpha < \lambda} T_{\alpha} & \text{ for limit } \lambda. \end{array}$
- Proposition For each ordinal α < ε₀ there is some GLP_ω-worm A such that T + A is Π₁ equivalent to T_α.

Turing progressions

イロン イヨン イヨン イヨン

3

► Recall:

- Proposition For each ordinal α < ε₀ there is some GLP_ω-worm A such that T + A is Π₁ equivalent to T_α.
- In this lecture: compute order-types of worms

▶ **Definition**: $\mathsf{RFN}_{\Pi_n}(T) := \{\Box_T \pi(\dot{x}) \to \pi(x) \mid \pi \in \Pi_n\}$

- **Definition**: $\mathsf{RFN}_{\Pi_n}(T) := \{\Box_T \pi(\dot{x}) \to \pi(x) \mid \pi \in \Pi_n\}$
- **Proposition** : $RFN_{\Pi_n}(T)$ can be written as a single formula

イロト イヨト イヨト イヨト

• Theorem : EA $\vdash \langle n \rangle_T \top \equiv \mathsf{RFN}_{\Pi_{n+1}}(T)$

David Fernández Duque¹ and Joost J. Joosten² Ordinal analysis

• Theorem : $EA \vdash \langle n \rangle_T \top \equiv \mathsf{RFN}_{\Pi_{n+1}}(T)$

▶ **Proof** : Reason in EA and suppose both $\langle n \rangle_T \top$ and $\Box_T \pi$.

イロト イヨト イヨト イヨト

- Theorem : $EA \vdash \langle n \rangle_T \top \equiv \mathsf{RFN}_{\Pi_{n+1}}(T)$
- Proof : Reason in EA and suppose both ⟨n⟩_T ⊤ and □_Tπ. Now ¬π, yields a contradiction by provable Σ_{n+1}-completeness for [n]_T.

- Theorem : $EA \vdash \langle n \rangle_T \top \equiv \mathsf{RFN}_{\Pi_{n+1}}(T)$
- Proof : Reason in EA and suppose both ⟨n⟩_T ⊤ and □_Tπ. Now ¬π, yields a contradiction by provable Σ_{n+1}-completeness for [n]_T.
- For the other direction, assume for a contradiction that $[n]_T \perp$.

<ロ> <同> <同> < 同> < 三> <

- Theorem : $EA \vdash \langle n \rangle_T \top \equiv \mathsf{RFN}_{\Pi_{n+1}}(T)$
- Proof : Reason in EA and suppose both ⟨n⟩_T ⊤ and □_Tπ. Now ¬π, yields a contradiction by provable Σ_{n+1}-completeness for [n]_T.
- For the other direction, assume for a contradiction that $[n]_T \perp$.
- ▶ Then for some $\pi \in \Pi_n^0$ with True_{П_n}(π), we have that [0]_{T+ π}⊥

- Theorem : $EA \vdash \langle n \rangle_T \top \equiv \mathsf{RFN}_{\Pi_{n+1}}(T)$
- Proof: Reason in EA and suppose both ⟨n⟩_T ⊤ and □_Tπ. Now ¬π, yields a contradiction by provable Σ_{n+1}-completeness for [n]_T.
- For the other direction, assume for a contradiction that $[n]_T \perp$.
- ▶ Then for some $\pi \in \Pi_n^0$ with True_{П_n}(π), we have that [0]_{T+ π}⊥

イロン イヨン イヨン イヨン

• Whence $[0]_T \neg \pi$ thus $\text{True}_{\Pi_{n+1}}(\neg \pi)$ by reflection

- Theorem : $EA \vdash \langle n \rangle_T \top \equiv \mathsf{RFN}_{\Pi_{n+1}}(T)$
- Proof : Reason in EA and suppose both ⟨n⟩_T⊤ and □_Tπ. Now ¬π, yields a contradiction by provable Σ_{n+1}-completeness for [n]_T.
- For the other direction, assume for a contradiction that $[n]_T \perp$.
- ▶ Then for some $\pi \in \Pi_n^0$ with True_{П_n}(π), we have that [0]_{T+ π}⊥

イロン イヨン イヨン イヨン

- Whence $[0]_T \neg \pi$ thus $\text{True}_{\Pi_{n+1}}(\neg \pi)$ by reflection
- The latter contradicts the assumption that $True_{\Pi_n}(\pi)$

• Theorem : $\mathsf{RFN}_{\Pi_{n+2}}(\mathsf{EA}) \equiv I\Sigma_n$

- Theorem : $\mathsf{RFN}_{\Pi_{n+2}}(\mathrm{EA}) \equiv I\Sigma_n$
- Proof : Let $\sigma(y, z) \in \Sigma_n$

・ロト ・回ト ・ヨト ・ヨト

- Theorem : $\mathsf{RFN}_{\Pi_{n+2}}(\mathrm{EA}) \equiv I\Sigma_n$
- Proof : Let $\sigma(y, z) \in \Sigma_n$
- ► As $\square_{\text{EA}} \forall z \Big(\sigma(0, z) \land \forall y \; (\sigma(y, z) \rightarrow \sigma(y + 1, z)) \rightarrow \sigma(\dot{x}, z) \Big)$

イロン イヨン イヨン イヨン

- Theorem : $\mathsf{RFN}_{\Pi_{n+2}}(\mathrm{EA}) \equiv I\Sigma_n$
- Proof : Let $\sigma(y, z) \in \Sigma_n$
- ► As $\square_{\text{EA}} \forall z \Big(\sigma(0, z) \land \forall y \ (\sigma(y, z) \rightarrow \sigma(y + 1, z)) \rightarrow \sigma(\dot{x}, z) \Big)$

イロト イヨト イヨト イヨト

Reflection yields:

$$\forall z \ \Big(\sigma(0,z) \land \forall y \ (\sigma(y,z)
ightarrow \sigma(y+1,z))
ightarrow \sigma(\dot{x},z) \Big)$$

- Theorem : $\mathsf{RFN}_{\Pi_{n+2}}(\mathrm{EA}) \equiv I\Sigma_n$
- Proof : Let $\sigma(y, z) \in \Sigma_n$
- As $\Box_{\mathrm{EA}} \forall z \Big(\sigma(0, z) \land \forall y \ (\sigma(y, z) \to \sigma(y + 1, z)) \to \sigma(\dot{x}, z) \Big)$
- Reflection yields:
 - $\forall z \ \Big(\sigma(\mathbf{0}, z) \land \forall y \ \big(\sigma(y, z) \to \sigma(y + 1, z) \big) \to \sigma(\dot{x}, z) \Big)$
- ► For the other direction use $\mathsf{RFN}_{\Pi_{n+2}}(\mathrm{EA}) \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathrm{EA})$

(4月) イヨト イヨト

- Theorem : $\mathsf{RFN}_{\Pi_{n+2}}(\mathrm{EA}) \equiv I\Sigma_n$
- Proof : Let $\sigma(y, z) \in \Sigma_n$
- As $\Box_{\mathrm{EA}} \forall z \Big(\sigma(0, z) \land \forall y \ (\sigma(y, z) \to \sigma(y + 1, z)) \to \sigma(\dot{x}, z) \Big)$
- Reflection yields:
 - $\forall z \ \Big(\sigma(0,z) \land \forall y \ (\sigma(y,z)
 ightarrow \sigma(y+1,z))
 ightarrow \sigma(\dot{x},z) \Big)$
- ► For the other direction use $\mathsf{RFN}_{\Pi_{n+2}}(\mathrm{EA}) \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathrm{EA})$

- 4 同 6 4 日 6 4 日 6

• Thus consider a proof Π of some $\sigma \in \Sigma_{n+1}$

- Theorem : $\mathsf{RFN}_{\Pi_{n+2}}(\mathrm{EA}) \equiv I\Sigma_n$
- Proof : Let $\sigma(y, z) \in \Sigma_n$
- As $\Box_{\mathrm{EA}} \forall z \Big(\sigma(\mathbf{0}, z) \land \forall y \; (\sigma(y, z) \to \sigma(y + 1, z)) \to \sigma(\dot{x}, z) \Big)$
- Reflection yields:

$$\forall z \ \left(\sigma(0,z) \land \forall y \ (\sigma(y,z) \to \sigma(y+1,z)) \to \sigma(\dot{x},z)\right)$$

- ► For the other direction use $\mathsf{RFN}_{\Pi_{n+2}}(\mathrm{EA}) \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathrm{EA})$
- Thus consider a proof Π of some $\sigma \in \Sigma_{n+1}$
- Go to a cut-free proof Π' and by Σ_{n+1}-induction on the length of Π' prove True_{Σn+1}(σ)

イロン イヨン イヨン イヨン

- Theorem : $\mathsf{RFN}_{\Pi_{n+2}}(\mathrm{EA}) \equiv I\Sigma_n$
- Proof : Let $\sigma(y, z) \in \Sigma_n$
- As $\Box_{\mathrm{EA}} \forall z \Big(\sigma(\mathbf{0}, z) \land \forall y \; (\sigma(y, z) \to \sigma(y + 1, z)) \to \sigma(\dot{x}, z) \Big)$
- Reflection yields:

$$\forall z \ \left(\sigma(0,z) \land \forall y \ (\sigma(y,z) \to \sigma(y+1,z)) \to \sigma(\dot{x},z)\right)$$

- ► For the other direction use $\mathsf{RFN}_{\Pi_{n+2}}(\mathrm{EA}) \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathrm{EA})$
- Thus consider a proof Π of some $\sigma \in \Sigma_{n+1}$
- Go to a cut-free proof Π' and by Σ_{n+1}-induction on the length of Π' prove True_{Σn+1}(σ)
- ► By standard techniques in proof-theory this can be lowered to Σ_n induction

<ロ> (四) (四) (三) (三) (三)

► $\mathsf{RFN}_{\Pi_{n+2}}(\mathrm{EA}) \equiv I\Sigma_n$

- ► $\mathsf{RFN}_{\Pi_{n+2}}(\mathrm{EA}) \equiv I\Sigma_n$
- This uses cut-elimination, so only provable once super-exponentiation is provably total

イロト イヨト イヨト イヨト

- ► $\mathsf{RFN}_{\Pi_{n+2}}(\mathrm{EA}) \equiv I\Sigma_n$
- This uses cut-elimination, so only provable once super-exponentiation is provably total
- EA^+ is defined as EA + supexp

イロト イヨト イヨト イヨト

- ► $\mathsf{RFN}_{\Pi_{n+2}}(\mathrm{EA}) \equiv I\Sigma_n$
- This uses cut-elimination, so only provable once super-exponentiation is provably total
- EA^+ is defined as EA + supexp
- ► Thus, $EA^+ \vdash \mathsf{RFN}_{\Pi_{n+1}}(EA) \equiv I\Sigma_n$

- ► $\mathsf{RFN}_{\Pi_{n+2}}(\mathrm{EA}) \equiv I\Sigma_n$
- This uses cut-elimination, so only provable once super-exponentiation is provably total
- EA^+ is defined as EA + supexp
- ► Thus, $\mathrm{EA}^+ \vdash \mathsf{RFN}_{\Pi_{n+1}}(\mathrm{EA}) \equiv I\Sigma_n$
- We also saw $EA \vdash \langle n \rangle_{EA} \top \equiv \mathsf{RFN}_{\prod_{n+1}}(EA)$

- ► $\mathsf{RFN}_{\Pi_{n+2}}(\mathrm{EA}) \equiv I\Sigma_n$
- This uses cut-elimination, so only provable once super-exponentiation is provably total
- EA^+ is defined as EA + supexp
- ► Thus, $\mathrm{EA}^+ \vdash \mathsf{RFN}_{\Pi_{n+1}}(\mathrm{EA}) \equiv I\Sigma_n$
- We also saw $EA \vdash \langle n \rangle_{EA} \top \equiv \mathsf{RFN}_{\prod_{n+1}}(EA)$
- Thus, $EA^+ \vdash \langle n+1 \rangle_{EA} \top \equiv I \Sigma_n$

- ► $\mathsf{RFN}_{\Pi_{n+2}}(\mathrm{EA}) \equiv I\Sigma_n$
- This uses cut-elimination, so only provable once super-exponentiation is provably total
- EA^+ is defined as EA + supexp
- ► Thus, $\mathrm{EA}^+ \vdash \mathsf{RFN}_{\Pi_{n+1}}(\mathrm{EA}) \equiv I\Sigma_n$
- We also saw $EA \vdash \langle n \rangle_{EA} \top \equiv \mathsf{RFN}_{\Pi_{n+1}}(EA)$
- Thus, $EA^+ \vdash \langle n+1 \rangle_{EA} \top \equiv I \Sigma_n$
- See how expressible the closed fragment is!

Fundamental sequences The reduction property and its formalization

イロン 不同と 不同と 不同と

æ

We already saw that

$\mathbf{EA} + \langle \mathbf{1} \rangle_{\mathbf{EA}} \top \equiv_{\Pi_1} \mathbf{EA} + \{ \langle \mathbf{0} \rangle^n \top \mid n \in \omega \}$

David Fernández Duque¹ and Joost J. Joosten² Ordinal analysis

Fundamental sequences The reduction property and its formalization

イロン イヨン イヨン イヨン

æ

We already saw that

```
\mathbf{EA} + \langle \mathbf{1} \rangle_{\mathbf{EA}} \top \equiv_{\Pi_1} \mathbf{EA} + \{ \langle \mathbf{0} \rangle^n \top \mid n \in \omega \}
```

This can be generalized

Fundamental sequences The reduction property and its formalization

イロト イヨト イヨト イヨト

æ

We already saw that

```
\mathbf{EA} + \langle \mathbf{1} \rangle_{\mathbf{EA}} \top \equiv_{\Pi_1} \mathbf{EA} + \{ \langle \mathbf{0} \rangle^n \top \mid n \in \omega \}
```

- This can be generalized
- Fundamental sequences for worms:

Fundamental sequences The reduction property and its formalization

イロト イヨト イヨト イヨト

æ

We already saw that

```
\mathbf{EA} + \langle \mathbf{1} \rangle_{\mathbf{EA}} \top \equiv_{\Pi_1} \mathbf{EA} + \{ \langle \mathbf{0} \rangle^n \top \mid n \in \omega \}
```

- This can be generalized
- Fundamental sequences for worms:

•
$$Q_n^0(\varphi) := \langle n \rangle \varphi$$
Fundamental sequences The reduction property and its formalization

イロト イヨト イヨト イヨト

æ

We already saw that

```
\mathrm{EA} + \langle 1 \rangle_{\mathrm{EA}} \top \equiv_{\Pi_1} \mathrm{EA} + \{ \langle 0 \rangle^n \top \mid n \in \omega \}
```

- This can be generalized
- Fundamental sequences for worms:

•
$$Q_n^0(\varphi) := \langle n \rangle \varphi$$

$$\blacktriangleright \ Q_n^{k+1}(\varphi) \ := \ \langle n \rangle (\varphi \land Q_n^k(\varphi))$$

Fundamental sequences The reduction property and its formalization

< 17 > 4

-

We already saw that

$$\mathbf{EA} + \langle 1 \rangle_{\mathbf{EA}} \top \equiv_{\Pi_1} \mathbf{EA} + \{ \langle 0 \rangle^n \top \mid n \in \omega \}$$

- This can be generalized
- Fundamental sequences for worms:

$$\begin{array}{l} \bullet \quad Q_n^0(\varphi) := \langle n \rangle \varphi \\ \bullet \quad Q_n^{k+1}(\varphi) := \langle n \rangle (\varphi \wedge Q_n^k(\varphi)) \end{array}$$

• Thus,
$$Q_n^0(\psi) = \langle n \rangle \psi$$

Fundamental sequences The reduction property and its formalization

イロト イヨト イヨト イヨト

æ

We already saw that

$$\mathbf{EA} + \langle \mathbf{1} \rangle_{\mathbf{EA}} \top \equiv_{\Pi_1} \mathbf{EA} + \{ \langle \mathbf{0} \rangle^n \top \mid n \in \omega \}$$

- This can be generalized
- Fundamental sequences for worms:

$$\begin{array}{l} \bullet \quad Q_n^0(\varphi) := \langle n \rangle \varphi \\ \bullet \quad Q_n^{k+1}(\varphi) := \langle n \rangle (\varphi \wedge Q_n^k(\varphi)) \end{array}$$

• Thus,
$$Q^0_n(\psi) = \langle n \rangle \psi$$

 $\blacktriangleright Q_n^1(\psi) = \langle n \rangle (\psi \land \langle n \rangle \psi)$

Fundamental sequences The reduction property and its formalization

・ロト ・回ト ・ヨト

-∢ ≣ ≯

æ

We already saw that

$$\mathrm{EA} + \langle 1 \rangle_{\mathrm{EA}} \top \equiv_{\Pi_1} \mathrm{EA} + \{ \langle 0 \rangle^n \top \mid n \in \omega \}$$

- This can be generalized
- Fundamental sequences for worms:

$$\begin{array}{l} \bullet \quad Q_n^0(\varphi) := \langle n \rangle \varphi \\ \bullet \quad Q_n^{k+1}(\varphi) := \langle n \rangle (\varphi \wedge Q_n^k(\varphi)) \end{array}$$

• Thus,
$$Q_n^0(\psi) = \langle n \rangle \psi$$

$$\blacktriangleright \ Q_n^1(\psi) = \langle n \rangle (\psi \land \langle n \rangle \psi)$$

$$\blacktriangleright \ Q_n^2(\psi) = \langle n \rangle (\psi \land \langle n \rangle (\psi \land \langle n \rangle \psi))$$

Fundamental sequences The reduction property and its formalization

・ロト ・回ト ・ヨト

_∢ ≣ ≯

æ

We already saw that

$$\mathbf{EA} + \langle 1 \rangle_{\mathbf{EA}} \top \equiv_{\Pi_1} \mathbf{EA} + \{ \langle 0 \rangle^n \top \mid n \in \omega \}$$

- This can be generalized
- Fundamental sequences for worms:

$$\begin{array}{l} \bullet \quad Q_n^0(\varphi) := \langle n \rangle \varphi \\ \bullet \quad Q_n^{k+1}(\varphi) := \langle n \rangle (\varphi \wedge Q_n^k(\varphi)) \end{array}$$

• Thus,
$$Q_n^0(\psi) = \langle n \rangle \psi$$

$$\blacktriangleright \ Q_n^1(\psi) = \langle n \rangle (\psi \land \langle n \rangle \psi)$$

$$\blacktriangleright \ Q_n^2(\psi) = \langle n \rangle (\psi \land \langle n \rangle (\psi \land \langle n \rangle \psi))$$

etc

Fundamental sequences The reduction property and its formalization

æ

It not hard to see that:

イロト イヨト イヨト イヨト

- It not hard to see that:
- ► For any worm A and numbers k and n we have Q^k_n(A) is again a worm

- It not hard to see that:
- ► For any worm A and numbers k and n we have Q^k_n(A) is again a worm
- Moreover:

$$\mathsf{GLP} \vdash \langle n+1 \rangle A \rightarrow \langle 0 \rangle Q_n^k(A)$$

・ロト ・回ト ・ヨト

< ∃⇒

for any numbers k and n

- It not hard to see that:
- For any worm A and numbers k and n we have $Q_n^k(A)$ is again a worm
- Moreover:

$$\mathsf{GLP} \vdash \langle n+1 \rangle A \to \langle 0 \rangle Q_n^k(A)$$

for any numbers k and n

That is

 $Q_n^k(A) <_0 \langle n+1 \rangle A$

for any numbers k and n

We already saw that

```
\mathbf{EA} + \langle \mathbf{1} \rangle_{\mathbf{EA}} \top \equiv_{\Pi_1} \mathbf{EA} + \{ \langle \mathbf{0} \rangle^n \mathbf{EA} \top \mid n \in \omega \}
```

<ロ> (日) (日) (日) (日) (日)

We already saw that

 $\mathrm{EA} + \langle 1 \rangle_{\mathrm{EA}} \top \equiv_{\Pi_1} \mathrm{EA} + \{ \langle 0 \rangle^n \mathrm{EA} \top \mid n \in \omega \}$

This can be generalized:

$$\mathbf{EA} + \langle n+1 \rangle_{\mathbf{EA}} A \equiv_{\Pi_1} \mathbf{EA} + \{ Q_n^k(A) \mid k \in \omega \}$$

イロン イヨン イヨン イヨン

We already saw that

 $\mathrm{EA} + \langle 1 \rangle_{\mathrm{EA}} \top \equiv_{\Pi_1} \mathrm{EA} + \{ \langle 0 \rangle^n \mathrm{EA} \top \mid n \in \omega \}$

This can be generalized:

$$\mathbf{EA} + \langle n+1 \rangle_{\mathbf{EA}} A \equiv_{\Pi_1} \mathbf{EA} + \{ Q_n^k(A) \mid k \in \omega \}$$

イロト イヨト イヨト イヨト

æ

▶ Moreover, provable in EA⁺!

We already saw that

 $\mathbf{EA} + \langle 1 \rangle_{\mathbf{EA}} \top \equiv_{\Pi_1} \mathbf{EA} + \{ \langle 0 \rangle^n \mathbf{EA} \top \mid n \in \omega \}$

This can be generalized:

$$\mathbf{EA} + \langle n+1 \rangle_{\mathbf{EA}} A \equiv_{\Pi_1} \mathbf{EA} + \{ Q_n^k(A) \mid k \in \omega \}$$

- ▶ Moreover, provable in EA⁺!
- Thus both theories are equi-consistent:

 $\mathrm{EA}^{+} \vdash \langle 0 \rangle_{\mathrm{EA}} \langle n+1 \rangle_{\mathrm{EA}} A \iff \forall k \ \langle 0 \rangle_{\mathrm{EA}} Q_{n}^{k}(A)$

イロト イポト イヨト イヨト

We already saw that

 $\mathbf{EA} + \langle 1 \rangle_{\mathbf{EA}} \top \equiv_{\Pi_1} \mathbf{EA} + \{ \langle 0 \rangle^n \mathbf{EA} \top \mid n \in \omega \}$

This can be generalized:

$$\mathbf{EA} + \langle n+1 \rangle_{\mathbf{EA}} A \equiv_{\Pi_1} \mathbf{EA} + \{ Q_n^k(A) \mid k \in \omega \}$$

- ► Moreover, provable in EA⁺!
- Thus both theories are equi-consistent:

 $\mathrm{EA}^+ \vdash \langle 0 \rangle_{\mathrm{EA}} \langle n+1 \rangle_{\mathrm{EA}} A \iff \forall k \ \langle 0 \rangle_{\mathrm{EA}} Q_n^k(A)$

・ロト ・日本 ・モート ・モート

This is called the formalized reduction property

 $\begin{array}{l} \textbf{Proof-theoretical ordinals} \\ \textbf{A consistency proof for } \mathrm{PA} \end{array}$

イロト イヨト イヨト イヨト

æ

 The Π⁰₁ proof theoretical ordinal of most theories *T* coincides with other proof theoretical ordinals

- The Π⁰₁ proof theoretical ordinal of most theories *T* coincides with other proof theoretical ordinals
- Gentzen's Π₁¹: minimal "natural" ordinal along which transfinite induction suffices to prove Con(T)

- The Π⁰₁ proof theoretical ordinal of most theories T coincides with other proof theoretical ordinals
- Gentzen's Π₁¹: minimal "natural" ordinal along which transfinite induction suffices to prove Con(T) coincides almost always with supremum of order-types provably total

- The Π⁰₁ proof theoretical ordinal of most theories T coincides with other proof theoretical ordinals
- Gentzen's Π₁¹: minimal "natural" ordinal along which transfinite induction suffices to prove Con(T) coincides almost always with supremum of order-types provably total
- Π_2^0 ordinals: in terms of provable total recursive functions

イロト イポト イラト イ

- The Π⁰₁ proof theoretical ordinal of most theories *T* coincides with other proof theoretical ordinals
- Gentzen's Π₁¹: minimal "natural" ordinal along which transfinite induction suffices to prove Con(T) coincides almost always with supremum of order-types provably total
- Π_2^0 ordinals: in terms of provable total recursive functions
- However, Π_1^0 are much more fine-grained

イロト イポト イラト イ

- The Π⁰₁ proof theoretical ordinal of most theories *T* coincides with other proof theoretical ordinals
- Gentzen's Π₁¹: minimal "natural" ordinal along which transfinite induction suffices to prove Con(T) coincides almost always with supremum of order-types provably total
- Π_2^0 ordinals: in terms of provable total recursive functions
- However, Π_1^0 are much more fine-grained

$$|\mathbf{PA} + \mathsf{Con}(\mathbf{PA})|_{\Pi_1^0} = \varepsilon_0 \cdot 2$$

イロン イヨン イヨン イヨン

- The Π⁰₁ proof theoretical ordinal of most theories T coincides with other proof theoretical ordinals
- Gentzen's Π₁¹: minimal "natural" ordinal along which transfinite induction suffices to prove Con(T) coincides almost always with supremum of order-types provably total
- Π_2^0 ordinals: in terms of provable total recursive functions
- However, Π_1^0 are much more fine-grained
- ► $|PA + Con(PA)|_{\Pi_1^0} = \varepsilon_0 \cdot 2$
- ▶ whereas |PA|_{Π⁰₁} = ε₀

Proof-theoretical ordinals A consistency proof for PA

・ロト ・回ト ・ヨト ・ヨト

æ

 \blacktriangleright Let $\langle \Gamma, \prec \rangle$ be a natural arithmetical representation in ${\rm EA}$ of some ordinal

<ロ> (日) (日) (日) (日) (日)

- \blacktriangleright Let $\langle \Gamma, \prec \rangle$ be a natural arithmetical representation in ${\rm EA}$ of some ordinal
- We denote by TI[X, Γ] the collection of transfinite induction axioms for all formulas in X:

<ロ> (日) (日) (日) (日) (日)

- \blacktriangleright Let $\langle \Gamma, \prec \rangle$ be a natural arithmetical representation in ${\rm EA}$ of some ordinal
- We denote by TI[X, Γ] the collection of transfinite induction axioms for all formulas in X:

$$\forall y \ \left(\forall \ y' {\prec} y \ \varphi(\vec{x}, y') \rightarrow \varphi(\vec{x}, y)\right) \ \rightarrow \ \forall y \ \varphi(\vec{x}, y)$$

イロト イヨト イヨト イヨト

æ

- \blacktriangleright Let $\langle \Gamma, \prec \rangle$ be a natural arithmetical representation in ${\rm EA}$ of some ordinal
- We denote by TI[X, Γ] the collection of transfinite induction axioms for all formulas in X:

$$\forall y \ \bigl(\forall \, y' {\prec} y \ \varphi(\vec{x}, y') \to \varphi(\vec{x}, y)\bigr) \ \to \ \forall y \ \varphi(\vec{x}, y)$$

• with $\varphi(\vec{x}, y) \in X$

Proof-theoretical ordinals A consistency proof for PA

・ロト ・回ト ・ヨト ・ヨト

æ

▶ **Theorem**: $EA^+ + TI[\Pi_1^0, \varepsilon_0] \vdash Con(PA)$

Proof-theoretical ordinals A consistency proof for PA

イロト イヨト イヨト イヨト

- ▶ **Theorem**: $EA^+ + TI[\Pi_1^0, \varepsilon_0] \vdash Con(PA)$
- ▶ Proof: We reason in EA⁺

Proof-theoretical ordinals A consistency proof for PA

- Theorem: $EA^+ + TI[\Pi_1^0, \varepsilon_0] \vdash Con(PA)$
- ▶ Proof: We reason in EA⁺
- ► and observe that we have $PA \subseteq EA + \{\langle 1 \rangle_{EA} \top, \langle 2 \rangle_{EA} \top, \langle 3 \rangle_{EA} \top, \langle 4 \rangle_{EA} \top, \ldots \}$

Proof-theoretical ordinals A consistency proof for PA

- ► **Theorem**: $EA^+ + TI[\Pi_1^0, \varepsilon_0] \vdash Con(PA)$
- ▶ Proof: We reason in EA⁺
- ► and observe that we have $PA \subseteq EA + \{\langle 1 \rangle_{EA} \top, \langle 2 \rangle_{EA} \top, \langle 3 \rangle_{EA} \top, \langle 4 \rangle_{EA} \top, \ldots \}$
- ► Consequently, $Con(EA + \{\langle 1 \rangle_{EA} \top, \langle 2 \rangle_{EA} \top, \langle 3 \rangle_{EA} \top, \langle 4 \rangle_{EA} \top, \ldots\}) \rightarrow Con(PA)$

Proof-theoretical ordinals A consistency proof for PA

- ► **Theorem**: $EA^+ + TI[\Pi_1^0, \varepsilon_0] \vdash Con(PA)$
- ▶ Proof: We reason in EA⁺
- ► and observe that we have $PA \subseteq EA + \{\langle 1 \rangle_{EA} \top, \langle 2 \rangle_{EA} \top, \langle 3 \rangle_{EA} \top, \langle 4 \rangle_{EA} \top, \ldots \}$
- ► Consequently, $Con(EA + \{\langle 1 \rangle_{EA} \top, \langle 2 \rangle_{EA} \top, \langle 3 \rangle_{EA} \top, \langle 4 \rangle_{EA} \top, \ldots\}) \rightarrow$ Con(PA)
- ► We show Con(EA + { $\langle 1 \rangle_{EA} \top, \langle 2 \rangle_{EA} \top, \langle 3 \rangle_{EA} \top, \langle 4 \rangle_{EA} \top, ...$ })

Proof-theoretical ordinals A consistency proof for PA

- ► **Theorem**: $EA^+ + TI[\Pi_1^0, \varepsilon_0] \vdash Con(PA)$
- ▶ Proof: We reason in EA⁺
- ► and observe that we have $PA \subseteq EA + \{\langle 1 \rangle_{EA} \top, \langle 2 \rangle_{EA} \top, \langle 3 \rangle_{EA} \top, \langle 4 \rangle_{EA} \top, \ldots \}$
- ► Consequently, $Con(EA + \{\langle 1 \rangle_{EA} \top, \langle 2 \rangle_{EA} \top, \langle 3 \rangle_{EA} \top, \langle 4 \rangle_{EA} \top, \ldots\}) \rightarrow$ Con(PA)
- We show Con(EA + { $\langle 1 \rangle_{EA} \top, \langle 2 \rangle_{EA} \top, \langle 3 \rangle_{EA} \top, \langle 4 \rangle_{EA} \top, \dots$ })
- For this, it suffices to show

$$\forall n \ \langle 0 \rangle_{\rm EA} \langle n \rangle_{\rm EA} \top$$

イロト イポト イヨト イヨト

Proof-theoretical ordinals A consistency proof for PA

- ► **Theorem**: $EA^+ + TI[\Pi_1^0, \varepsilon_0] \vdash Con(PA)$
- ▶ Proof: We reason in EA⁺
- ► and observe that we have $PA \subseteq EA + \{\langle 1 \rangle_{EA} \top, \langle 2 \rangle_{EA} \top, \langle 3 \rangle_{EA} \top, \langle 4 \rangle_{EA} \top, \ldots \}$
- ► Consequently, $Con(EA + \{\langle 1 \rangle_{EA} \top, \langle 2 \rangle_{EA} \top, \langle 3 \rangle_{EA} \top, \langle 4 \rangle_{EA} \top, \ldots\}) \rightarrow$ Con(PA)
- We show Con(EA + { $\langle 1 \rangle_{EA} \top, \langle 2 \rangle_{EA} \top, \langle 3 \rangle_{EA} \top, \langle 4 \rangle_{EA} \top, \dots$ })
- For this, it suffices to show

$$\forall n \langle 0 \rangle_{\rm EA} \langle n \rangle_{\rm EA} \top$$

 \blacktriangleright Let us drop the subscripts $_{\rm EA}$ in the remainder of this proof

Proof-theoretical ordinals A consistency proof for PA

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

▶ It suffices to show $\forall n \langle 0 \rangle \langle n \rangle \top$

Proof-theoretical ordinals A consistency proof for PA

イロト イヨト イヨト イヨト

- It suffices to show $\forall n \langle 0 \rangle \langle n \rangle \top$
- By transfinite induction

Proof-theoretical ordinals A consistency proof for PA

イロト イヨト イヨト イヨト

- It suffices to show $\forall n \langle 0 \rangle \langle n \rangle \top$
- By transfinite induction
- ▶ It is known that $\langle S^{\omega},<_0\rangle$ is provably in EA isomorphic to $\langle \varepsilon_0,<\rangle$

イロト イヨト イヨト イヨト

- It suffices to show $\forall n \langle 0 \rangle \langle n \rangle \top$
- By transfinite induction
- ▶ It is known that $\langle S^{\omega}, <_0 \rangle$ is provably in EA isomorphic to $\langle \varepsilon_0, < \rangle$
- ▶ Thus we have access to transfinite induction over $\langle S^{\omega}, <_0
 angle$
イロト イヨト イヨト イヨト

- It suffices to show $\forall n \langle 0 \rangle \langle n \rangle \top$
- By transfinite induction
- ▶ It is known that $\langle S^{\omega}, <_0 \rangle$ is provably in EA isomorphic to $\langle \varepsilon_0, < \rangle$
- ▶ Thus we have access to transfinite induction over $\langle S^{\omega}, <_0
 angle$
- We shall prove something slightly stronger:

イロト イヨト イヨト イヨト

- It suffices to show $\forall n \langle 0 \rangle \langle n \rangle \top$
- By transfinite induction
- ▶ It is known that $\langle S^{\omega}, <_0 \rangle$ is provably in EA isomorphic to $\langle \varepsilon_0, < \rangle$
- ▶ Thus we have access to transfinite induction over $\langle S^{\omega}, <_0
 angle$
- We shall prove something slightly stronger:

$$\forall A {\in} S^{\omega} \langle 0 \rangle A$$

Proof-theoretical ordinals A consistency proof for PA

æ

 $\blacktriangleright \forall A \in S^{\omega} \langle 0 \rangle A$

Proof-theoretical ordinals A consistency proof for PA

・ロト ・回ト ・ヨト ・ヨト

- $\blacktriangleright \forall A \in S^{\omega} \langle 0 \rangle A$
- By transfinite induction over $\langle S^{\omega}, <_0
 angle$

- $\blacktriangleright \forall A \in S^{\omega} \langle 0 \rangle A$
- By transfinite induction over $\langle S^{\omega}, <_0
 angle$
- Remember:

$$\forall y \ \left(\forall \ y' \prec y \ \varphi(\vec{x}, y') \rightarrow \varphi(\vec{x}, y)\right) \ \rightarrow \ \forall y \ \varphi(\vec{x}, y)$$

・ロト ・回ト ・ヨト ・ヨト

- $\blacktriangleright \forall A \in S^{\omega} \langle 0 \rangle A$
- By transfinite induction over $\langle S^{\omega}, <_0
 angle$
- Remember:

$$\forall y \ \big(\forall \ y' {\prec} y \ \varphi(\vec{x}, y') \rightarrow \varphi(\vec{x}, y)\big) \ \rightarrow \ \forall y \ \varphi(\vec{x}, y)$$

Our instantiation:

$$\forall A \!\!\in\!\! S^{\omega} \ (\forall A' \!\!<_0 \!\!A \ \langle 0 \rangle A' \rightarrow \langle 0 \rangle A) \ \rightarrow \ \forall A \!\!\in\!\! S^{\omega} \ \langle 0 \rangle A$$

イロト イヨト イヨト イヨト

- $\blacktriangleright \forall A \in S^{\omega} \langle 0 \rangle A$
- By transfinite induction over $\langle S^{\omega}, <_0
 angle$
- Remember:

$$\forall y \ \left(\forall \ y' {\prec} y \ \varphi(\vec{x}, y') \rightarrow \varphi(\vec{x}, y)\right) \ \rightarrow \ \forall y \ \varphi(\vec{x}, y)$$

Our instantiation:

$$\forall A \!\!\in\! S^{\omega} (\forall A' \!\!<_0 \!\!A \langle 0 \rangle A' \to \langle 0 \rangle A) \to \forall A \!\!\in\! S^{\omega} \langle 0 \rangle A$$

Thus, we set out to prove

$$\forall A \in S^{\omega} \ (\forall A' <_0 A \langle 0 \rangle A' \to \langle 0 \rangle A)$$

イロト イヨト イヨト イヨト

Proof-theoretical ordinals A consistency proof for PA

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Э.

▶ Need to prove
$$\forall A \in S^{\omega} (\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A)$$

David Fernández Duque¹ and Joost J. Joosten² Ordinal analysis

Proof-theoretical ordinals A consistency proof for PA

イロン イヨン イヨン イヨン

- ▶ Need to prove $\forall A \in S^{\omega} (\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A)$
- ▶ We distinguish three cases:

Proof-theoretical ordinals A consistency proof for PA

イロト イポト イヨト イヨト

- ▶ Need to prove $\forall A \in S^{\omega} (\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A)$
- ▶ We distinguish three cases:
 - 1. $A = \top$ in which case we have $\langle 0 \rangle \top$ as EA^+ proves the consistency of EA.

Proof-theoretical ordinals A consistency proof for PA

- ▶ Need to prove $\forall A \in S^{\omega} (\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A)$
- We distinguish three cases:
 - 1. $A = \top$ in which case we have $\langle 0 \rangle \top$ as EA^+ proves the consistency of EA.
 - 2. A is of the form $\langle 0 \rangle B$ for some worm B.

Proof-theoretical ordinals A consistency proof for PA

イロト イポト イヨト イヨト

- ▶ Need to prove $\forall A \in S^{\omega}$ ($\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A$)
- We distinguish three cases:
 - 1. $A = \top$ in which case we have $\langle 0 \rangle \top$ as EA^+ proves the consistency of EA.
 - 2. A is of the form $\langle 0 \rangle B$ for some worm B. Easy, as $EA^+ \vdash \mathsf{RFN}_{\Sigma_1^0}(EA)$

Proof-theoretical ordinals A consistency proof for PA

- ▶ Need to prove $\forall A \in S^{\omega}$ ($\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A$)
- We distinguish three cases:
 - 1. $A = \top$ in which case we have $\langle 0 \rangle \top$ as EA^+ proves the consistency of EA.
 - A is of the form ⟨0⟩B for some worm B. Easy, as EA⁺ ⊢ RFN_Σ⁰(EA)
 - 3. A is of the form $\langle n + 1 \rangle B$ for some worm B and natural number n

- ▶ Need to prove $\forall A \in S^{\omega}$ ($\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A$)
- We distinguish three cases:
 - 1. $A = \top$ in which case we have $\langle 0 \rangle \top$ as EA^+ proves the consistency of EA.
 - A is of the form ⟨0⟩B for some worm B. Easy, as EA⁺ ⊢ RFN_Σ⁰(EA)
 - 3. A is of the form $\langle n + 1 \rangle B$ for some worm B and natural number n

There, we need to prove $\langle 0 \rangle \langle n+1 \rangle B$.

- ▶ Need to prove $\forall A \in S^{\omega}$ ($\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A$)
- We distinguish three cases:
 - 1. $A = \top$ in which case we have $\langle 0 \rangle \top$ as EA^+ proves the consistency of EA.
 - 2. A is of the form $\langle 0 \rangle B$ for some worm B. Easy, as $EA^+ \vdash \mathsf{RFN}_{\Sigma^0}(EA)$
 - 3. A is of the form $\langle n + 1 \rangle B$ for some worm B and natural number n

There, we need to prove $\langle 0 \rangle \langle n+1 \rangle B$. But remember:

$$\langle 0 \rangle \langle n+1 \rangle B \leftrightarrow \forall k \ \langle 0 \rangle Q_n^k(B).$$

- ▶ Need to prove $\forall A \in S^{\omega} (\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A)$
- We distinguish three cases:
 - 1. $A = \top$ in which case we have $\langle 0 \rangle \top$ as EA^+ proves the consistency of EA.
 - 2. A is of the form $\langle 0 \rangle B$ for some worm B. Easy, as $EA^+ \vdash \mathsf{RFN}_{\Sigma^0}(EA)$
 - 3. A is of the form $\langle n + 1 \rangle B$ for some worm B and natural number n

There, we need to prove $\langle 0 \rangle \langle n+1 \rangle B$. But remember:

$$\langle 0 \rangle \langle n+1 \rangle B \leftrightarrow \forall k \ \langle 0 \rangle Q_n^k(B).$$

However, for each $k \in \omega$

$$Q_n^k(B) <_0 \langle n+1 \rangle B$$

- ▶ Need to prove $\forall A \in S^{\omega} (\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A)$
- We distinguish three cases:
 - 1. $A = \top$ in which case we have $\langle 0 \rangle \top$ as EA^+ proves the consistency of EA.
 - 2. A is of the form $\langle 0 \rangle B$ for some worm B. Easy, as $EA^+ \vdash \mathsf{RFN}_{\Sigma^0}(EA)$
 - 3. A is of the form $\langle n + 1 \rangle B$ for some worm B and natural number n

There, we need to prove $\langle 0 \rangle \langle n+1 \rangle B$. But remember:

$$\langle 0 \rangle \langle n+1 \rangle B \leftrightarrow \forall k \ \langle 0 \rangle Q_n^k(B).$$

However, for each $k \in \omega$

$$Q_n^k(B) <_0 \langle n+1 \rangle B$$

and we are done by the induction hypothesis.

- ▶ Need to prove $\forall A \in S^{\omega} (\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A)$
- We distinguish three cases:
 - 1. $A = \top$ in which case we have $\langle 0 \rangle \top$ as EA^+ proves the consistency of EA.
 - 2. A is of the form $\langle 0 \rangle B$ for some worm B. Easy, as $EA^+ \vdash \mathsf{RFN}_{\Sigma^0}(EA)$
 - 3. A is of the form $\langle n + 1 \rangle B$ for some worm B and natural number n

There, we need to prove $\langle 0 \rangle \langle n+1 \rangle B$. But remember:

$$\langle 0 \rangle \langle n+1 \rangle B \leftrightarrow \forall k \ \langle 0 \rangle Q_n^k(B).$$

However, for each $k \in \omega$

$$Q_n^k(B) <_0 \langle n+1 \rangle B$$

and we are done by the induction hypothesis.

▶ Thus, we have proven $\forall A \in S^{\omega}$ ($\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A$)

Proof-theoretical ordinals A consistency proof for PA

・ロト ・回ト ・ヨト ・ヨト

æ

▶ We have proven $\forall A \in S^{\omega} (\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A)$

Proof-theoretical ordinals A consistency proof for PA

イロン イヨン イヨン イヨン

- We have proven $\forall A \in S^{\omega} (\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A)$
- By transfinite induction: $\forall A \in S^{\omega} \langle 0 \rangle A$

Proof-theoretical ordinals A consistency proof for PA

イロト イヨト イヨト イヨト

- We have proven $\forall A \in S^{\omega} (\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A)$
- By transfinite induction: $\forall A \in S^{\omega} \langle 0 \rangle A$
- Thus certainly $\forall n \langle 0 \rangle \langle n \rangle \top$

Proof-theoretical ordinals A consistency proof for PA

イロト イヨト イヨト イヨト

- We have proven $\forall A \in S^{\omega} (\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A)$
- By transfinite induction: $\forall A \in S^{\omega} \langle 0 \rangle A$
- Thus certainly $\forall n \langle 0 \rangle \langle n \rangle \top$
- Which we saw was equivalent to

$$\mathsf{Con}(\mathrm{EA} + \{ \langle 1 \rangle \top, \langle 2 \rangle \top, \langle 3 \rangle \top, \langle 4 \rangle \top, \ldots \}) \quad (*)$$

Proof-theoretical ordinals A consistency proof for PA

イロト イヨト イヨト イヨト

- We have proven $\forall A \in S^{\omega} (\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A)$
- By transfinite induction: $\forall A \in S^{\omega} \langle 0 \rangle A$
- Thus certainly $\forall n \langle 0 \rangle \langle n \rangle \top$
- Which we saw was equivalent to

 $\mathsf{Con}(\mathrm{EA} + \{ \langle 1 \rangle \top, \langle 2 \rangle \top, \langle 3 \rangle \top, \langle 4 \rangle \top, \ldots \}) \quad (*)$

• Whereas provably $PA \subseteq EA + \{\langle 1 \rangle \top, \langle 2 \rangle \top, \langle 3 \rangle \top, \langle 4 \rangle \top, \ldots\}$

Proof-theoretical ordinals A consistency proof for PA

イロト イヨト イヨト イヨト

- We have proven $\forall A \in S^{\omega} (\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A)$
- By transfinite induction: $\forall A \in S^{\omega} \langle 0 \rangle A$
- Thus certainly $\forall n \langle 0 \rangle \langle n \rangle \top$
- Which we saw was equivalent to

 $\mathsf{Con}(\mathrm{EA} + \{ \langle 1 \rangle \top, \langle 2 \rangle \top, \langle 3 \rangle \top, \langle 4 \rangle \top, \ldots \}) \quad (*)$

- Whereas provably $PA \subseteq EA + \{ \langle 1 \rangle \top, \langle 2 \rangle \top, \langle 3 \rangle \top, \langle 4 \rangle \top, \ldots \}$
- ▶ we had $Con(EA + \{\langle 1 \rangle \top, \langle 2 \rangle \top, \langle 3 \rangle \top, \langle 4 \rangle \top, \ldots\}) \rightarrow Con(PA)$

Proof-theoretical ordinals A consistency proof for PA

イロト イポト イヨト イヨト

- We have proven $\forall A \in S^{\omega} (\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A)$
- By transfinite induction: $\forall A \in S^{\omega} \langle 0 \rangle A$
- Thus certainly $\forall n \langle 0 \rangle \langle n \rangle \top$
- Which we saw was equivalent to

$$\mathsf{Con}(\mathrm{EA} + \{ \langle 1 \rangle \top, \langle 2 \rangle \top, \langle 3 \rangle \top, \langle 4 \rangle \top, \ldots \}) \quad (*)$$

- Whereas provably $PA \subseteq EA + \{ \langle 1 \rangle \top, \langle 2 \rangle \top, \langle 3 \rangle \top, \langle 4 \rangle \top, \ldots \}$
- ▶ we had $Con(EA + \{\langle 1 \rangle \top, \langle 2 \rangle \top, \langle 3 \rangle \top, \langle 4 \rangle \top, \ldots\}) \rightarrow Con(PA)$
- ▶ Which combined with (*) gives us our result:

Proof-theoretical ordinals A consistency proof for PA

イロン イヨン イヨン イヨン

- We have proven $\forall A \in S^{\omega} (\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A)$
- By transfinite induction: $\forall A \in S^{\omega} \langle 0 \rangle A$
- Thus certainly $\forall n \langle 0 \rangle \langle n \rangle \top$
- Which we saw was equivalent to

$$\mathsf{Con}(\mathrm{EA} + \{ \langle 1 \rangle \top, \langle 2 \rangle \top, \langle 3 \rangle \top, \langle 4 \rangle \top, \ldots \}) \quad (*)$$

- Whereas provably $PA \subseteq EA + \{ \langle 1 \rangle \top, \langle 2 \rangle \top, \langle 3 \rangle \top, \langle 4 \rangle \top, \ldots \}$
- ▶ we had $Con(EA + \{\langle 1 \rangle \top, \langle 2 \rangle \top, \langle 3 \rangle \top, \langle 4 \rangle \top, \ldots\}) \rightarrow Con(PA)$
- ▶ Which combined with (*) gives us our result: Con(PA)

Proof-theoretical ordinals A consistency proof for PA

- We have proven $\forall A \in S^{\omega} (\forall A' <_0 A \langle 0 \rangle A' \rightarrow \langle 0 \rangle A)$
- By transfinite induction: $\forall A \in S^{\omega} \langle 0 \rangle A$
- Thus certainly $\forall n \langle 0 \rangle \langle n \rangle \top$
- Which we saw was equivalent to

 $\mathsf{Con}(\mathrm{EA} + \{ \langle 1 \rangle \top, \langle 2 \rangle \top, \langle 3 \rangle \top, \langle 4 \rangle \top, \ldots \}) \quad (*)$

- Whereas provably $PA \subseteq EA + \{\langle 1 \rangle \top, \langle 2 \rangle \top, \langle 3 \rangle \top, \langle 4 \rangle \top, \ldots\}$
- ▶ we had $Con(EA + \{\langle 1 \rangle \top, \langle 2 \rangle \top, \langle 3 \rangle \top, \langle 4 \rangle \top, \ldots\}) \rightarrow Con(PA)$
- Which combined with (*) gives us our result: Con(PA)