Provability logics and applications

Day 1: Provability as modality

- 1. Give formal proofs to the extend that $\mathbf{K} \vdash \Box A \land \Box B \leftrightarrow \Box (A \land B)$. (Hints are in the slides.)
- 2. Let Löb's rule –we write LR– be $\Box A \rightarrow A/A$.
 - (a) Show that $\mathbf{K} + \mathsf{LR} = \mathbf{K}$
 - (b) Show that $\mathbf{K4} + \mathsf{LR} = \mathbf{GL}$
- 3. Show that $\mathbf{GL} \vdash \Box A \rightarrow \Box \Box A$. (Hints are in the slides.)
- 4. Let λ be Gödel's liar sentence so that $PA \vdash \neg Prv_{PA}(\lambda) \leftrightarrow \lambda$
 - (a) Show that $PA \vdash \lambda \leftrightarrow Con_{PA}$.
 - (b) Show that if PA is consistent, then $PA \nvDash \lambda$.

Day 2: Completeness results for GL

- 1. (a) Exhibit a **GL** frame with an increasing chain of length $\omega \cdot 2 + 2$.
 - (b) Exhibit a rooted tree where each branch is of finite length but so that there is a point x with $Ord(x) = \omega$.
 - (c) Exhibit a rooted tree where each branch is of finite length but so that there is a point x with $Ord(x) = \omega \cdot 2$.
 - (d) Let FRT be the class of ordinals such that $\alpha \in \mathsf{FRT}$ iff there is some rooted tree T where each branch is of finite length and for some $x \in T$ we have $\mathsf{Ord}(x) = \alpha$. Show that FRT is closed under $\alpha \mapsto \alpha + 1$.
 - (e) Show that FRT is closed under addition. That is, if $\alpha \in \mathsf{FRT}$ and $\beta \in \mathsf{FRT}$, then $\alpha + \beta \in \mathsf{FRT}$.
 - (f) Show that FRT defines an initial segment of the ordinals, that is, $\alpha \in \mathsf{FRT}$ and $\beta < \alpha$ implies $\beta \in \mathsf{FRT}$.
 - (g) Show that FRT is closed under unions.
 - (h) Conclude that FRT = Ord.
 - (i) * Determine the size of FRT^{ω} which defined just as FRT but now we require that at each node in the tree only countably many bifurcations/children are allowed.
- 2. Use the modal completeness theorem to prove

$$\mathbf{GL} \vdash \Box A \quad \Rightarrow \quad \mathbf{GL} \vdash A.$$

3. Prove the generalized fixpoint Lemma:

Lemma 0.1. If $\psi_1(\vec{x}), \ldots, \psi_n(\vec{x})$ are arithmetical formulas where the variables $\vec{x} = \langle x_1, \ldots, x_n \rangle$ appear free, then there are formulas ψ_1, \ldots, ψ_n such that, for all $i \leq n$,

$$\mathsf{PA} \vdash \phi_i \leftrightarrow \psi_i(\ulcorner \dot{\phi_1} \urcorner, \dots, \ulcorner \dot{\phi_n} \urcorner).$$

Hint: Use the standard fixpoint lemma and induction on n.

- 4. With notation as in the proof of Solovay's theorem, show that if f is an arithmetical interpretation with $f(p) = \bigvee_{w \in V(p)}$ and $w \neq 0$ then $\mathfrak{M}, w \models \phi$ if and only if $\mathsf{PA} + \theta(w) \vdash f(\phi)$.
- 5. In the proof of Solovay's theorem, we defined the formulas $\theta(w)$ using the multiple fixpoint lemma. Write down explicitly the fixpoint equations in terms of the provability predicate \mathbf{prv}_T and the variables $\theta(w), \ulcorner\theta(w)\urcorner$.

Day 3: Polymodal logics

- 1. Prove that if X is a scattered space then $X \models \Box(\Box p \rightarrow p) \rightarrow \Box p$.
- 2. Prove that if $\langle X, \mathcal{T} \rangle$ is a scattered space and $\mathcal{T} \subseteq S$ then $\langle X, S \rangle$ is scattered as well.

Day 4: The closed fragment

- 1. Show that if ϕ, ψ are formulas then $\Im \mathfrak{g} \models \Box((\Box \phi \to \Box \psi) \lor (\Box \psi \to \Box \phi)).$
- 2. Define a valuation V on $\Im g$ such that $\Im \mathfrak{g} \models [0]p \land \neg [1]p$. Conclude that $\Im \mathfrak{c}$ is not a valid frame for the full logic GLP_{ω} .
- 3. Define a valuation V on \mathfrak{Ic} such that $\mathfrak{Ic} \models \langle 0 \rangle p \land \neg [1] \langle 0 \rangle p$.

Day 5: Ordinal analysis

- 1. Compute the following order-types:
 - (a) o(1)
 - (b) o(212)
 - (c) $o(100\omega)$
 - (d) *o*(012101210)