Provability logics and applications

Day 1: Provability as modality

- 1. Give formal proofs to the extend that $\mathbf{K} \vdash \Box A \land \Box B \leftrightarrow \Box (A \land B)$. (Hints are in the slides.)
- 2. Let Löb's rule –we write LR– be $\Box A \rightarrow A/A$.
 - (a) Show that $\mathbf{K} + \mathsf{LR} = \mathbf{K}$
 - (b) Show that $\mathbf{K4} + \mathsf{LR} = \mathbf{GL}$
- 3. Show that $\mathbf{GL} \vdash \Box A \rightarrow \Box \Box A$. (Hints are in the slides.)
- 4. Let λ be Gödel's liar sentence so that $PA \vdash \neg Prv_{PA}(\lambda) \leftrightarrow \lambda$
 - (a) Show that $PA \vdash \lambda \leftrightarrow Con_{PA}$.
 - (b) Show that if PA is consistent, then $PA \nvDash \lambda$.
- 5. Löb's Theorem

In the lecture we have proven Löb's Theorem by considering a fixpoint of

$$\mathsf{Bew}_{\mathsf{PA}}(x) \to A.$$

- (a) Formulate Gödel's Second Incompleteness Theorem.
- (b) Formulate the modal soundness result for GL.
- (c) Formulate the arithmetical soundness result for **GL**.
- (d) Show how Gödel's Second Incompleteness Theorem follows from Löb's Rule.
- (e) Consider a fixpoint λ of $\neg \mathsf{Bew}_{\mathsf{PA}}(x)$. State what it means that λ is a fixpoint of this particular sentence.
- (f) We say that PA is Σ_1 -complete. What does this mean?
- (g) Formulate provable Σ_1 -completeness.
- (h) Which modal principle reflects provable Σ_1 -completeness?
- (i) Show that Σ_1 -soundness is stronger than consistency.
- (j) Assume that PA is Σ_1 -sound. Consider the sentence λ from Item 5e. Give proofs for the following two assertions and tell which of the two assertions can be proven using consistency of PA rather than the stronger Σ_1 -soundness.
 - i. PA $\not\vdash \lambda$.
 - ii. PA $\not\vdash \neg \lambda$.

Day 2: Completeness results for GL

- 1. (a) Exhibit a **GL** frame with an increasing chain of length $\omega \cdot 2 + 2$.
 - (b) Exhibit a rooted tree where each branch is of finite length but so that there is a point x with $Ord(x) = \omega$.
 - (c) Exhibit a rooted tree where each branch is of finite length but so that there is a point x with $Ord(x) = \omega \cdot 2$.
 - (d) Let FRT be the class of ordinals such that $\alpha \in \mathsf{FRT}$ iff there is some rooted tree T where each branch is of finite length and for some $x \in T$ we have $\mathsf{Ord}(x) = \alpha$. Show that FRT is closed under $\alpha \mapsto \alpha + 1$.
 - (e) Show that FRT is closed under addition. That is, if $\alpha \in \mathsf{FRT}$ and $\beta \in \mathsf{FRT}$, then $\alpha + \beta \in \mathsf{FRT}$.
 - (f) Show that FRT defines an initial segment of the ordinals, that is, $\alpha \in \mathsf{FRT}$ and $\beta < \alpha$ implies $\beta \in \mathsf{FRT}$.
 - (g) Show that FRT is closed under unions.
 - (h) Conclude that FRT = Ord.
 - (i) * Determine the size of FRT^ω which defined just as FRT but now we require that at each node in the tree only countably many bifurcations/children are allowed.
- 2. Use the modal completeness theorem to prove

$$\mathbf{GL} \vdash \Box A \quad \Rightarrow \quad \mathbf{GL} \vdash A.$$

3. Prove the generalized fixpoint Lemma:

Lemma 0.1. If $\psi_1(\vec{x}), \ldots, \psi_n(\vec{x})$ are arithmetical formulas where the variables $\vec{x} = \langle x_1, \ldots, x_n \rangle$ appear free, then there are formulas ψ_1, \ldots, ψ_n such that, for all $i \leq n$,

$$\mathsf{PA} \vdash \phi_i \leftrightarrow \psi_i(\ulcorner \phi_1 \urcorner, \dots, \ulcorner \phi_n \urcorner).$$

Hint: Use the standard fixpoint lemma and induction on n.

- 4. With notation as in the proof of Solovay's theorem, show that if f is an arithmetical interpretation with $f(p) = \bigvee_{w \in V(p)}$ and $w \neq 0$ then $\mathfrak{M}, w \models \phi$ if and only if $\mathsf{PA} + \theta(w) \vdash f(\phi)$.
- 5. In the proof of Solovay's theorem, we defined the formulas $\theta(w)$ using the multiple fixpoint lemma. Write down explicitly the fixpoint equations in terms of the provability predicate \mathbf{prv}_T and the variables $\theta(w), \ulcorner\theta(w)\urcorner$.

6. Solovay's Completeness Result

For each $m \in \mathbb{N}$ we consider the sentence

 $\varphi_m := \mathsf{Con}_{\mathsf{PA}}^{\mathsf{m}}(\lceil 1 = 1 \rceil) \land \mathsf{Bew}_{\mathsf{PA}}^{\mathsf{m}+1}(\lceil 0 = 1 \rceil)$

where we define $\operatorname{Con}_{\mathsf{PA}}^{\mathsf{O}}(\ulcorner 1 = 1\urcorner)$ to be just 1 = 1.

(a) Prove that for $l \neq m$ we have that

$$\mathsf{PA} \vdash \varphi_l \to \neg \varphi_m.$$

(b) Prove that for each l,

$$\mathsf{PA} \vdash \varphi_l \to \mathsf{Bew}_{\mathsf{PA}}(\ulcorner \bigvee_{m < l} \varphi_m \urcorner).$$

(c) Prove that for m < l,

$$\mathsf{PA} \vdash \varphi_l \to \mathsf{Con}_{\mathsf{PA}}(\ulcorner \varphi_m \urcorner).$$

(d) Suppose that some modal formula A is not a theorem of **GL** and is refutable on a linear model. We label the top-node of this model by 0, the node immediately below that 1, etc. We now define an arithmetical translation * as follows

$$p^* := \bigvee_{m \Vdash p} \varphi_m.$$

Prove that for modal formulas B we have that

$$m \Vdash B \Rightarrow \mathsf{PA} \vdash \varphi_m \to B^*,$$

and

$$m \not\Vdash B \Rightarrow \mathsf{PA} \vdash \varphi_m \to \neg B^*.$$

(e) Prove that for each natural number n in **GL** we can prove

$$\Diamond \Diamond^n \top \to \Diamond (\Diamond^n \top \land \Box^{n+1} \bot).$$

(f) Prove that for each m,

$$\mathbb{N} \models \mathsf{Con}_{\mathsf{PA}}(\ulcorner \varphi_m \urcorner).$$

(g) Prove that

$$\mathsf{PA} \vdash \varphi_n \to \neg B^* \quad \Rightarrow \quad \mathsf{PA} \vdash \mathsf{Con}_{\mathsf{PA}}(\ulcorner \varphi_n \urcorner) \to \neg \mathsf{Bew}_{\mathsf{PA}}(\ulcorner B^* \urcorner).$$

(h) Suppose that some modal formula A is not a theorem of **GL** and is refutable on a linear model. Prove that there is an arithmetical realization * that maps propositional variables to Boolean combinations of sentences of the form $\mathsf{Con}_{\mathsf{PA}}^{\mathsf{m}}(\ulcorner1=1\urcorner)$ so that

$$\mathsf{PA} \nvDash A^*$$
.

(i) Provide an arithmetical sentence ψ so that

$$\mathsf{PA} \nvDash \mathsf{Bew}(\ulcorner \psi \urcorner) \lor \mathsf{Bew}(\ulcorner \neg \psi \urcorner).$$

Day 3: Polymodal logics

- 1. Prove that $0 + \beta = \beta$ for any ordinal β .
- 2. Suppose we define exponentiation as
 - $\alpha^0 = 1;$
 - $\alpha^{(\beta+1)} = \alpha \times \alpha^{\beta};$
 - $\alpha^{\lambda} = \cup_{\beta < \lambda} (\alpha^{\lambda})$ for $\lambda \in \text{Lim}$.

Is this definition equivalent to the one given in the slides?

- 3. Prove that if X is a scattered space then $X \models \Box(\Box p \rightarrow p) \rightarrow \Box p$.
- 4. Prove that if $\langle X, \mathcal{T} \rangle$ is a scattered space and $\mathcal{T} \subseteq \mathcal{S}$ then $\langle X, \mathcal{S} \rangle$ is scattered as well.

Day 4: The closed fragment

- 1. Show that if ϕ, ψ are formulas then $\Im \mathfrak{g} \models \Box((\Box \phi \to \Box \psi) \lor (\Box \psi \to \Box \phi)).$
- 2. Define a valuation V on $\Im g$ such that $\Im \mathfrak{g} \models [0]p \land \neg [1]p$. Conclude that $\Im \mathfrak{c}$ is not a valid frame for the full logic GLP_{ω} .
- 3. Define a valuation V on \mathfrak{Ic} such that $\mathfrak{Ic} \models \langle 0 \rangle p \land \neg [1] \langle 0 \rangle p$.

Day 5: Ordinal analysis

- 1. Compute the following order-types:
 - (a) o(1)
 - (b) o(212)
 - (c) $o(100\omega)$
 - (d) o(012101210)