
The Mathematics Behind

LLM Transformers

Carles Casacuberta

Universitat de Barcelona

Seminari Cuc

Proof Theory and Foundations of Mathematics

8 May 2025

Multilayer Perceptron

A fully connected feed-forward neural network

Multilayer Perceptron

Input layer

Multilayer Perceptron

Hidden layers

Multilayer Perceptron

Output layer

Neurons

9

v1
0 , . . . , vN0

0 : Neurons of the input layer.

For ℓ = 1, . . . ,L (number of hidden layers plus output layer),

v1
ℓ , . . . , vNℓ

ℓ : Neurons of the ℓ-th layer.

Activation

For x ∈ RN0 and ℓ = 0, . . . ,L, compute hidden states hℓ(x) ∈ RNℓ

recursively as h0(x) = x and

hℓ(x) = σ
(

Wℓ hℓ−1(x) + bℓ

)
where σ is a nonlinear, almost everywhere smooth activation
function applied entrywise, Wℓ is a matrix of weights, and bℓ is
a vector of biases. The set θ of entries of Wℓ and bℓ is the set of
learnable parameters of the network.

For an ordered collection x1, . . . , xn of input data, the vector

(hℓ(x1)
k , . . . ,hℓ(xn)

k)

is the activation vector of the neuron vk
ℓ at x1, . . . , xn.

Activation

The sigmoid is a common activation function

Loss Function

In a supervised task, one considers a function ϕ : X → Y , where
X is a set of inputs and Y is a set of labels, e.g., Y = R for a
regression task, or Y finite for a classification task.

In practice,

▶ a training set S train ⊆ X × Y and
▶ a test set S test ⊆ X × Y are chosen.

If L : Y × Y → R is a suitable loss function and a subset
S = {(xi , yi)}n

i=1 ⊆ X × Y is given, the empirical risk is

RS =
1
n

n∑
i=1

L
(

hL(xi), yi , θ
)

where hL(xi) are predicted values and yi are true values.

Generalization Gap

After learning with backpropagation the parameter set θ by
minimizing the empirical risk R train, the generalization gap is

G = R test − R train

To prevent overfitting and reduce the generalization gap,
a regularization function T can be used as follows:

R̃S =
1
n

n∑
i=1

L
(

hL(xi) + T (xi), yi , θ
)
.

Recurrent Neural Networks

Recurrent Neural Networks

For a recurrent neural network, input data (tokens) are
sequentially ordered: w1, . . . ,wT .

Each token wt is converted into a vector xt ∈ Rd by means of a
suitable embedding followed by positional encoding, which
preserves the token order in the sequence x1, . . . , xT .

Hidden states for each input xt are computed at layer ℓ as

hℓ(xt) = σ
(

W x
ℓ hℓ−1(xt) + W h

ℓ hℓ(xt−1) + bℓ

)
where W x

ℓ and W h
ℓ are matrices of weights to be learned, and bℓ

is a bias vector, also to be learned.

Recurrent Neural Networks

The output of a RNN is, for each t ,

yt = W out hL(xt) + bout.

Here W out is a matrix of dimensions N × d , where N is the size of
the vocabulary. Outputs are converted with the softmax function:

ŷt [i] = softmax(yt)[i] =
exp(yt [i])∑N

j=1 exp(yt [j])
, i = 1, . . . ,N.

The model is trained using cross-entropy as loss function:

L = −log ŷt [yt],

where ŷt [w] is the probability assigned by ŷt to a token w .

Main difficulty: Vanishing gradient during backpropagation.

Encoders

Encoder-decoder architectures are used for sequence learning
in generative artificial intelligence.

Self-Attention

Transformers rely on self-attention in both encoders and
decoders, which replaces recurrence by enabling all tokens to
interact with each other simultaneously.

Self-attention assigns to each state ht ∈ Rd (either an input or
a hidden state from a previous step) three vectors: queries (qt),
keys (kt), and values (vt), by means of linear projections:

qt = W Qht , kt = W K ht , vt = W V ht ,

where W Q, W K and W V are d × d learnable matrices, and d is
called model length.

Self-Attention

Then alignment scores are defined for each pair hi , hj as

eij =
ki · qj√

d
,

where d is the model length.

Alignment scores are normalized using the softmax function:

aij = softmax(eij) =
exp(eij)∑T

t=1 exp(eit)
.

Thus, aij can be interpreted as a probability that state hi is
relevant to state hj .

Alignment Scores

Normalized alignment scores are used to compute a weighted
average of values:

C = (c1, . . . , cT), ci =
T∑

t=1

aitvt ,

which is called the attention matrix of H = (h1, . . . ,hT):

C = Att(H) = Att(Q,K ,V) = softmax
(

QK t
√

d
V
)
.

Multi-head Attention

There is a multi-head attention layer in the transformer
architecture. The multi-head attention layer works as multiple
parallel attention mechanisms, called heads.

The number n of heads must divide the model length d .

Denote by H = (h1, . . . ,hT) the incoming hidden states, and let

Mult(H) = concat(head1, . . . ,headn)W O, headi = Atti(H),

where n is the number of heads and W O is another learnable
matrix. Here the matrices W Q

i , W K
i and W V

i used to compute Atti
for each i are of size d × (d/n), so W O is again a d × d matrix.

Multi-head Attention

Transformers

In a transformer, each encoder has two layers: the self-attention
mechanism followed by a two-step feed-forward neural network:

henc
t = W2 σ(W1ht + b1) + b2.

Thus, an encoder receives a sequence of tokens w1, . . . ,wT .
Each token wt is converted into a vector xt ∈ Rd using positional
encoding. The vectors x1, . . . , xT pass through several attention
blocks, and the encoder returns a matrix Henc of size T × d .

Transformers

The decoder receives Henc together with x1, . . . , xT during
training (teacher forcing), or the previous predicted values
during generation (autoregression). The decoder generates an
output matrix Hdec by means of a masked self-attention layer,
a cross-atention layer, and a feed-forward neural network.

Masked self-attention has

Att(qt ,K ,V) =
t∑

j=1

atjvj ;

hence, future tokens j > t are not included.

Cross-attention recovers information from Henc as follows: the
query matrix Q is computed as W QHdec but the key and value
matrices are computed as W K Henc and W V Henc.

Transformers

The transformer ends with a predicting head: A classifier over
the whole token vocabulary made out of a linear layer followed by
softmax, converting the decoder’s final hidden states into token
probabilities to predict the next word in a sequence:

ŷt = softmax
(
W outhdec

t + b
)
.

Here hdec is the decoder’s output and ŷt ∈ RN are probabilities for
each token, where N is the length of the vocabulary. The size of
the matrix W out is N × d .

Transformers

Transformers

