The Mathematics Behind LLM Transformers

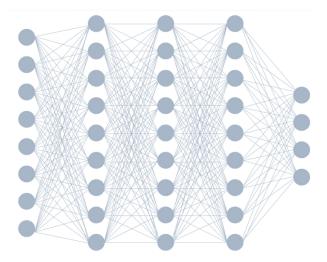
Carles Casacuberta

Universitat de Barcelona

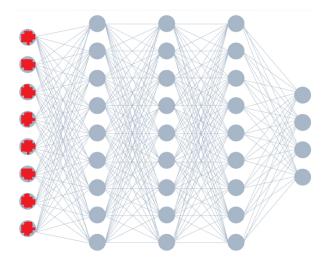
Seminari Cuc

Proof Theory and Foundations of Mathematics

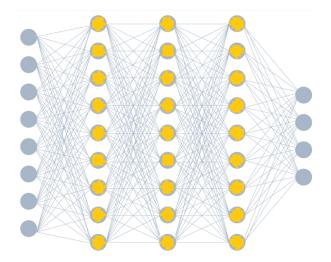
8 May 2025



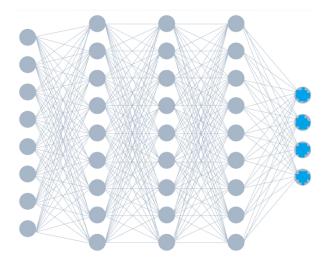
A fully connected feed-forward neural network



Input layer

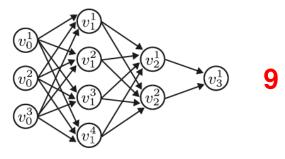


Hidden layers



Output layer

Neurons



 $v_0^1, \ldots, v_0^{N_0}$: Neurons of the input layer.

For $\ell = 1, ..., L$ (number of hidden layers plus output layer), $v_{\ell}^{1}, ..., v_{\ell}^{N_{\ell}}$: Neurons of the ℓ -th layer.

Activation

For $x \in \mathbb{R}^{N_0}$ and $\ell = 0, ..., L$, compute hidden states $h_{\ell}(x) \in \mathbb{R}^{N_{\ell}}$ recursively as $h_0(x) = x$ and

$$h_\ell(x) = \sigma\Big(W_\ell h_{\ell-1}(x) + b_\ell\Big)$$

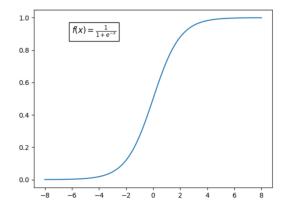
where σ is a nonlinear, almost everywhere smooth **activation function** applied entrywise, W_{ℓ} is a matrix of **weights**, and b_{ℓ} is a vector of **biases**. The set θ of entries of W_{ℓ} and b_{ℓ} is the set of **learnable parameters** of the network.

For an ordered collection x_1, \ldots, x_n of **input data**, the vector

$$(h_\ell(x_1)^k,\ldots,h_\ell(x_n)^k)$$

is the activation vector of the neuron v_{ℓ}^k at x_1, \ldots, x_n .

Activation



The sigmoid is a common activation function

In a **supervised task**, one considers a function $\phi: X \to Y$, where *X* is a set of **inputs** and *Y* is a set of **labels**, e.g., $Y = \mathbb{R}$ for a **regression** task, or *Y* finite for a **classification** task.

In practice,

- a training set $S_{\text{train}} \subseteq X \times Y$ and
- a **test set** $S_{\text{test}} \subseteq X \times Y$ are chosen.

If $\mathcal{L}: Y \times Y \to \mathbb{R}$ is a suitable **loss function** and a subset $S = \{(x_i, y_i)\}_{i=1}^n \subseteq X \times Y$ is given, the **empirical risk** is

$$R_{S} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}\Big(h_{L}(x_{i}), y_{i}, \theta\Big)$$

where $h_L(x_i)$ are **predicted** values and y_i are **true** values.

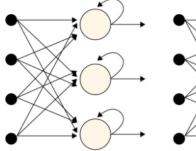
After learning with **backpropagation** the parameter set θ by minimizing the empirical risk R_{train} , the **generalization gap** is

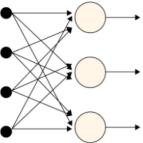
$$G = R_{\text{test}} - R_{\text{train}}$$

To prevent overfitting and reduce the generalization gap, a **regularization function** T can be used as follows:

$$\widetilde{R}_{S} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}\Big(h_{L}(x_{i}) + \mathcal{T}(x_{i}), y_{i}, \theta\Big).$$

Recurrent Neural Networks





For a recurrent neural network, input data (tokens) are sequentially ordered: w_1, \ldots, w_T .

Each token w_t is converted into a vector $x_t \in \mathbb{R}^d$ by means of a suitable **embedding** followed by **positional encoding**, which preserves the token order in the sequence x_1, \ldots, x_T .

Hidden states for each input x_t are computed at layer ℓ as

$$h_{\ell}(x_t) = \sigma \Big(W_{\ell}^x h_{\ell-1}(x_t) + W_{\ell}^h h_{\ell}(x_{t-1}) + b_{\ell} \Big)$$

where W_{ℓ}^{x} and W_{ℓ}^{h} are matrices of weights to be learned, and b_{ℓ} is a bias vector, also to be learned.

The **output** of a RNN is, for each *t*,

$$y_t = W^{\text{out}} h_L(x_t) + b^{\text{out}}.$$

Here W^{out} is a matrix of dimensions $N \times d$, where N is the size of the vocabulary. Outputs are converted with the **softmax** function:

$$\hat{y}_t[i] = \operatorname{softmax}(y_t)[i] = \frac{\exp(y_t[i])}{\sum_{j=1}^N \exp(y_t[j])}, \quad i = 1, \dots, N.$$

The model is trained using cross-entropy as loss function:

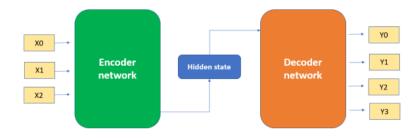
$$\mathcal{L} = -\log \hat{y}_t[y_t],$$

where $\hat{y}_t[w]$ is the probability assigned by \hat{y}_t to a token w.

Main difficulty: Vanishing gradient during backpropagation.

Encoders

Encoder-decoder architectures are used for sequence learning in **generative** artificial intelligence.



Transformers rely on **self-attention** in both encoders and decoders, which replaces recurrence by enabling all tokens to interact with each other simultaneously.

Self-attention assigns to each state $h_t \in \mathbb{R}^d$ (either an input or a hidden state from a previous step) three vectors: **queries** (q_t) , **keys** (k_t) , and **values** (v_t) , by means of linear projections:

$$q_t = W^Q h_t, \qquad k_t = W^K h_t, \qquad v_t = W^V h_t,$$

where W^Q , W^K and W^V are $d \times d$ learnable matrices, and d is called **model length.**

Then **alignment scores** are defined for each pair h_i , h_j as

$$e_{ij}=rac{k_i\cdot q_j}{\sqrt{d}},$$

where *d* is the model length.

Alignment scores are normalized using the **softmax** function:

$$a_{ij} = ext{softmax}(e_{ij}) = rac{ ext{exp}(e_{ij})}{\sum_{t=1}^{T} ext{exp}(e_{it})}$$

Thus, a_{ij} can be interpreted as a probability that state h_i is relevant to state h_i .

Normalized alignment scores are used to compute a weighted average of values:

$$C = (c_1,\ldots,c_T),$$
 $c_i = \sum_{t=1}^l a_{it}v_t,$

which is called the **attention matrix** of $H = (h_1, \ldots, h_T)$:

$$C = \operatorname{Att}(H) = \operatorname{Att}(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{t}}{\sqrt{d}}V\right)$$

There is a **multi-head attention** layer in the transformer architecture. The multi-head attention layer works as **multiple parallel attention mechanisms**, called **heads**.

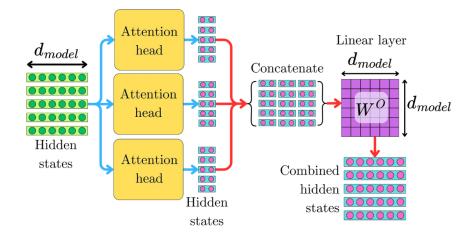
The number *n* of heads must divide the model length *d*.

Denote by $H = (h_1, \ldots, h_T)$ the incoming hidden states, and let

 $Mult(H) = concat(head_1, ..., head_n) W^O$, head_i = Att_i(H),

where *n* is the number of heads and W^O is another learnable matrix. Here the matrices W_i^Q , W_i^K and W_i^V used to compute Att_i for each *i* are of size $d \times (d/n)$, so W^O is again a $d \times d$ matrix.

Multi-head Attention



In a transformer, each **encoder** has two layers: the self-attention mechanism followed by a two-step feed-forward neural network:

$$h_t^{\mathsf{enc}} = W_2 \, \sigma(W_1 h_t + b_1) + b_2.$$

Thus, an encoder receives a sequence of tokens w_1, \ldots, w_T . Each token w_t is converted into a vector $x_t \in \mathbb{R}^d$ using **positional encoding.** The vectors x_1, \ldots, x_T pass through several **attention blocks**, and the encoder returns a matrix H^{enc} of size $T \times d$.

Transformers

The **decoder** receives H^{enc} together with x_1, \ldots, x_T during training (**teacher forcing**), or the previous predicted values during generation (**autoregression**). The decoder generates an output matrix H^{dec} by means of a **masked** self-attention layer, a **cross-atention** layer, and a feed-forward neural network.

Masked self-attention has

$$\operatorname{Att}(\boldsymbol{q}_t, K, V) = \sum_{j=1}^t a_{tj} v_j;$$

hence, **future** tokens j > t are not included.

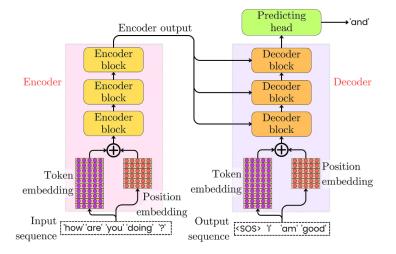
Cross-attention recovers information from H^{enc} as follows: the query matrix Q is computed as $W^Q H^{dec}$ but the key and value matrices are computed as $W^K H^{enc}$ and $W^V H^{enc}$.

The transformer ends with a **predicting head:** A classifier over the whole token vocabulary made out of a linear layer followed by softmax, converting the decoder's final hidden states into **token probabilities** to predict the next word in a sequence:

$$\hat{y}_t = \operatorname{softmax}(W^{\operatorname{out}}h_t^{\operatorname{dec}} + b).$$

Here h^{dec} is the decoder's output and $\hat{y}_t \in \mathbb{R}^N$ are probabilities for each token, where *N* is the length of the vocabulary. The size of the matrix W^{out} is $N \times d$.

Transformers



Transformers

