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» Hilbert: can we safeguard real mathematics using finitistic
methods only?

» FF Con(R)?
Gentzen reduces Godel's negative to an example:
» PRA + Tl(gg,N9) - Con(PA)

v

Here ¢ := sup{w,w®,w*”,...};
Tl(gg,MY) is the axiom scheme

Va (VB=<ap(B) = o(a)) = Yye(y)

with < some natural predicate on the natural numbers that
defines a well-order of order-type ¢ on N.
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> Tentative:
|U|con := min{ot(=<) | PRA + TI(<,PRIM) F Con(U)}
» What is a natural well-order on the natural numbers?
P> Kreisel's pathological ordering
n<m if Yi<max<(m,n)—=Proofzrc(i,"0=17),
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» Tentative:
|U|con := min{ot(=<) | PRA + TI(<,PRIM) F Con(U)}
» What is a natural well-order on the natural numbers?
P> Kreisel's pathological ordering
n<m if Vi<max<(m,n)—=Proofzgc(i,"0 =17),
n <zpc M= . . .
m < n if 3i<max<(m, n) Proofzpc(i,"0 =17).
» By induction along <zgc prove Vy<x—Proofzgc(y,"0=17)
» PRA + Tl(<zrc, PRIM) = Con(ZFC)
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Fragments of Set Theory

P> Tentative:
|U|con := min{ot(=<) | PRA + TI(<,PRIM) F Con(U)}

» What is a natural well-order on the natural numbers?

P> Kreisel's pathological ordering

n<m if Yi<max<(m,n)—=Proofzrc(i,"0=17),
n <zrc M= . .
m < n if 3i<max<(m, n) Proofzpc(i,"0 =17).

» By induction along <zgc prove Vy<x—Proofzgc(y,"0=17)
PRA + TI(<z¢c, PRIM) I Con(ZFC)
» Other proof theoretical notions |U|sup, |U]|-|g, U, -

v
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» ATRo

> V< <WO(-<) — IX VY acfield(<)Vn (n € X, < cp(n,X<a))>
for ¢ arithmetical (or £9)

» Ordinal notation requires small Veblen functions:

> po(a) =,
> ©¢(a) := ath simultaneous fixpoint of all the {¢¢}c<e.
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» Ramified Analysis (second order arithtmetic)

ATRy

> V< <WO(-<) — IX VY acfield(<)Vn (n € X, < cp(n,X<a))>
for ¢ arithmetical (or £9)

v

» Ordinal notation requires small Veblen functions:
> po(a) == we,
> ©¢(a) := ath simultaneous fixpoint of all the {¢¢}c<e.

» First Veblen inaccessible is [p:
\V/OZ,B (Ol,ﬂ<r0 — @a(ﬁ) < rO)
» Essentially, Schiitte, Feferman: |ATRq| =Tl
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Foundations and gauging strength
Proof Theory Ordinal notation systems

Fragments of Set Theory

P Impredicative notation systems are needed to go substantially
beyond I

» | use notation from Rathjen's The Realm of Ordinal Analysis
» Collapsing functions using a “big” ordinal Q2

Closure of 5 U{0,Q}

under:
+, (v = W)
(v = va(?) I a

Ya(a) = min{p < Q| C%(a,p) NQ = p}

CQ(aa B) =
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> Kripke-Platek set theory: Extensionality, Foundation, Pairing,
Union, Infinity, Ag-Separation, Ag-Collection.

» Models (A, €) for KP with A transitive are called admissible
sets

» Hereditarily finite sets; hereditarily countable sets

» Admissible ordinals « are those for which L, is an admissible
set

> Jager, Pohlers: The proof-theoretic ordinal of Kripke-Platek
set theory is the Bachmann-Howard ordinal |KP| = ¥q(eq+1)
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» Kripke-Platek set theory for a recursively Mahlo universe of
sets: KPM

» Same language as KP together with a unary predicate Ad
> Apart from the axioms of KP we have

» Every element is contained in some admissible set;

» The admissible sets are linearly ordered;

» Admissible sets are transitive and closed under pairing and
union

» For each Ap-function there is an admissible set that is closed
under this function, that is,

For each Ag-formula G:

(M) V¥xJyG(x,y) — 3z(Ad(z) AV xezTyez G(x,y))

Joost J. Joosten Set theory & proof theory



Foundations and gauging strength
Proof Theory Ordinal notation systems
Fragments of Set Theory

» Let M be the first weakly Mahlo cardinal and &, 7 regular
cardinals between w and M

Joost J. Joosten Set theory & proof theory



Foundations and gauging strength
Proof Theory Ordinal notation systems

Fragments of Set Theory

» Let M be the first weakly Mahlo cardinal and &, 7 regular
cardinals between w and M
>

Closure of 5 U {0,Q}
under:

M, 8) = ¢+, (7= w)

(76 = x7(9)) ,ca
(v =97 (7).,

£€%(8) = dth regular 1 < M s.t. CM(a,1)NM =7
Y(x) = min{p <7 | CM(a,p) N7 =pAm e CM(a,p)}
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» Let M be the first weakly Mahlo cardinal and &, 7 regular
cardinals between w and M
>

Closure of 5 U {0,Q}

under:

Ma,B) =+ (v w?)

(76 = x7(9)) ,ca

(v =97 (7).,

£€%(8) = dth regular 1 < M s.t. CM(a,1)NM =7

() =min{p <7 | CM(a,p)N7=pAmeCM(a,p)}
> Rathjen: [KPM| = ¢=m+1(x0(0))

“However, | should be a little cautious here as a full proof
has not yet been written down, mainly because it taxes the
limits of human tolerance.”
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Turing progre: s and modal logics
Polymodal provability logic

Turing progressions and ordinal analysis Relative ordinal analysis

> Let U be some theory containing arithmetic where we fix an
ordinal representation
> U0:=U;
> yotl .=y + Con(U?);
> UM = U Ue.
> We define \V\ﬁ? =sup{a | U* C V}
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Modal language for finite Turing progressions
Oye: ¢ is provable in U

Qup: @ is consistent with U

T stands for0 # 1 and L for0 =1

OyL: U is inconsistent;

OyT: Uis consistent; (-dy—L)

The propositional modal logic GL has axioms

» All propositional logical tautologies;
» O(A— B) — (OA — OB);
> O(0A — A) — OA.

and rules Modus Ponens and Necessitation: DAA
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T stands for0 # 1 and L for0 =1
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Modal language for finite Turing progressions
Oye: ¢ is provable in U

Qup: @ is consistent with U

T stands for0 # 1 and L for0 =1

OyL: U is inconsistent;

OyT: Uis consistent; (-dy—L)

The propositional modal logic GL has axioms

» All propositional logical tautologies;
» O(A— B) — (OA — OB);
> O(0A — A) — OA.
A

and rules Modus Ponens and Necessitation: &

vVvyYyyvyy

v

» PSPACE complete logic with nice Kripke semantics
» U0 is represented by T; next U! by OT and, U? by OOT, etc.
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GLFA — VxPARA"

» Two alternative interpretations from Solovay

» True in all universes of ZFC: yields GL (provided some natural
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» Solovay's completeness result:
GLFA — VxPARA"

» Two alternative interpretations from Solovay

» True in all universes of ZFC: yields GL (provided some natural
reflection principles (RFNzgc(M9)))

» True in all transitive models of ZF(C): yields
GL+ O(DA — 0OB)vO(OB — AADTA)
provided there are infinitely many « so that L, is a model of
IF + V=L

» True in all models V;; of ZFC: vyields
GL+O(0A — B)vO(BAOB — A)
provided there are infinitely many inaccessibles

» (Hamkins, Léwe) True in all forcing extensions: yields S4.2
where the .2 axiom is COp — OCp
Provided ZFC is consistent
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> U+ (1)uT =no U, etc.
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a < f:
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» U0 is represented by T; next U' by T and, U2 by OOT, etc.
> U+ (LyT =po U~ etc.

» The logic GLPp governs the structural properties for these
generalized provability notions. Only additional axioms for
a < f:
> [a]e — [B]e (the provability notions increase);
> (ayp — [B]{¥) (the increase is strict)
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» It has natural topological semantics though
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» For M := (X, 7) a topological space
» an interpretation * maps any propositional variable p to some

subset of X
» this is extended to all formulas:
[LIv = @
[PD e = P
ol = M\ [l
[ Avlnm = [elu N [T
[©o]p = d(le]h)-

Here d(Y) is the set of accumulation points of Y:
xed(Y) o VOer (xeO—=-0nY\{x}) #£2

> M = ¢ is defined as V * [¢] = X
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» Blass, Abazhidze: GL is complete for the scattered space
[0, a] endowed with the interval topology if o > w®

» Blass: GL is complete for [0, a] endowed with the club
topology provided o > N, (and assuming Jensen's Principle
Oy, for n < w)

» Blass: assuming the consistency of “there is a Mahlo

cardinal”, it is consistent with ZFC that GL is incomplete wrt
club topology on any [0, o]

» Beklemishev: Blass result holds also for GLP, for the
bi-topological space that combines interval and club topology

» Bagaria, Magidor, Sakai: calibrating the consistency strength
of non-discreteness for the topologies 7¢ corresponding to the
[€] modality in GLPA

Joost J. Joosten Set theory & proof theory



Turing progressions and modal logics
Polymodal provability logic

Turing progressions and ordinal analysis Relative ordinal analysis

» GLP,, and Turing progressions

Joost J. Joosten Set theory & proof theory



Turing progressions and modal logics
Polymodal provability logic

Turing progressions and ordinal analysis Relative ordinal analysis

» GLP,, and Turing progressions
» An ordinal analysis for PA using GLP,, is based on versatility
of worms (iterated consistency statements)

Joost J. Joosten Set theory & proof theory



Turing progressions and modal logics
Polymodal provability logic

Turing progressions and ordinal analysis Relative ordinal analysis

» GLP,, and Turing progressions

» An ordinal analysis for PA using GLP,, is based on versatility
of worms (iterated consistency statements)

P> Leivant, Beklemishev: Worms provably denote fragments of
arithmetic: (n42)pa T =1X 41

Joost J. Joosten Set theory & proof theory



Turing progressions and modal logics
Polymodal provability logic

Turing progressions and ordinal analysis Relative ordinal analysis

» GLP,, and Turing progressions

» An ordinal analysis for PA using GLP,, is based on versatility
of worms (iterated consistency statements)

P> Leivant, Beklemishev: Worms provably denote fragments of
arithmetic: (n42)pa T =1X 41

» Beklemishev, Ferndndez-Duque, JjJ: Worms provably
correspond to ordinals: (W, <) = (On, <) where for worms
A, B we define

A<g B <= GLPg, B — (0)A

Joost J. Joosten Set theory & proof theory



Turing progressions and modal logics
Polymodal provability logic

Turing progressions and ordinal analysis Relative ordinal analysis

» GLP,, and Turing progressions

» An ordinal analysis for PA using GLP,, is based on versatility
of worms (iterated consistency statements)
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» GLP,, and Turing progressions

» An ordinal analysis for PA using GLP,, is based on versatility
of worms (iterated consistency statements)

P> Leivant, Beklemishev: Worms provably denote fragments of
arithmetic: (n42)pa T =1X 41

» Beklemishev, Ferndndez-Duque, JjJ: Worms provably
correspond to ordinals: (W, <) = (On, <) where for worms
A, B we define

A<g B <= GLPg, B — (0)A

» Beklemishev: Worms provably correspond to Turing
progressions

Va < o3 AEW,, (EA+ FA = (EA+)a)

» Japaridze: The behavior of worms is governed by the simple
propositional modal logic GLP
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» Benefit fine-grained: PA vs PA + Con(PA)

Benefit for strong theories: relative ordinal analysis

v

» |dea: foundation is like induction
IxG(x) — Ix (G(x) AV yex—G(x))
> Pakhomov: KP =p RFNEI_E,”“(KPO)

» Axioms of KPg: Extensionality, Pair, Union, Infinity,
Ag-Separation, Ag-Collection, Regularity, Transitive
Containment (each set is member of a transitive set), and
Totality of Rank Function
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Some doodles[Bagaria, JjJ]:

» Do we have “% = %7
» Let X be the theory ZFC — {Repl + Inf}.

Levy:
ZFC = X 4 RFN(X).

» Here, RFN refers to the following notion of reflection: For each
(externally quantified) natural number n, we denote by
RFNyx, (X) the following principle

VeeX,VadaeOn [V, Ep(a) & =, e(a)].

with =, a partial truth predicate
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