Set-theoretical aspects of proof theory via Turing progressions

Joost J. Joosten

Universitat de Barcelona

Saturday 17-11-2018 Reflections on Set-Theoretic Reflection, Montseny A conference in celebration of Joan Bagaria's 60th birthday A personal note Proof Theory Turing progressions and ordinal analysis

A personal note Proof Theory Turing progressions and ordinal analysis Fragments of Set Theory

Hilbert: can we safeguard real mathematics using finitistic methods only?

イロト イヨト イヨト イヨト

A personal note Proof Theory Turing progressions and ordinal analysis Prode Theory Turing progressions and ordinal analysis

- Hilbert: can we safeguard real mathematics using finitistic methods only?
- ▶ $\mathcal{F} \vdash \mathsf{Con}(\mathcal{R})$?

イロト イヨト イヨト イヨト

A personal note Proof Theory Turing progressions and ordinal analysis Prode Theory Turing progressions and ordinal analysis

- Hilbert: can we safeguard real mathematics using finitistic methods only?
- ▶ $\mathcal{F} \vdash \mathsf{Con}(\mathcal{R})$?
- Gentzen reduces Gödel's negative to an example:

- Hilbert: can we safeguard real mathematics using finitistic methods only?
- ▶ $\mathcal{F} \vdash \mathsf{Con}(\mathcal{R})$?
- Gentzen reduces Gödel's negative to an example:
- ▶ PRA + $\mathsf{TI}(\varepsilon_0, \Pi_1^0) \vdash \mathsf{Con}(\mathsf{PA})$

Here
$$\varepsilon_0 := \sup\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \ldots\};$$

 $\mathsf{TI}(\varepsilon_0, \Pi_1^0)$ is the axiom scheme

$$\forall \alpha \ (\forall \beta \prec \alpha \varphi(\beta) \rightarrow \varphi(\alpha)) \rightarrow \forall \gamma \varphi(\gamma)$$

with \prec some natural predicate on the natural numbers that defines a well-order of order-type ε_0 on \mathbb{N} .

► Tentative: $|U|_{Con} := \min\{ot(\prec) \mid PRA + TI(\prec, PRIM) \vdash Con(U)\}$

イロト イヨト イヨト イヨト

 $|U|_{\mathsf{Con}} := \mathsf{min}\{\mathsf{ot}(\prec) \mid \mathrm{PRA} + \mathsf{TI}(\prec,\mathsf{PRIM}) \vdash \mathsf{Con}(U)\}$

What is a natural well-order on the natural numbers?

イロン イヨン イヨン イヨン

 $|U|_{\mathsf{Con}} := \min\{\mathsf{ot}(\prec) \mid \mathrm{PRA} + \mathsf{TI}(\prec,\mathsf{PRIM}) \vdash \mathsf{Con}(U)\}$

What is a natural well-order on the natural numbers?

Kreisel's pathological ordering

$$n \prec_{\mathsf{ZFC}} m = \begin{cases} n < m & \text{if } \forall i < \max_{<}(m, n) \neg \mathsf{Proof}_{\mathsf{ZFC}}(i, \lceil 0 = 1 \rceil), \\ m < n & \text{if } \exists i < \max_{<}(m, n) \operatorname{Proof}_{\mathsf{ZFC}}(i, \lceil 0 = 1 \rceil). \end{cases}$$

イロト イヨト イヨト イヨト

æ

 $|U|_{\mathsf{Con}} := \min\{\mathsf{ot}(\prec) \mid \mathrm{PRA} + \mathsf{TI}(\prec,\mathsf{PRIM}) \vdash \mathsf{Con}(U)\}$

- What is a natural well-order on the natural numbers?
- Kreisel's pathological ordering

$$n \prec_{\mathsf{ZFC}} m = \begin{cases} n < m & \text{if } \forall i < \max_{<}(m, n) \neg \mathsf{Proof}_{\mathsf{ZFC}}(i, \lceil 0 = 1 \rceil), \\ m < n & \text{if } \exists i < \max_{<}(m, n) \operatorname{Proof}_{\mathsf{ZFC}}(i, \lceil 0 = 1 \rceil). \end{cases}$$

▶ By induction along \prec_{ZFC} prove $\forall y < x \neg \mathsf{Proof}_{\mathsf{ZFC}}(y, \ulcorner 0 = 1 \urcorner)$

 $|U|_{\mathsf{Con}} := \min\{\mathsf{ot}(\prec) \mid \mathrm{PRA} + \mathsf{TI}(\prec,\mathsf{PRIM}) \vdash \mathsf{Con}(U)\}$

- What is a natural well-order on the natural numbers?
- Kreisel's pathological ordering

$$n \prec_{\mathsf{ZFC}} m = \begin{cases} n < m & \text{if } \forall i < \max_{<}(m, n) \neg \mathsf{Proof}_{\mathsf{ZFC}}(i, \lceil 0 = 1 \rceil), \\ m < n & \text{if } \exists i < \max_{<}(m, n) \operatorname{Proof}_{\mathsf{ZFC}}(i, \lceil 0 = 1 \rceil). \end{cases}$$

By induction along ≺_{ZFC} prove ∀ y < x¬Proof_{ZFC}(y, [¬]0 = 1[¬])
 PRA + TI(≺_{ZFC}, PRIM) ⊢ Con(ZFC)

 $|U|_{\mathsf{Con}} := \min\{\mathsf{ot}(\prec) \mid \mathrm{PRA} + \mathsf{TI}(\prec,\mathsf{PRIM}) \vdash \mathsf{Con}(U)\}$

- What is a natural well-order on the natural numbers?
- Kreisel's pathological ordering

$$n \prec_{\mathsf{ZFC}} m = \begin{cases} n < m & \text{if } \forall i < \max_{<}(m, n) \neg \mathsf{Proof}_{\mathsf{ZFC}}(i, \lceil 0 = 1 \rceil), \\ m < n & \text{if } \exists i < \max_{<}(m, n) \operatorname{Proof}_{\mathsf{ZFC}}(i, \lceil 0 = 1 \rceil). \end{cases}$$

- ▶ By induction along \prec_{ZFC} prove $\forall y < x \neg \mathsf{Proof}_{\mathsf{ZFC}}(y, \ulcorner 0 = 1 \urcorner)$
- ▶ $PRA + TI(\prec_{ZFC}, PRIM) \vdash Con(ZFC)$
- ▶ Other proof theoretical notions $|U|_{sup}$, $|U|_{\Pi_2^0}$, $|U|_{\Pi_1}$, ...

A personal note Proof Theory Turing progressions and ordinal analysis Prode Theory Turing progressions and ordinal analysis

Ramified Analysis (second order arithtmetic)

イロト イヨト イヨト イヨト

æ

A personal note Proof Theory Turing progressions and ordinal analysis Prode Theory Turing progressions and ordinal analysis

- Ramified Analysis (second order arithtmetic)
- ATR₀

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

E.

- Ramified Analysis (second order arithtmetic)
- ATR₀
 ∀ ≺ (wo(≺) → ∃X ∀ α∈field(≺) ∀n (n ∈ X_α ↔ φ(n, X_{<α}))) for φ arithmetical (or Σ⁰₁)

- Ramified Analysis (second order arithtmetic)
- ATR₀
- ∀ ≺ (wo(≺) → ∃X ∀ α∈field(≺) ∀n (n ∈ X_α ↔ φ(n, X_{<α})))
 for φ arithmetical (or Σ⁰₁)
- Ordinal notation requires small Veblen functions:

- Ramified Analysis (second order arithtmetic)
- ► ATR₀

•
$$\varphi_0(\alpha) := \omega^{\alpha}$$
,

イロト イヨト イヨト イヨト

- Ramified Analysis (second order arithtmetic)
- ATR₀

イロト イヨト イヨト イヨト

- Ramified Analysis (second order arithtmetic)
- ATR₀

First Veblen inaccessible is Γ_0 : $\forall \alpha, \beta \ (\alpha, \beta < \Gamma_0 \rightarrow \varphi_\alpha(\beta) < \Gamma_0)$

- Ramified Analysis (second order arithtmetic)
- ATR₀

First Veblen inaccessible is Γ_0 : $\forall \alpha, \beta \ (\alpha, \beta < \Gamma_0 \rightarrow \varphi_\alpha(\beta) < \Gamma_0)$

Essentially, Schütte, Feferman: $|ATR_0| = \Gamma_0$

 \blacktriangleright Impredicative notation systems are needed to go substantially beyond Γ_0

イロト イヨト イヨト イヨト

- Impredicative notation systems are needed to go substantially beyond Γ₀
- I use notation from Rathjen's The Realm of Ordinal Analysis

- Impredicative notation systems are needed to go substantially beyond Γ₀
- I use notation from Rathjen's The Realm of Ordinal Analysis
- Collapsing functions using a "big" ordinal Ω

$$\mathcal{C}^{\Omega}(lpha,eta) = egin{cases} \mathsf{Closure of}\ eta \cup \{0,\Omega\} \ \mathsf{under:} \ +,\ (\gamma\mapsto\omega^{\gamma}) \ (\gamma\mapsto\psi_{\Omega}(\gamma)) \upharpoonright lpha \ \psi_{\Omega}(lpha) = \min\{
ho < \Omega \mid \mathcal{C}^{\Omega}(lpha,
ho) \cap \Omega =
ho\} \end{cases}$$

 Kripke-Platek set theory: Extensionality, Foundation, Pairing, Union, Infinity, Δ₀-Separation, Δ₀-Collection.

イロト イヨト イヨト イヨト

- Kripke-Platek set theory: Extensionality, Foundation, Pairing, Union, Infinity, Δ₀-Separation, Δ₀-Collection.
- Models (A, ∈) for KP with A transitive are called *admissible* sets

- Kripke-Platek set theory: Extensionality, Foundation, Pairing, Union, Infinity, Δ₀-Separation, Δ₀-Collection.
- Models (A, ∈) for KP with A transitive are called *admissible* sets
- Hereditarily finite sets; hereditarily countable sets

- Kripke-Platek set theory: Extensionality, Foundation, Pairing, Union, Infinity, Δ₀-Separation, Δ₀-Collection.
- Models (A, ∈) for KP with A transitive are called *admissible* sets
- Hereditarily finite sets; hereditarily countable sets
- Admissible ordinals α are those for which L_α is an admissible set

- Kripke-Platek set theory: Extensionality, Foundation, Pairing, Union, Infinity, Δ₀-Separation, Δ₀-Collection.
- Models (A, ∈) for KP with A transitive are called *admissible* sets
- Hereditarily finite sets; hereditarily countable sets
- Admissible ordinals α are those for which L_α is an admissible set
- ► Jäger, Pöhlers: The proof-theoretic ordinal of Kripke-Platek set theory is the Bachmann-Howard ordinal |KP| = ψ_Ω(ε_{Ω+1})

A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory

Kripke-Platek set theory for a recursively Mahlo universe of sets: KPM

イロト イヨト イヨト イヨト

- Kripke-Platek set theory for a recursively Mahlo universe of sets: KPM
- Same language as KP together with a unary predicate Ad

- A personal note Proof Theory Turing progressions and ordinal analysis Fragments of Set Theory
- Kripke-Platek set theory for a recursively Mahlo universe of sets: KPM
- Same language as KP together with a unary predicate Ad
- Apart from the axioms of KP we have

- A personal note Proof Theory Turing progressions and ordinal analysis Fragments of Set Theory
- Kripke-Platek set theory for a recursively Mahlo universe of sets: KPM
- Same language as KP together with a unary predicate Ad
- Apart from the axioms of KP we have
 - Every element is contained in some admissible set;

- A personal note Proof Theory Turing progressions and ordinal analysis Fragments of Set Theory
- Kripke-Platek set theory for a recursively Mahlo universe of sets: KPM
- Same language as KP together with a unary predicate Ad
- Apart from the axioms of KP we have
 - Every element is contained in some admissible set;
 - The admissible sets are linearly ordered;

- A personal note Proof Theory Turing progressions and ordinal analysis Fragments of Set Theory
- Kripke-Platek set theory for a recursively Mahlo universe of sets: KPM
- Same language as KP together with a unary predicate Ad
- Apart from the axioms of KP we have
 - Every element is contained in some admissible set;
 - The admissible sets are linearly ordered;
 - Admissible sets are transitive and closed under pairing and union

Image: A math a math

- Kripke-Platek set theory for a recursively Mahlo universe of sets: KPM
- Same language as KP together with a unary predicate Ad
- Apart from the axioms of KP we have
 - Every element is contained in some admissible set;
 - The admissible sets are linearly ordered;
 - Admissible sets are transitive and closed under pairing and union
 - For each Δ₀-function there is an admissible set that is closed under this function, that is,

For each Δ_0 -formula *G*:

$$(M): \quad \forall x \exists y G(x,y) \to \exists z \big(\mathsf{Ad}(z) \land \forall x \in z \exists y \in z \ G(x,y) \big)$$

A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory

• Let *M* be the first weakly Mahlo cardinal and κ, π regular cardinals between ω and *M*

イロト イヨト イヨト イヨト
A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory

Let M be the first weakly Mahlo cardinal and κ, π regular cardinals between ω and M

$$C^{M}(\alpha,\beta) = \begin{cases} \text{Closure of } \beta \cup \{0,\Omega\} \\ \text{under:} \\ +, \ (\gamma \mapsto \omega^{\gamma}) \\ (\gamma \delta \mapsto \chi^{\gamma}(\delta))_{\gamma < \alpha} \\ (\gamma \pi \mapsto \psi^{\gamma}(\pi))_{\gamma < \alpha} \end{cases}$$

 $\xi^{\alpha}(\delta) = \delta \text{th regular } \pi < M \text{ s.t. } C^{M}(\alpha, \pi) \cap M = \pi$ $\psi^{\alpha}(\pi) = \min\{\rho < \pi \mid C^{M}(\alpha, \rho) \cap \pi = \rho \land \pi \in C^{M}(\alpha, \rho)\}$

A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory

Let M be the first weakly Mahlo cardinal and κ, π regular cardinals between ω and M

$$C^{M}(\alpha,\beta) = \begin{cases} \text{Closure of } \beta \cup \{0,\Omega\} \\ \text{under:} \\ +, \ (\gamma \mapsto \omega^{\gamma}) \\ (\gamma \delta \mapsto \chi^{\gamma}(\delta))_{\gamma < \alpha} \\ (\gamma \pi \mapsto \psi^{\gamma}(\pi))_{\gamma < \alpha} \end{cases}$$

 $\begin{aligned} \xi^{\alpha}(\delta) &= \delta \text{th regular } \pi < M \text{ s.t. } C^{M}(\alpha, \pi) \cap M = \pi \\ \psi^{\alpha}(\pi) &= \min\{\rho < \pi \mid C^{M}(\alpha, \rho) \cap \pi = \rho \land \pi \in C^{M}(\alpha, \rho)\} \end{aligned}$ $\blacktriangleright \text{ Rathjen: } |\mathsf{KPM}| &= \psi^{\varepsilon_{M+1}}(\chi^{0}(0)) \end{aligned}$

A personal note Foundations and gauging strength Proof Theory Ordinal notation systems Turing progressions and ordinal analysis Fragments of Set Theory

Let M be the first weakly Mahlo cardinal and κ, π regular cardinals between ω and M

$$C^{M}(\alpha,\beta) = \begin{cases} \text{Closure of } \beta \cup \{0,\Omega\} \\ \text{under:} \\ +, \ (\gamma \mapsto \omega^{\gamma}) \\ (\gamma \delta \mapsto \chi^{\gamma}(\delta))_{\gamma < \alpha} \\ (\gamma \pi \mapsto \psi^{\gamma}(\pi))_{\gamma < \alpha} \end{cases}$$

 $\begin{aligned} \xi^{\alpha}(\delta) &= \delta \text{th regular } \pi < M \text{ s.t. } C^{M}(\alpha, \pi) \cap M = \pi \\ \psi^{\alpha}(\pi) &= \min\{\rho < \pi \mid C^{M}(\alpha, \rho) \cap \pi = \rho \land \pi \in C^{M}(\alpha, \rho)\} \end{aligned}$ $\blacktriangleright \text{ Rathjen: } |\mathsf{KPM}| = \psi^{\varepsilon_{M+1}}(\chi^{0}(0))$

> "However, I should be a little cautious here as a full proof has not yet been written down, mainly because it taxes the limits of human tolerance."

> > < ロ > < 同 > < 三 > < 三 >

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

$$\blacktriangleright U^0 := U;$$

イロト イヨト イヨト イヨト

•
$$U^0 := U;$$

• $U^{\alpha+1} := U^{\alpha} + Con(U^{\alpha});$

イロン イヨン イヨン

$$\begin{array}{l} U^0 := U; \\ U^{\alpha+1} := U^{\alpha} + \operatorname{Con}(U^{\alpha}); \\ U^{\lambda} := \cup_{\alpha < \lambda} U^{\alpha}. \end{array}$$

イロン 不同 とくほど 不同 とう

크

$$\begin{array}{l} U^0 := U; \\ U^{\alpha+1} := U^{\alpha} + \operatorname{Con}(U^{\alpha}); \\ U^{\lambda} := \cup_{\alpha < \lambda} U^{\alpha}. \end{array} \\ \\ \end{array}$$
 We define $|V|_{\Pi_1^0}^U := \sup\{\alpha \mid U^{\alpha} \subseteq V\}$

1

}

イロト イヨト イヨト イヨト

Modal language for finite Turing progressions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

- Modal language for finite Turing progressions
- $\blacktriangleright \Box_U \varphi: \varphi \text{ is provable in } U$

イロン イヨン イヨン

A personal note	Turing progressions and modal logics
Proof Theory	Polymodal provability logic
Turing progressions and ordinal analysis	Relative ordinal analysis

- Modal language for finite Turing progressions
- $\blacktriangleright \Box_U \varphi: \varphi \text{ is provable in } U$
- $\triangleright \diamond_U \varphi$: φ is consistent with U

▲冊▶ ▲臣▶ ▲臣▶

A personal note	Turing progressions and modal logics
Proof Theory	Polymodal provability logic
Turing progressions and ordinal analysis	Relative ordinal analysis

- Modal language for finite Turing progressions
- $\blacktriangleright \Box_U \varphi: \varphi \text{ is provable in } U$
- $\triangleright \diamond_U \varphi$: φ is consistent with U
- $\blacktriangleright \ \top$ stands for 0 \neq 1 and \bot for 0 = 1

A personal note	Turing progressions and modal logics
Proof Theory	Polymodal provability logic
Furing progressions and ordinal analysis	Relative ordinal analysis

- Modal language for finite Turing progressions
- $\blacktriangleright \Box_U \varphi: \varphi \text{ is provable in } U$
- $\triangleright \diamond_U \varphi$: φ is consistent with U
- $\blacktriangleright \ \top$ stands for 0 \neq 1 and \bot for 0 = 1
- $\Box_U \perp$: *U* is inconsistent; $\diamond_U \top$: *U* is consistent; $(\neg \Box_U \neg \bot)$

- Modal language for finite Turing progressions
- $\blacktriangleright \Box_U \varphi: \varphi \text{ is provable in } U$
- $\triangleright \diamond_U \varphi$: φ is consistent with U
- $\blacktriangleright \ \top$ stands for 0 \neq 1 and \bot for 0 = 1
- ► $\Box_U \perp$: *U* is inconsistent; $\diamond_U \top$: *U* is consistent; ($\neg \Box_U \neg \bot$)
- The propositional modal logic GL has axioms

and rules Modus Ponens and Necessitation: $\frac{A}{\Box A}$

- Modal language for finite Turing progressions
- $\blacktriangleright \Box_U \varphi: \varphi \text{ is provable in } U$
- $\triangleright \diamond_U \varphi$: φ is consistent with U
- $\blacktriangleright \ \top$ stands for 0 \neq 1 and \bot for 0 = 1
- $\Box_U \perp$: *U* is inconsistent; $\diamond_U \top$: *U* is consistent; $(\neg \Box_U \neg \bot)$
- The propositional modal logic GL has axioms
 - All propositional logical tautologies;

and rules Modus Ponens and Necessitation: $\frac{A}{\Box A}$

- Modal language for finite Turing progressions
- $\blacktriangleright \Box_U \varphi: \varphi \text{ is provable in } U$
- $\diamond_U \varphi$: φ is consistent with U
- $\blacktriangleright \ \top$ stands for 0 \neq 1 and \bot for 0 = 1
- $\Box_U \perp$: *U* is inconsistent; $\diamond_U \top$: *U* is consistent; $(\neg \Box_U \neg \bot)$
- The propositional modal logic GL has axioms
 - All propositional logical tautologies;
 - $\blacktriangleright \ \Box(A \to B) \to (\Box A \to \Box B);$

and rules Modus Ponens and Necessitation: $\frac{A}{\Box A}$

イロト イヨト イヨト イヨト

- Modal language for finite Turing progressions
- $\blacktriangleright \Box_U \varphi: \varphi \text{ is provable in } U$
- $\triangleright \diamond_U \varphi$: φ is consistent with U
- $\blacktriangleright \ \top$ stands for 0 \neq 1 and \bot for 0 = 1
- $\Box_U \perp$: *U* is inconsistent; $\diamond_U \top$: *U* is consistent; $(\neg \Box_U \neg \bot)$
- The propositional modal logic GL has axioms
 - All propositional logical tautologies;

$$\blacktriangleright \ \Box(A \to B) \to (\Box A \to \Box B);$$

$$\blacktriangleright \Box(\Box A \to A) \to \Box A.$$

and rules Modus Ponens and Necessitation: $\frac{A}{\Box A}$

- A personal note Proof Theory Turing progressions and ordinal analysis Turing progressions and ordinal analysis
- Modal language for finite Turing progressions
- $\blacktriangleright \Box_U \varphi: \varphi \text{ is provable in } U$
- $\blacktriangleright \diamond_U \varphi$: φ is consistent with U
- $\blacktriangleright \ \top$ stands for 0 \neq 1 and \perp for 0 = 1
- $\Box_U \perp$: *U* is inconsistent; $\diamond_U \top$: *U* is consistent; $(\neg \Box_U \neg \bot)$
- The propositional modal logic GL has axioms
 - All propositional logical tautologies;

$$\blacktriangleright \ \Box(A \to B) \to (\Box A \to \Box B);$$

 $\blacktriangleright \Box (\Box A \to A) \to \Box A.$

and rules Modus Ponens and Necessitation: $\frac{A}{\Box A}$

PSPACE complete logic with nice Kripke semantics

イロト イヨト イヨト イヨト

- A personal note Proof Theory Turing progressions and ordinal analysis Prode Theory Turing progressions and ordinal analysis
- Modal language for finite Turing progressions
- $\blacktriangleright \Box_U \varphi: \varphi \text{ is provable in } U$
- $\diamond_U \varphi$: φ is consistent with U
- $\blacktriangleright \ \top$ stands for 0 \neq 1 and \perp for 0 = 1
- $\Box_U \perp$: *U* is inconsistent; $\diamond_U \top$: *U* is consistent; $(\neg \Box_U \neg \bot)$
- The propositional modal logic GL has axioms
 - All propositional logical tautologies;

$$\blacktriangleright \ \Box(A \to B) \to (\Box A \to \Box B);$$

 $\blacktriangleright \Box(\Box A \to A) \to \Box A.$

and rules Modus Ponens and Necessitation: $\frac{A}{\Box A}$

- PSPACE complete logic with nice Kripke semantics
- ▶ U^0 is represented by \top ; next U^1 by $\diamond \top$ and, U^2 by $\diamond \diamond \top$, etc.

イロト イヨト イヨト イヨト

A personal note Proof Theory Turing progressions and ordinal analysis **Turing progressions and modal logics** Polymodal provability logic Relative ordinal analysis

イロン 不同 とくほど 不同 とう

æ,

Solovay's completeness result:

 $\mathbf{GL} \vdash A \iff \forall * \mathsf{PA} \vdash A^*$

A personal note Proof Theory Turing progressions and ordinal analysis

Turing progressions and modal logics Polymodal provability logic Relative ordinal analysis

Solovay's completeness result:

$$\mathsf{GL} \vdash A \iff \forall * \mathsf{PA} \vdash A^*$$

Two alternative interpretations from Solovay

イロト イヨト イヨト イヨト

Solovay's completeness result:

$$\mathsf{GL} \vdash A \iff \forall * \mathsf{PA} \vdash A^*$$

- Two alternative interpretations from Solovay
- True in all universes of ZFC: yields GL (provided some natural reflection principles (RFN_{ZFC}(Π⁰₂)))

イロト イヨト イヨト イヨト

Solovay's completeness result:

$$\mathsf{GL} \vdash A \iff \forall * \mathsf{PA} \vdash A^*$$

- Two alternative interpretations from Solovay
- True in all universes of ZFC: yields GL (provided some natural reflection principles (RFN_{ZFC}(Π⁰₂)))
- True in all transitive models of ZF(C): yields GL + □(□A → □B) ∨ □(□B → A ∧ □A) provided there are infinitely many α so that L_α is a model of ZF + V=L

イロト イポト イヨト イヨト

Solovay's completeness result:

$$\mathsf{GL} \vdash A \iff \forall * \mathsf{PA} \vdash A^*$$

- Two alternative interpretations from Solovay
- True in all universes of ZFC: yields GL (provided some natural reflection principles (RFN_{ZFC}(Π⁰₂)))
- True in all transitive models of ZF(C): yields GL + □(□A → □B) ∨ □(□B → A ∧ □A) provided there are infinitely many α so that L_α is a model of ZF + V=L
- True in all models V_κ of ZFC: yields GL + □(□A → B) ∨ □(B ∧ □B → A) provided there are infinitely many inaccessibles

イロン イヨン イヨン イヨン

Solovay's completeness result:

$$\mathbf{GL} \vdash A \iff \forall * \mathsf{PA} \vdash A^*$$

- Two alternative interpretations from Solovay
- True in all universes of ZFC: yields GL (provided some natural reflection principles (RFN_{ZFC}(Π⁰₂)))
- True in all transitive models of ZF(C): yields GL + □(□A → □B) ∨ □(□B → A ∧ □A) provided there are infinitely many α so that L_α is a model of ZF + V=L
- True in all models V_κ of ZFC: yields GL + □(□A → B) ∨ □(B ∧ □B → A) provided there are infinitely many inaccessibles
- ► (Hamkins, Löwe) True in all forcing extensions: yields S4.2 where the .2 axiom is $\Diamond \Box \varphi \rightarrow \Box \Diamond \varphi$ Provided ZFC is consistent

▶ U^0 is represented by \top ; next U^1 by $\diamond \top$ and, U^2 by $\diamond \diamond \top$, etc.

イロン イヨン イヨン

*U*⁰ is represented by ⊤; next *U*¹ by ◇⊤ and, *U*² by ◇◇⊤, etc.
U + ⟨1⟩_U⊤ ≡_{Π⁰₁} *U*^ω, etc.

イロン 不同 とくほど 不同 とう

크

▶
$$U^0$$
 is represented by \top ; next U^1 by $\diamond \top$ and, U^2 by $\diamond \diamond \top$, etc.

$$\blacktriangleright U + \langle 1 \rangle_U \top \equiv_{\Pi_1^0} U^{\omega}, \text{ etc.}$$

The logic GLP_Λ governs the structural properties for these generalized provability notions. Only additional axioms for α < β:</p>

イロト イヨト イヨト イヨト

▶
$$U^0$$
 is represented by \top ; next U^1 by $\diamond \top$ and, U^2 by $\diamond \diamond \top$, etc.

$$\blacktriangleright U + \langle 1 \rangle_U \top \equiv_{\Pi_1^0} U^{\omega}, \text{ etc.}$$

- The logic GLP_Λ governs the structural properties for these generalized provability notions. Only additional axioms for α < β:</p>
 - $[\alpha]\varphi \rightarrow [\beta]\varphi$ (the provability notions increase);

イロト イヨト イヨト イヨト

æ

▶
$$U^0$$
 is represented by \top ; next U^1 by $\diamond \top$ and, U^2 by $\diamond \diamond \top$, etc.

$$\blacktriangleright U + \langle 1 \rangle_U \top \equiv_{\Pi_1^0} U^{\omega}, \text{ etc.}$$

- The logic GLP_Λ governs the structural properties for these generalized provability notions. Only additional axioms for α < β:</p>
 - $[\alpha]\varphi \rightarrow [\beta]\varphi$ (the provability notions increase);
 - $\langle \alpha \rangle \varphi \rightarrow [\beta] \langle \varphi \rangle$ (the increase is strict)

イロン イヨン イヨン イヨン

•
$$U^0$$
 is represented by \top ; next U^1 by $\diamond \top$ and, U^2 by $\diamond \diamond \top$, etc.

$$\blacktriangleright U + \langle 1 \rangle_U \top \equiv_{\Pi_1^0} U^{\omega}, \text{ etc.}$$

- The logic GLP_Λ governs the structural properties for these generalized provability notions. Only additional axioms for α < β:</p>
 - $[\alpha]\varphi \rightarrow [\beta]\varphi$ (the provability notions increase);
 - $\langle \alpha \rangle \varphi \rightarrow [\beta] \langle \varphi \rangle$ (the increase is strict)
- GLP₂ is already Kripke incomplete (but still PSPACE complete)

< ロ > < 同 > < 三 > < 三 >

•
$$U^0$$
 is represented by \top ; next U^1 by $\diamond \top$ and, U^2 by $\diamond \diamond \top$, etc.

$$\blacktriangleright U + \langle 1 \rangle_U \top \equiv_{\Pi_1^0} U^{\omega}, \text{ etc.}$$

- The logic GLP_Λ governs the structural properties for these generalized provability notions. Only additional axioms for α < β:</p>
 - $[\alpha]\varphi \rightarrow [\beta]\varphi$ (the provability notions increase);
 - $\langle \alpha \rangle \varphi \rightarrow [\beta] \langle \varphi \rangle$ (the increase is strict)
- GLP₂ is already Kripke incomplete (but still PSPACE complete)
- It has natural topological semantics though

< ロ > < 同 > < 三 > < 三 >

For
$$\mathcal{M} := \langle X, \tau \rangle$$
 a topological space

◆□ > ◆□ > ◆ □ > ◆ □ > ●

Ð,

A personal note Turing progressions and modal logics Proof Theory Polymodal provability logic Relative ordinal analysis

- For $\mathcal{M} := \langle X, \tau \rangle$ a topological space
- an interpretation * maps any propositional variable p to some subset of X

イロト イヨト イヨト イヨト

A personal note Turing progressions and modal logics Proof Theory Polymodal provability logic Relative ordinal analysis

• For
$$\mathcal{M} := \langle X, \tau \rangle$$
 a topological space

- an interpretation * maps any propositional variable p to some subset of X
- this is extended to all formulas:

$$\begin{split} \llbracket \bot \rrbracket_{\mathcal{M}}^{*} &= \varnothing; \\ \llbracket \rho \rrbracket_{\mathcal{M}}^{*} &= \rho^{*}; \\ \llbracket \neg \phi \rrbracket_{\mathcal{M}}^{*} &= M \setminus \llbracket \phi \rrbracket_{\mathcal{M}}^{*}; \\ \llbracket \phi \wedge \psi \rrbracket_{\mathcal{M}}^{*} &= \llbracket \phi \rrbracket_{\mathcal{M}}^{*} \cap \llbracket \psi \rrbracket_{\mathcal{M}}^{*}; \\ \llbracket \diamond \phi \rrbracket_{\mathcal{M}}^{*} &= d(\llbracket \phi \rrbracket_{\mathcal{M}}^{*}). \end{split}$$

Here d(Y) is the set of accumulation points of Y: $x \in d(Y) \leftrightarrow \forall \mathcal{O} \in \tau \ (x \in \mathcal{O} \to \mathcal{O} \cap Y \setminus \{x\}) \neq \emptyset$

イロト イポト イヨト イヨト
A personal note Turing progressions and modal logics Proof Theory Polymodal provability logic Relative ordinal analysis

For
$$\mathcal{M} := \langle X, \tau \rangle$$
 a topological space

- an interpretation * maps any propositional variable p to some subset of X
- this is extended to all formulas:

$$\begin{split} \llbracket \bot \rrbracket_{\mathcal{M}}^{*} &= \varnothing; \\ \llbracket \rho \rrbracket_{\mathcal{M}}^{*} &= \rho^{*}; \\ \llbracket \neg \phi \rrbracket_{\mathcal{M}}^{*} &= M \setminus \llbracket \phi \rrbracket_{\mathcal{M}}^{*}; \\ \llbracket \phi \land \psi \rrbracket_{\mathcal{M}}^{*} &= \llbracket \phi \rrbracket_{\mathcal{M}}^{*} \cap \llbracket \psi \rrbracket_{\mathcal{M}}^{*}; \\ \llbracket \diamond \phi \rrbracket_{\mathcal{M}}^{*} &= d(\llbracket \phi \rrbracket_{\mathcal{M}}^{*}). \end{split}$$

Here d(Y) is the set of accumulation points of Y: $x \in d(Y) \leftrightarrow \forall \mathcal{O} \in \tau \ (x \in \mathcal{O} \to \mathcal{O} \cap Y \setminus \{x\}) \neq \emptyset$ $\blacktriangleright \mathcal{M} \models \varphi$ is defined as $\forall * \llbracket \varphi \rrbracket_{\mathcal{M}}^* = X$

A personal note Turing progressions and modal logics Proof Theory Polymodal provability logic Relative ordinal analysis

Blass, Abazhidze: GL is complete for the scattered space [0, α] endowed with the interval topology if α ≥ ω^ω

イロト イヨト イヨト イヨト

- A personal note Proof Theory Turing progressions and ordinal analysis Prode Theory Turing progressions and ordinal analysis
- Blass, Abazhidze: GL is complete for the scattered space [0, α] endowed with the interval topology if α ≥ ω^ω
- Blass: GL is complete for [0, α] endowed with the club topology provided α ≥ ℵ_ω (and assuming Jensen's Principle □_{ℵn} for n < ω)</p>

- A personal note Turing progressions and modal logics Proof Theory Polymodal provability logic Relative ordinal analysis
- Blass, Abazhidze: GL is complete for the scattered space [0, α] endowed with the interval topology if α ≥ ω^ω
- Blass: GL is complete for [0, α] endowed with the club topology provided α ≥ ℵ_ω (and assuming Jensen's Principle □_{ℵn} for n < ω)</p>
- Blass: assuming the consistency of "there is a Mahlo cardinal", it is consistent with ZFC that GL is incomplete wrt club topology on any [0, α]

< ロ > < 同 > < 三 > < 三 >

- A personal note Turing progressions and modal logics Proof Theory Polymodal provability logic Relative ordinal analysis
- Blass, Abazhidze: GL is complete for the scattered space [0, α] endowed with the interval topology if α ≥ ω^ω
- Blass: GL is complete for [0, α] endowed with the club topology provided α ≥ ℵ_ω (and assuming Jensen's Principle □_{ℵn} for n < ω)</p>
- Blass: assuming the consistency of "there is a Mahlo cardinal", it is consistent with ZFC that GL is incomplete wrt club topology on any [0, α]
- Beklemishev: Blass result holds also for GLP₂ for the bi-topological space that combines interval and club topology

< ロ > < 同 > < 三 > < 三 >

- Blass, Abazhidze: GL is complete for the scattered space [0, α] endowed with the interval topology if α ≥ ω^ω
- Blass: GL is complete for [0, α] endowed with the club topology provided α ≥ ℵ_ω (and assuming Jensen's Principle □_{ℵn} for n < ω)</p>
- Blass: assuming the consistency of "there is a Mahlo cardinal", it is consistent with ZFC that GL is incomplete wrt club topology on any [0, α]
- Beklemishev: Blass result holds also for GLP₂ for the bi-topological space that combines interval and club topology
- Bagaria, Magidor, Sakai: calibrating the consistency strength of non-discreteness for the topologies τ_ξ corresponding to the [ξ] modality in GLP_Λ

A personal note Proof Theory Turing progressions and ordinal analysis

Turing progressions and modal logics Polymodal provability logic Relative ordinal analysis

・ロト ・御 ト ・ ヨ ト ・ ヨ ト

Ð,

• GLP_{ω} and Turing progressions

- GLP_{ω} and Turing progressions
- An ordinal analysis for PA using GLP_ω is based on versatility of worms (iterated consistency statements)

A personal note Turing progressions and modal logics Proof Theory Polymodal provability logic Turing progressions and ordinal analysis

- GLP_{ω} and Turing progressions
- An ordinal analysis for PA using GLP_ω is based on versatility of worms (iterated consistency statements)
- Leivant, Beklemishev: Worms provably denote fragments of arithmetic: (n + 2)_{EA} ⊤ ≡ IΣ_{n+1}

- GLP_{ω} and Turing progressions
- An ordinal analysis for PA using GLP_ω is based on versatility of worms (iterated consistency statements)
- Leivant, Beklemishev: Worms provably denote fragments of arithmetic: (n + 2)_{EA} ⊤ ≡ IΣ_{n+1}
- ▶ Beklemishev, Fernández-Duque, JjJ: Worms provably correspond to ordinals: ⟨W, <₀⟩ ≅ ⟨On, <⟩ where for worms A, B we define

$$A <_0 B :\iff \mathsf{GLP}_{\mathsf{On}} \vdash B \to \langle 0 \rangle A$$

- GLP_{ω} and Turing progressions
- An ordinal analysis for PA using GLP_ω is based on versatility of worms (iterated consistency statements)
- Leivant, Beklemishev: Worms provably denote fragments of arithmetic: (n + 2)_{EA} ⊤ ≡ IΣ_{n+1}
- ▶ Beklemishev, Fernández-Duque, JjJ: Worms provably correspond to ordinals: ⟨W, <₀⟩ ≅ ⟨On, <⟩ where for worms A, B we define

$$A <_0 B :\iff \mathsf{GLP}_{\mathsf{On}} \vdash B \to \langle 0 \rangle A$$

 Beklemishev: Worms provably correspond to Turing progressions

$$\forall \, \alpha < \varepsilon_{0} \exists \, A \in \mathbb{W}_{\omega} \, \left(\mathrm{EA}^{+} + A^{*} \equiv (\mathrm{EA}^{+})^{\alpha} \right)$$

- GLP_{ω} and Turing progressions
- An ordinal analysis for PA using GLP_ω is based on versatility of worms (iterated consistency statements)
- Leivant, Beklemishev: Worms provably denote fragments of arithmetic: (n + 2)_{EA} ⊤ ≡ IΣ_{n+1}
- ▶ Beklemishev, Fernández-Duque, JjJ: Worms provably correspond to ordinals: ⟨W, <₀⟩ ≅ ⟨On, <⟩ where for worms A, B we define

$$A <_0 B :\iff \mathsf{GLP}_{\mathsf{On}} \vdash B \to \langle 0 \rangle A$$

 Beklemishev: Worms provably correspond to Turing progressions

$$\forall \, \alpha < \varepsilon_{\mathbf{0}} \exists \, \mathbf{A} \in \mathbb{W}_{\omega} \, \left(\mathrm{EA}^{+} + \mathbf{A}^{*} \equiv (\mathrm{EA}^{+})^{\alpha} \right)$$

Japaridze: The behavior of worms is governed by the simple propositional modal logic GLP

Benefit fine-grained: PA vs PA + Con(PA)

ヘロン 人間 とくほど くほどう

E.

- Benefit fine-grained: PA vs PA + Con(PA)
- Benefit for strong theories: relative ordinal analysis

イロト イヨト イヨト イヨト

- Benefit fine-grained: PA vs PA + Con(PA)
- Benefit for strong theories: relative ordinal analysis
- ► Idea: foundation is like induction $\exists x G(x) \rightarrow \exists x (G(x) \land \forall y \in x \neg G(x))$

イロト イヨト イヨト イヨト

æ

- Benefit fine-grained: PA vs PA + Con(PA)
- Benefit for strong theories: relative ordinal analysis
- ► Idea: foundation is like induction $\exists x G(x) \rightarrow \exists x (G(x) \land \forall y \in x \neg G(x))$
- ► Pakhomov: $\mathsf{KP} \equiv_{\Pi_2^0} \mathsf{RFN}_{\Pi_2^0}^{\varepsilon_{\mathsf{On+1}}}(\mathsf{KP}_0)$

- Benefit fine-grained: PA vs PA + Con(PA)
- Benefit for strong theories: relative ordinal analysis
- ► Idea: foundation is like induction $\exists x G(x) \rightarrow \exists x (G(x) \land \forall y \in x \neg G(x))$
- ► Pakhomov: $KP \equiv_{\Pi_2^0} RFN_{\Pi_2^0}^{\varepsilon_{On+1}}(KP_0)$
- Axioms of KP₀: Extensionality, Pair, Union, Infinity, Δ₀-Separation, Δ₀-Collection, Regularity, Transitive Containment (each set is member of a transitive set), and Totality of Rank Function

Some doodles[Bagaria, JjJ]: • Do we have " $\frac{PA}{EA} = \frac{ZFC}{X}$ "?

イロン イヨン イヨン

э

Some doodles[Bagaria, JjJ]:

- Do we have " $\frac{PA}{EA} = \frac{ZFC}{X}$ "?
- Let X be the theory ZFC {Repl + Inf}. Levy:

 $\mathsf{ZFC} \equiv \mathsf{X} + \mathtt{RFN}(\mathsf{X}).$

イロト イヨト イヨト イヨト

Some doodles[Bagaria, JjJ]:

- Do we have " $\frac{PA}{EA} = \frac{ZFC}{X}$ "?
- Let X be the theory ZFC {Repl + Inf}. Levy:

$$ZFC \equiv X + RFN(X).$$

 Here, RFN refers to the following notion of reflection: For each (externally quantified) natural number n, we denote by RFN_{Σn}(X) the following principle

$$\forall \varphi \in \Sigma_n \forall a \exists \alpha \in \mathsf{On} \ [V_\alpha \models \varphi(a) \Leftrightarrow \models_n \varphi(a)].$$

with \models_n a partial truth predicate

イロン イヨン イヨン イヨン

A personal note	Turing progressions and modal logics
Proof Theory	Polymodal provability logic
Turing progressions and ordinal analysis	Relative ordinal analysis

$$C^{(n)} := \{ \alpha \mid V_{\alpha} \prec_{\Sigma_n} V \}.$$

Levy: the classes $C^{(n)}$ are Π_n definable in X.

イロン 不良 とうほどう ほう

$$C^{(n)} := \{ \alpha \mid V_{\alpha} \prec_{\Sigma_n} V \}.$$

Levy: the classes *C*^(*n*) are Π_{*n*} definable in X. ► Next, we define

$$\langle n \rangle_{\mathsf{T}} \varphi : \Leftrightarrow \exists \alpha \in \mathcal{C}^{(n)} [V_{\alpha} \models \mathsf{T} \land V_{\alpha} \models \varphi]$$

イロン イヨン イヨン

$$C^{(n)} := \{ \alpha \mid V_{\alpha} \prec_{\Sigma_n} V \}.$$

Levy: the classes $C^{(n)}$ are Π_n definable in X.

Next, we define

$$\langle n \rangle_{\mathsf{T}} \varphi : \Leftrightarrow \exists \alpha \in \mathcal{C}^{(n)} [V_{\alpha} \models \mathsf{T} \land V_{\alpha} \models \varphi]$$

• Seems to yield an interpretation of GLP_{ω} leading to

$$C^{(n)} := \{ \alpha \mid V_{\alpha} \prec_{\Sigma_n} V \}.$$

Levy: the classes $C^{(n)}$ are Π_n definable in X.

Next, we define

$$\langle n \rangle_{\mathsf{T}} \varphi : \Leftrightarrow \exists \alpha \in \mathcal{C}^{(n)} [V_{\alpha} \models \mathsf{T} \land V_{\alpha} \models \varphi]$$

Seems to yield an interpretation of GLP_ω leading to
...

イロト イヨト イヨト イヨト