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hereafter), in particular the ‘Big Five’ systems.

We show that the associated ‘coding practise’ of RM based on
second-order arithmetic is fundamentally flawed.

Working in Kohlenbach’s higher-order RM, we identify two new
‘Big’ systems.

This is part of my joint project with Dag Normann to investigate
the logical and computational properties of the uncountable.
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T is a theorem of ordinary (=non-set theoretic) mathematics

The proof takes place in RCA0 (≈ idealized computer, TM).

Axioms A state the existence of non-computable sets.

Reversal in many cases: RCA0 proves (A ↔ T )

Big Five: RCA0, WKL0, ACA0, ATR0 and Π1
1 -CA0

Most theorems of ‘ordinary’ mathematics are either provable in
RCA0 or equivalent to one of the ‘Big Five’ theories.

= Main Theme of RM



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

Introducing Reverse Mathematics

Reverse Mathematics

= finding the minimal axioms A needed to prove a theorem T

T is a theorem of ordinary (=non-set theoretic) mathematics

The proof takes place in RCA0 (≈ idealized computer, TM).

Axioms A state the existence of non-computable sets.

Reversal in many cases: RCA0 proves (A ↔ T )

Big Five: RCA0, WKL0, ACA0, ATR0 and Π1
1 -CA0

Most theorems of ‘ordinary’ mathematics are either provable in
RCA0 or equivalent to one of the ‘Big Five’ theories.

= Main Theme of RM



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

Introducing Reverse Mathematics

Reverse Mathematics

= finding the minimal axioms A needed to prove a theorem T

T is a theorem of ordinary (=non-set theoretic) mathematics

The proof takes place in RCA0 (≈ idealized computer, TM).

Axioms A state the existence of non-computable sets.

Reversal in many cases: RCA0 proves (A ↔ T )

Big Five: RCA0, WKL0, ACA0, ATR0 and Π1
1 -CA0

Most theorems of ‘ordinary’ mathematics are either provable in
RCA0 or equivalent to one of the ‘Big Five’ theories.

= Main Theme of RM



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

Introducing Reverse Mathematics

Reverse Mathematics

= finding the minimal axioms A needed to prove a theorem T

= finding the minimal axioms A such that RCA0 proves (A → T ).

T is a theorem of ordinary (=non-set theoretic) mathematics

The proof takes place in RCA0 (≈ idealized computer, TM).

Axioms A state the existence of non-computable sets.

Reversal in many cases: RCA0 proves (A ↔ T )

Big Five: RCA0, WKL0, ACA0, ATR0 and Π1
1 -CA0

Most theorems of ‘ordinary’ mathematics are either provable in
RCA0 or equivalent to one of the ‘Big Five’ theories.

= Main Theme of RM



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

Introducing Reverse Mathematics

Reverse Mathematics

= finding the minimal axioms A needed to prove a theorem T

= finding the minimal axioms A such that RCA0 proves (A → T ).

T is a theorem of ordinary (=non-set theoretic) mathematics

The proof takes place in RCA0 (≈ idealized computer, TM).

Axioms A state the existence of non-computable sets.

Reversal in many cases: RCA0 proves (A ↔ T )

Big Five: RCA0, WKL0, ACA0, ATR0 and Π1
1 -CA0

Most theorems of ‘ordinary’ mathematics are either provable in
RCA0 or equivalent to one of the ‘Big Five’ theories.

= Main Theme of RM



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

Introducing Reverse Mathematics

Reverse Mathematics

= finding the minimal axioms A needed to prove a theorem T

= finding the minimal axioms A such that RCA0 proves (A → T ).

T is a theorem of ordinary (=non-set theoretic) mathematics

The proof takes place in RCA0 (≈ idealized computer, TM).

Axioms A state the existence of non-computable sets.

Reversal in many cases: RCA0 proves (A ↔ T )

Big Five: RCA0, WKL0, ACA0, ATR0 and Π1
1 -CA0

Most theorems of ‘ordinary’ mathematics are either provable in
RCA0 or equivalent to one of the ‘Big Five’ theories.

= Main Theme of RM



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

Introducing Reverse Mathematics

Reverse Mathematics

= finding the minimal axioms A needed to prove a theorem T

= finding the minimal axioms A such that RCA0 proves (A → T ).

T is a theorem of ordinary (=non-set theoretic) mathematics

The proof takes place in RCA0 (≈ idealized computer, TM).

Axioms A state the existence of non-computable sets.

Reversal in many cases: RCA0 proves (A ↔ T )

Big Five: RCA0, WKL0, ACA0, ATR0 and Π1
1 -CA0

Most theorems of ‘ordinary’ mathematics are either provable in
RCA0 or equivalent to one of the ‘Big Five’ theories.

= Main Theme of RM



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

Introducing Reverse Mathematics

Reverse Mathematics

= finding the minimal axioms A needed to prove a theorem T

= finding the minimal axioms A such that RCA0 proves (A → T ).

T is a theorem of ordinary (=non-set theoretic) mathematics

The proof takes place in RCA0 (≈ idealized computer, TM).

Axioms A state the existence of non-computable sets.

Reversal in many cases: RCA0 proves (A ↔ T )

Big Five: RCA0, WKL0, ACA0, ATR0 and Π1
1 -CA0

Most theorems of ‘ordinary’ mathematics are either provable in
RCA0 or equivalent to one of the ‘Big Five’ theories.

= Main Theme of RM



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

Computable mathematics in the base theory RCA0

The following theorems can be proved in RCA0:

1 Basic properties of reals, fields, functions, etc

2 Intermediate value theorem:
(∀f ∈ C [0, 1])(f (0)f (1) < 0→ (∃x ∈ [0, 1])(f (x) = 0)).

3 Picard’s theorem for y ′ = f (x , y) with f Lifschitz-continuous.

4 Existence of algebraic closure of countable fields (not
uniqueness).

5 Soundness theorem: If a set X of formulas has a model, then
X does not prove 0 = 1 .

6 Banach/Steinhaus uniform boundedness principle.

7 Recursive Comprehension Axiom: the set {n ∈ N : f (n) = 0}
for computable f : N→ N exists.

Intuitively, RCA0 can do computable mathematics (with restricted
induction).
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Reverse Mathematics for WKL0

Central principle:

Principle (Weak König’s Lemma)

Every infinite binary tree has an infinite path.

Assuming the base theory RCA0, WKL is equivalent to

1 Heine-Borel Every countable open covering of [0, 1] has a
finite sub-covering.

2 Heine A continuous function on [0, 1] is uniformly continuous.

3 A continuous function on [0, 1] is Riemann integrable.

4 Weierstraß a continuous function on [0, 1] attains a maximum.

5 Peano’s theorem for differential equations y ′ = f (x , y).

Definitely ordinary mathematics: first-year calculus!

Nonetheless, such maxima and infinite paths are not computable.
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8 Gödel’s completeness/compactness theorem.

9 A countable commutative ring has a prime ideal.

10 A countable formally real field is orderable.

11 A countable formally real field has a (unique) closure.

12 Brouwer’s fixed point theorem A continuous function from
[0, 1]n to [0, 1]n has a fixed point.

13 Hahn-Banach theorem for separable spaces.

14 A continuous function on [0, 1] can be approximated by
(Bernstein) polynomials.

Algebra, analysis, logic, topology, . . . : transdisciplinary equivalences.

Intuitively speaking, WKL0 can do (Heine-Borel) compactness
arguments.

Simpson: connection to Hilbert’s program for the FOM. . .
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Reverse mathematics of ACA0

A formula is arithmetical if it only contains quantifiers ∃n ∈ N and
∀m ∈ N.

Central principle:

Principle (Arithmetical comprehension axiom)

For every arithmetical A(n), the set
{
n ∈ N : A(n)

}
exists.

Assuming the base theory RCA0, ACA is equivalent to

1 Turing’s Halting problem (with parameters).

2 Bolzano-Weierstraß theorem Every bounded real sequence has
a convergent subsequence.

3 Ascoli-Arzela theorem: Every bounded equicontinuous
sequence of real- valued continuous functions on a bounded
interval has a uniformly convergent subsequence.

4 Every countable commutative ring has a maximal ideal.
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1 Turing’s Halting problem (with parameters).

2 Bolzano-Weierstraß theorem Every bounded real sequence has
a convergent subsequence.

3 Ascoli-Arzela theorem: Every bounded equicontinuous
sequence of real- valued continuous functions on a bounded
interval has a uniformly convergent subsequence.

4 Every countable commutative ring has a maximal ideal.
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Reverse mathematics of ACA0

5 Every countable vector space has a basis.

(No AC needed)

6 Every countable field (of char. 0) has a transcendence basis.

7 Ramsey’s Theorem(s) (combinatorics, graph colouring etc)

8 Koenig’s lemma: Every infinite, finitely branching tree has an
infinite path.

9 Monotone convergence theorem for [0, 1].

10 Every countable Abelian group has a unique divisible closure.

Again, definitely ordinary mathematics!

Intuitively speaking, ACA0 can do sequential compactness
arguments.

Similar equivalences for ATR0 and Π1
1 -CA0, though some set

theory comes to the fore already.
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The Big Five picture of RM

= Mathematical theorems seem to ‘cluster’ around the Big Five,
while ‘sparse’ everywhere else.

6

RCA0

WKL0

ACA0

ATR0

Π1
1 -CA0

proves Interm. value thm, Soundness thm, Existence of alg. clos. . . .

↔ Peano exist. ↔ Weierstraß approx. ↔ Weierstraß max. ↔ Hahn-

Banach ↔ Heine-Borel ↔ Brouwer fixp. ↔ Gödel compl. ↔ . . .

↔ Bolzano-Weierstraß ↔ Ascoli-Arzela ↔ Köning ↔ Ramsey (k ≥ 3)

↔ Countable Basis ↔ Countable Max. Ideal ↔ . . .

↔ Ulm ↔ Lusin ↔ Perfect Set ↔ Baire space Ramsey ↔ . . .

↔ Cantor-Bendixson ↔ Silver ↔ Baire space Det. ↔ Menger ↔ . . .
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Distinction between logical formula with mathematical meaning and

‘purely logical’ formula, i.e. between subject (math) and formalization (logic).
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Our best, most fine-grained foundation of ordinary math?
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Representations

Higher-order objects (functions on R, topologies, metric spaces,
etc) are studied via second-order representations/codes in L2.

L2 has variables ‘n ∈ N’ and ‘X ⊂ N’.

Any formalisation of math involves representations/codes. BUT:

This situation has prompted [Bishop/Bridges] to build a modulus
of uniform continuity into their definitions of continuous function.
Such a procedure may be appropriate for Bishop since his goal is to
replace ordinary mathematical theorems by their “constructive”
counterparts. However, as explained in chapter I, our goal is quite
different. Namely, we seek to draw out the set existence
assumptions which are implicit in the ordinary mathematical
theorems as they stand. (S. Simpson, SOSOA)

Prime Directive: if one wants to classify theorems as they stand,
coding should not change the logical strength of these theorems.
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The Good: coding continuous functions

ε-δ-continuity for f : [0, 1]→ R is defined as follows:

(∀ε > 0, x ∈ [0, 1])(∃δ > 0)(∀y ∈ [0, 1])(|x−y | < δ → |f (x)−f (y)| < ε).

‘continuity-via-codes’ is defined in L2 as follows:

These two definitions are equivalent in a weak higher-order system
based on WKL (Kohlenbach/Kleene).

Hence, coding does not change the logical strength of theorems
about continuous functions (assuming WKL is available).



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

The Good: coding continuous functions

ε-δ-continuity for f : [0, 1]→ R is defined as follows:

(∀ε > 0, x ∈ [0, 1])(∃δ > 0)(∀y ∈ [0, 1])(|x−y | < δ → |f (x)−f (y)| < ε).

‘continuity-via-codes’ is defined in L2 as follows:

These two definitions are equivalent in a weak higher-order system
based on WKL (Kohlenbach/Kleene).

Hence, coding does not change the logical strength of theorems
about continuous functions (assuming WKL is available).



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

The Good: coding continuous functions

ε-δ-continuity for f : [0, 1]→ R is defined as follows:

(∀ε > 0, x ∈ [0, 1])(∃δ > 0)(∀y ∈ [0, 1])(|x−y | < δ → |f (x)−f (y)| < ε).

‘continuity-via-codes’ is defined in L2 as follows:

These two definitions are equivalent in a weak higher-order system
based on WKL (Kohlenbach/Kleene).

Hence, coding does not change the logical strength of theorems
about continuous functions (assuming WKL is available).



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

The Good: coding continuous functions

ε-δ-continuity for f : [0, 1]→ R is defined as follows:

(∀ε > 0, x ∈ [0, 1])(∃δ > 0)(∀y ∈ [0, 1])(|x−y | < δ → |f (x)−f (y)| < ε).

‘continuity-via-codes’ is defined in L2 as follows:

These two definitions are equivalent in a weak higher-order system
based on WKL (Kohlenbach/Kleene).

Hence, coding does not change the logical strength of theorems
about continuous functions (assuming WKL is available).



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

The Bad: coding Riemann integrable functions

Around 1850, Riemann’s Habilschrift introduces his integral and
forces discontinuous functions into mainstream math.

Theorem (Arzela, 1885)

Let fn : ([0, 1]× N)→ R be a sequence such that

1 Each fn is Riemann integrable on [0, 1].

2 There is M > 0 such that (∀n ∈ N, x ∈ [0, 1])(|fn(x)| ≤ M).

3 limn→∞ fn = f exists and is Riemann integrable.

Then limn→∞
∫ 1
0 fn(x)dx =

∫ 1
0 f (x)dx .

Formulated with codes in L2, this theorem is provable in WKL0.

Formulated without codes, this theorem is classified near Z2, far
beyond Π1

1 -CA0 and the usual range of RM.

Massive change of logical strength for a basic theorem about
functions that are continuous almost everywhere.
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Formulated without codes, this theorem is classified near Z2, far
beyond Π1

1 -CA0 and the usual range of RM.

Massive change of logical strength for a basic theorem about
functions that are continuous almost everywhere.
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The ugly: rewriting history

The Heine-Borel theorem for countable coverings features in RM
from the beginning.

countable covering is ∪n∈N(an, bn) for two sequences of reals
(an)n∈N, (bn)n∈N.

Borel (PhD Thesis, 1899) formulates the Heine-Borel theorem for
countable coverings where ‘countable’ means ‘bijection to N’.

Similar for other countable objects: they are given by sequences in
RM although the original is formulated using sets that are
countable (Cantor, König, Ramsey, etc).
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Solution

Kohlenbach’s higher-order RM, introduced in RM2001.

The language of all finite types Lω has variables for:

n ∈ N,X ⊂ N,F : R→ R, Θ : (R→ R)→ R, . . .

The base theory RCAω
0 proves the same L2 sentences as RCA0.
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Higher-order counterparts of the Big Five

Each of the ‘Big Five’ has a higher-order counterpart; we
concentrate on the weakest.

. . .→ ACA0 →WKL0 → RCA0 (1)

. . .→ BOOT→ HBT→ RCAω
0 . (2)

Recall: WKL0 and ACA0 corresponds to (countable) Heine-Borel
and sequential compactness.

Similarly: HBT and BOOT corresponds to uncountable
Heine-Borel (1895, Cousin) and net compactness (Moore ca 1900)

Systems in (2) proves the same L2-sentences as systems in (1).
Moreover, the ECF-translation also converts BOOT and HBT to
ACA0 and WKL0. Same for equivalences!

ECF replaces third-order and higher objects by RM-codes (CMTT).
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Beyond the Big Five

Each of the ‘Big Five’ has a higher-order counterpart; we
concentrate on the weakest.

. . .→ ACA0 →WKL0 → RCA0 (3)

. . .→ BOOT→ HBT→ ︸ ︷︷ ︸
Here be something!

→ RCAω
0 . (4)

Why there be something in (4)?

Because: RCAω
0 is a weak system: Brouwer’s theorem, given as all

functions on R are continuous, yields a conservative extension.

If all functions on R are continuous, then countable sets in R
(formulated with injections/bijections to N) are at most singletons.

Hence, if all functions on R are continuous, then theorems about
countable sets in R (injections/bijections to N) are trivially true.

Thus, theorems about countable sets (injections/bijections to N)
have the same first-order strength as RCAω

0 .
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Beyond the Big Five

The following picture emerges:

. . .→ ACA0 →WKL0 → ︸ ︷︷ ︸
No known ‘Big’ system.

→ RCA0

. . .→ BOOT→ HBT→ cocode0 → cocode1︸ ︷︷ ︸
Big Six and Big Seven.

→ RCAω
0 .

cocode0 expresses that a countable (=injection to N, Kunen,
Brouwer) set of reals can be enumerated.

cocode1 expresses that a strongly countable (=bijection to N,
Hrbacek-Jech) set of reals can be enumerated.
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Why study cocodei?

cocode0 expresses that a countable (=injection to N, Kunen,
Brouwer) set of reals can be enumerated.

cocode1 expresses that a strongly countable (=bijection to N,
Hrbacek-Jech) set of reals can be enumerated.

History: Borel explicitly states cocode1 in his 1899 PhD thesis.

Sociology: textbooks use cocodei all the time: when proving a set
to be countabe, one (only) provides an injection or bijection; when
a countable set is given, an enumeration is immediately assumed.

Coolness: cocode0 is explosive: Π1
1 -CAω

0 + cocode0 proves
Π1

2 -CA0. (RM of topology, dwarves, chasm, abyss)

Hyper: ACAω
0 + cocode1 lives as the level of hyperarithmetical

analysis. Associated second-order systems are ‘rather logical’
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Some definitions

We assume sets are given by (possibly discontinuous) characteristic
functions.

This ensures compatibility with second-order RM, where
open/closed sets have continuous characteristic functions.

Most of the below results go through for any notion of set.

Definition

A ⊂ R is countable if there is Y : R→ N which is injective on A.

Definition

A ⊂ R is strongly countable if there is Y : R→ N which is injective
and surjective on A.

Principle (cocode0)

A countable set in [0, 1] can be enumerated.
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Bolzano-Weierstrass

Let BWC0 be the following Bolzano-Weierstrass theorem: any
countable A ⊂ 2N has a supremum supA. TFAE:

cocode0

BWC0 plus a little bit of induction.

BWC0 with a sequence in A converging to sup A.

BWC0 for the pointwise ordering (rather than LEX).

BWC0 expressing that supf ∈A F (A) exists for F : 2N → 2N.

monotone convergence thm for nets with countable index sets.

BOOT−C : BOOT with ‘at most one’ condition.

many of the above for [0, 1].

. . .

We observe a certain robustness!
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Limit points

The Cantor-Bendixson theorem is studied in second-order RM (via
codes). The original theorem readily implies item (b).

TFAE:

a cocode0
b a non-enumerable closed set in R has a limit point,

c a non-enumerable set in R contains a limit point,

d a collection of disjoint open intervals in R is enumerable.

NOTE: cocode0 is formulated using injections, while the other
items are NOT.

Item (d) is called the countable chain condition, first formulated by
Cantor.
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TFAE

a cocode0
b a non-enumerable closed set in R has a limit point,

c a non-enumerable set in R contains a limit point,

d a collection of disjoint open intervals in R is enumerable.

e cocode1 plus: a collection of disjoint open intervals in R is
strongly countable.

NOTE: cocode0 is formulated using injections, while items (b)-(d)
are NOT.

Item (e) is formulated with bijections ONLY.
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Cantor-Bernstein theorem

Cantor-Bernstein theorem: given injections f : A→ B and
g : A→ B, there is a bijection h : A :→ B.

CBN is the above for B = N and A ⊂ R.

cocode0 ↔ [cocode1 + CBN], and the disjuncts are independent.

CBN+ ↔ cocode0, where the former expresses that h is locally
either f or the inverse of g .
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Heine-Borel theorem

We do not know whether HBC0 is equivalent to cocode0:

Principle (HBC0)

For countable A ⊂ R2 with (∀x ∈ I )(∃(a, b) ∈ A)(x ∈ (a, b)), there
is (a0, b0), . . . (ak , bk) ∈ A with (∀x ∈ I )(∃i ≤ k)(x ∈ (ai , bi )).

The ‘sequential version’ HBCseq
0 is equivalent to cocode0.

The ‘sequential version’ HBCseq
0 expresses the existence of a

sequence of finite sub-coverings for a sequence (An)n∈N of sets as
in HBC0. Sequential thms are well-studied in RM.

Same for many sequential versions, like e.g. sequential ADS, RT22,
KL. . . .
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Separation

The separation axiom as follows

(∀n ∈ N)(¬A(n) ∨ ¬B(n))

↓

(∃Z ⊂ N)(∀n ∈ N)(A(n)→ n ∈ Z ∧ B(n)→ n 6∈ Z ).

provides equivalent formulations for WKL0 and ATR0 when
restricted to Σ0

1 and Σ1
1 -formulas

Allowing third-order parameters, there are versions equivalent to
HBT and cocodei for i = 0, 1.
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Some set theory

The countable union theorem expresses that a countable union of
countable sets is countable.

This theorem is not provable in ZF. We study the following version:

Principle (CUC)

Let (An)n∈N be a sequence of sets in R such that for all n ∈ N,
there is an enumeration of An. Then there is an enumeration of
∪n∈NAn.

There are natural restrictions of CUC equivalent to cocodei .

Related results for R is not the union of countable sets.
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Countable linear orders

Countable linear orders and related topics are apparently ‘a big
thing’ in RM, studied via sequences.

TFAE
a cocode0
b A countable linear ordering (X ,�X ) for X ⊂ R is

order-isomorphic to a subset of Q.
c A countable and dense linear ordering without endpoints

(X ,�X ) for X ⊂ R is order-isomorphic to Q.
d (CWOω) For countable well-orders (X ,�X ) and (Y ,�Y )

where X ,Y ⊂ R, the former is order-isomorphic to the latter
or an initial segment of the latter, or vice versa.

These all go back to Cantor, one way or the other.

The good people of second-order RM often talk about ‘the order
type η of the rationals’, as though it makes sense in SOSOA.

For this concept to make sense, one needs item (c) (and much
more). . . .



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

Countable linear orders

Countable linear orders and related topics are apparently ‘a big
thing’ in RM, studied via sequences. TFAE

a cocode0
b A countable linear ordering (X ,�X ) for X ⊂ R is

order-isomorphic to a subset of Q.

c A countable and dense linear ordering without endpoints
(X ,�X ) for X ⊂ R is order-isomorphic to Q.

d (CWOω) For countable well-orders (X ,�X ) and (Y ,�Y )
where X ,Y ⊂ R, the former is order-isomorphic to the latter
or an initial segment of the latter, or vice versa.

These all go back to Cantor, one way or the other.

The good people of second-order RM often talk about ‘the order
type η of the rationals’, as though it makes sense in SOSOA.

For this concept to make sense, one needs item (c) (and much
more). . . .



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

Countable linear orders

Countable linear orders and related topics are apparently ‘a big
thing’ in RM, studied via sequences. TFAE

a cocode0
b A countable linear ordering (X ,�X ) for X ⊂ R is

order-isomorphic to a subset of Q.
c A countable and dense linear ordering without endpoints

(X ,�X ) for X ⊂ R is order-isomorphic to Q.

d (CWOω) For countable well-orders (X ,�X ) and (Y ,�Y )
where X ,Y ⊂ R, the former is order-isomorphic to the latter
or an initial segment of the latter, or vice versa.

These all go back to Cantor, one way or the other.

The good people of second-order RM often talk about ‘the order
type η of the rationals’, as though it makes sense in SOSOA.

For this concept to make sense, one needs item (c) (and much
more). . . .



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

Countable linear orders

Countable linear orders and related topics are apparently ‘a big
thing’ in RM, studied via sequences. TFAE

a cocode0
b A countable linear ordering (X ,�X ) for X ⊂ R is

order-isomorphic to a subset of Q.
c A countable and dense linear ordering without endpoints

(X ,�X ) for X ⊂ R is order-isomorphic to Q.
d (CWOω) For countable well-orders (X ,�X ) and (Y ,�Y )

where X ,Y ⊂ R, the former is order-isomorphic to the latter
or an initial segment of the latter, or vice versa.

These all go back to Cantor, one way or the other.

The good people of second-order RM often talk about ‘the order
type η of the rationals’, as though it makes sense in SOSOA.

For this concept to make sense, one needs item (c) (and much
more). . . .



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

Countable linear orders

Countable linear orders and related topics are apparently ‘a big
thing’ in RM, studied via sequences. TFAE

a cocode0
b A countable linear ordering (X ,�X ) for X ⊂ R is

order-isomorphic to a subset of Q.
c A countable and dense linear ordering without endpoints

(X ,�X ) for X ⊂ R is order-isomorphic to Q.
d (CWOω) For countable well-orders (X ,�X ) and (Y ,�Y )

where X ,Y ⊂ R, the former is order-isomorphic to the latter
or an initial segment of the latter, or vice versa.

These all go back to Cantor, one way or the other.

The good people of second-order RM often talk about ‘the order
type η of the rationals’, as though it makes sense in SOSOA.

For this concept to make sense, one needs item (c) (and much
more). . . .



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

Countable linear orders

Countable linear orders and related topics are apparently ‘a big
thing’ in RM, studied via sequences. TFAE

a cocode0
b A countable linear ordering (X ,�X ) for X ⊂ R is

order-isomorphic to a subset of Q.
c A countable and dense linear ordering without endpoints

(X ,�X ) for X ⊂ R is order-isomorphic to Q.
d (CWOω) For countable well-orders (X ,�X ) and (Y ,�Y )

where X ,Y ⊂ R, the former is order-isomorphic to the latter
or an initial segment of the latter, or vice versa.

These all go back to Cantor, one way or the other.

The good people of second-order RM often talk about ‘the order
type η of the rationals’, as though it makes sense in SOSOA.

For this concept to make sense, one needs item (c) (and much
more). . . .



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

Countable linear orders

Countable linear orders and related topics are apparently ‘a big
thing’ in RM, studied via sequences. TFAE

a cocode0
b A countable linear ordering (X ,�X ) for X ⊂ R is

order-isomorphic to a subset of Q.
c A countable and dense linear ordering without endpoints

(X ,�X ) for X ⊂ R is order-isomorphic to Q.
d (CWOω) For countable well-orders (X ,�X ) and (Y ,�Y )

where X ,Y ⊂ R, the former is order-isomorphic to the latter
or an initial segment of the latter, or vice versa.

These all go back to Cantor, one way or the other.

The good people of second-order RM often talk about ‘the order
type η of the rationals’, as though it makes sense in SOSOA.

For this concept to make sense, one needs item (c) (and much
more). . . .
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Similar results

Most (but not all) of the above results go through mutatis
mutandis when restricted to strongly countable sets, i.e. yielding
equivalences for cocode1.

The proofs are often different,
sometimes very.

There are a couple of ‘unique’ equivalences. TFAE:
1 cocode1.
2 ∆-CA−C .
3 !QF-AC0,1.

Item (3) is a fragment of countable choice with a uniqueness
condition. Item (2) is the higher-order counterpart of
∆0

1-comprehension.

ACAω
0 + cocode1 is between Σ1

1 -AC and the latter with a
uniqueness condition.

The system ACAω
0 + cocode1 is in the range of hyperarithmetical

analysis, and more natural than the known systems.
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Conclusion: the Big Six and Big Seven

The following picture was obtained:

. . .→ ACA0 →WKL0 → ︸ ︷︷ ︸
No known ‘Big’ system.

→ RCA0

. . .→ BOOT→ HBT→ cocode0 → cocode1︸ ︷︷ ︸
Big Six and Big Seven.

→ RCAω
0 .

cocode0 expresses that a countable (=injection to N, Kunen,
Brouwer) set of reals can be enumerated.

cocode1 expresses that a strongly countable (=bijection to N,
Hrbacek-Jech) set of reals can be enumerated.

Many equivalences exist and many many more lie in wait.
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The future: beyond Kleene and Turing

Our negative results rely on Kleene’s S1-S9 computability theory
(ITTMs outright compute all the stuff we wish to study).

Turing machines: computation on the reals only (coding. . . ) but
conceptually simple.

Kleene S1-S9: computation on all finite types, but complicated (no
T -predicate and complicated ad hoc definition)

Turing framework/SOSOA is the dominant framework right now,
for better or for worse.

But we can almost have the best of both worlds!
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Brouwer to the rescue!

Discontinuous functions (say on 2N) are truly third-order, i.e.
Turing machines cannot access them in any real/direct way.

But these are the only problematic objects! Intuitively, if a
theorem/object does not imply the existence of a discontinuous
function (say on 2N), then it is provable from a fragment of:

Definition (NFP, 1970, Kreisel-Troelstra)

For any formula A, we have

(∀f ∈ NN)(∃n ∈ N)A(f n)→ (∃γ ∈ K0)(∀f ∈ NN)A(f γ(f )),

where ‘γ ∈ K0’ means that γ is an RM-code.

Note that f n is the finite sequence 〈f (0), f (1), . . . , f (n − 1)〉.
NFP is a classically equivalent alternative to comprehension from
Brouwer’s INT. But the ‘γ ∈ K0’ in NFP can be fed to TMs!
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Some examples

Let ‘≤T ’ be Turing reducibility and define the ‘higher-order jump’

J(Y ) := {n ∈ N : (∃f ∈ NN)(Y (f , n) = 0)}.

t, s, r are terms in Gödel’s T , i.e. higher-order primitive recursion

(Net compactness) for any Y 2, there is a net xd : D → [0, 1] such
that x = limd xd implies J(Y ) ≤T x . (and vice versa)

(Heine-Borel thm) for any Ψ : [0, 1]→ R+, there is
x0, . . . , xk ∈ [0, 1] such that ∪i≤kB(xi , Ψ(xi )) is a finite
sub-covering of ∪x∈[0,1]B(x , Ψ(x)) and xi ≤T J(r(Ψ)) for i ≤ k .

(Baire category thm) for dense open sets (Yn)n∈N in R, there is
x ∈ ∩nYn with x ≤T J(t(λn.Yn,∃2)).
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t, s, r are terms in Gödel’s T , i.e. higher-order primitive recursion

(Net compactness) for any Y 2, there is a net xd : D → [0, 1] such
that x = limd xd implies J(Y ) ≤T x . (and vice versa)

(Heine-Borel thm) for any Ψ : [0, 1]→ R+, there is
x0, . . . , xk ∈ [0, 1] such that ∪i≤kB(xi , Ψ(xi )) is a finite
sub-covering of ∪x∈[0,1]B(x , Ψ(x)) and xi ≤T J(r(Ψ)) for i ≤ k .

(Baire category thm) for dense open sets (Yn)n∈N in R, there is
x ∈ ∩nYn with x ≤T J(t(λn.Yn,∃2)).



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

Some examples

Let ‘≤T ’ be Turing reducibility and define the ‘higher-order jump’

J(Y ) := {n ∈ N : (∃f ∈ NN)(Y (f , n) = 0)}.
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t, s, r are terms in Gödel’s T , i.e. higher-order primitive recursion

(Net compactness) for any Y 2, there is a net xd : D → [0, 1] such
that x = limd xd implies J(Y ) ≤T x . (and vice versa)

(Heine-Borel thm) for any Ψ : [0, 1]→ R+, there is
x0, . . . , xk ∈ [0, 1] such that ∪i≤kB(xi , Ψ(xi )) is a finite
sub-covering of ∪x∈[0,1]B(x , Ψ(x)) and xi ≤T J(r(Ψ)) for i ≤ k .

(Baire category thm) for dense open sets (Yn)n∈N in R, there is
x ∈ ∩nYn with x ≤T J(t(λn.Yn,∃2)).



Reverse Mathematics The coding catastrophe Countable sets versus sets that are countable

Some examples

Let ‘≤T ’ be Turing reducibility and define the ‘higher-order jump’

J(Y ) := {n ∈ N : (∃f ∈ NN)(Y (f , n) = 0)}.
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Final Thoughts

The revolution is not an apple that falls when it is ripe. You have
to make it fall. (AN & CG)

Two roads diverged in a wood, and I, I took the one less traveled
by. And that has made all the difference. (Robert Frost)

We thank DFG, TU Darmstadt, John Templeton Foundation, and
Alexander Von Humboldt Foundation for their generous support!

Thank you for your attention!

Any (content) questions?
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