Transfinite reflection principles and subsystems of second-order arithmetic

David Fernández-Duque

Joint work with Andrés Cordón-Franco, Joost J. Joosten and Francisco Félix Lara

International Centre for Mathematics and Computer Science in Toulouse

Seminari Cuc November 2015, Barcelona

(ロ) (同) (三) (三) (三) (○) (○)

Review uniform reflection principles in first-order arithmetic.

Review uniform reflection principles in first-order arithmetic.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Show how Peano Arithmetic can be represented as uniform reflection over Kalmàr Elementary Arithmetic.

- Review uniform reflection principles in first-order arithmetic.
- Show how Peano Arithmetic can be represented as uniform reflection over Kalmàr Elementary Arithmetic.
- Present reflection principles in second-order arithmetic and show how ACA₀ can also be represented as reflection over RCA₀.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Review uniform reflection principles in first-order arithmetic.
- Show how Peano Arithmetic can be represented as uniform reflection over Kalmàr Elementary Arithmetic.
- Present reflection principles in second-order arithmetic and show how ACA₀ can also be represented as reflection over RCA₀.
- Show how infinitary reflection principles may also be used to represent more of the 'Big Five' systems of Reverse Mathematics.

 $\mathcal{L}^1 = \Pi^0_\omega$ denotes the language of first-order arithmetic over the signature

 $\langle 0,1,+,\times\rangle$

 $\mathcal{L}^1 = \Pi^0_\omega$ denotes the language of first-order arithmetic over the signature

$$\langle \mathbf{0}, \mathbf{1}, +, \times \rangle$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Δ_0^0 formulas: all quantifiers are of the form $\exists x < t$ or $\forall x < t$.

 $\mathcal{L}^1 = \Pi^0_\omega$ denotes the language of first-order arithmetic over the signature

$$\langle \mathbf{0}, \mathbf{1}, +, \times \rangle$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Δ_0^0 formulas: all quantifiers are of the form $\exists x < t$ or $\forall x < t$.

$$\Sigma_n^0: \exists x_n \forall x_{n-1} \dots \delta(x_1, \dots, x_n)$$

 $\mathcal{L}^1 = \Pi^0_\omega$ denotes the language of first-order arithmetic over the signature

$$\langle \mathbf{0}, \mathbf{1}, +, \times \rangle$$

(日) (日) (日) (日) (日) (日) (日)

- Δ_0^0 formulas: all quantifiers are of the form $\exists x < t$ or $\forall x < t$.
- $\sum_{n=0}^{\infty} : \exists x_n \forall x_{n-1} \dots \delta(x_1, \dots, x_n)$
- $\square_n^0: \forall x_n \exists x_{n-1} \dots \delta(x_1, \dots, x_n)$

 $\mathcal{L}^1 = \Pi^0_\omega$ denotes the language of first-order arithmetic over the signature

$$\langle \mathbf{0}, \mathbf{1}, +, \times \rangle$$

• Δ_0^0 formulas: all quantifiers are of the form $\exists x < t$ or $\forall x < t$.

$$\succ \Sigma_n^0 : \exists x_n \forall x_{n-1} \dots \delta(x_1, \dots, x_n)$$

$$\triangleright \Pi_n^0 : \forall x_n \exists x_{n-1} \dots \delta(x_1, \dots, x_n)$$

We will fix a Gödel numbering $\phi \mapsto \ulcorner \phi \urcorner$ and define numerals

$$\bar{n} = 0 \underbrace{+1 + \ldots + 1}_{n}$$
.

(日) (日) (日) (日) (日) (日) (日)

 $\mathcal{L}^1 = \Pi^0_\omega$ denotes the language of first-order arithmetic over the signature

$$\langle \mathbf{0}, \mathbf{1}, +, \times
angle$$

• Δ_0^0 formulas: all quantifiers are of the form $\exists x < t$ or $\forall x < t$.

$$\succ \Sigma_n^0 : \exists x_n \forall x_{n-1} \dots \delta(x_1, \dots, x_n)$$

$$\models \Pi_n^0 : \forall x_n \exists x_{n-1} \dots \delta(x_1, \dots, x_n)$$

We will fix a Gödel numbering $\phi \mapsto \ulcorner \phi \urcorner$ and define numerals

$$\bar{n} = 0 \underbrace{+1 + \ldots + 1}_{n}.$$

We assume all theories are elementarily presented:

$$T \vdash \phi \iff \exists x \underbrace{\operatorname{Proof}_T(x, \overline{\ulcorner}\phi \urcorner)}_{\in \Delta_0^0}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\blacktriangleright \Box_T \phi := \exists x \operatorname{Proof}_T(x, \overline{\neg \phi \neg})$

$$\blacktriangleright \Box_T \phi := \exists x \ Proof_T(x, \overline{\neg \phi \neg})$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$\blacktriangleright \Diamond_T \phi := \neg \Box_T \neg \phi$$

$$\blacktriangleright \Box_T \phi := \exists x \ Proof_T(x, \overline{\neg \phi} \overline{\neg})$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

$$\blacktriangleright \Diamond_T \phi := \neg \Box_T \neg \phi$$

$\blacktriangleright \ \top := \ 0 = 0$

$$\blacktriangleright \Box_T \phi := \exists x \operatorname{Proof}_T(x, \overline{\ulcorner \phi \urcorner})$$

$$\blacktriangleright \Diamond_T \phi := \neg \Box_T \neg \phi$$

$\blacktriangleright \ \top := \ 0 = 0$

▶ ⊥ := ¬⊤

(4日) (個) (主) (主) (三) の(で)

$$\blacktriangleright \Box_T \phi := \exists x \operatorname{Proof}_T(x, \overline{\ulcorner \phi \urcorner})$$

$$\blacktriangleright \Diamond_T \phi := \neg \Box_T \neg \phi$$

$\blacktriangleright \ \top := \ 0 = 0$

• Cons[T] := $\Diamond_T \top \in \Pi^0_1$

Induction schema:

$$I\phi = \phi(\mathbf{0}) \land \forall x (\phi(x) \to \phi(x+1)) \to \forall x \phi(x).$$

 $I\Gamma = \{I\phi : \phi \in \Gamma\}.$

Induction schema:

$$I\phi = \phi(\mathbf{0}) \land \forall x (\phi(x) \to \phi(x+1)) \to \forall x \phi(x).$$

 $I\Gamma = \{I\phi : \phi \in \Gamma\}.$

• Robinson's Q: Includes axioms for $+, \times$ but no induction.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Induction schema:

$$I\phi = \phi(\mathbf{0}) \land \forall x (\phi(x) \to \phi(x+1)) \to \forall x \phi(x).$$

 $I\Gamma = \{I\phi : \phi \in \Gamma\}.$

- ► Robinson's Q: Includes axioms for +, × but no induction.
- Kalmár elementary arithmetic:

 $EA := Q + I\Delta_0^0 +$ "the exponential function is total"

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Induction schema:

$$I\phi = \phi(\mathbf{0}) \land \forall x (\phi(x) \to \phi(x+1)) \to \forall x \phi(x).$$

 $I\Gamma = \{I\phi : \phi \in \Gamma\}.$

- ▶ Robinson's Q: Includes axioms for $+, \times$ but no induction.
- Kalmár elementary arithmetic:

 $EA := Q + I\Delta_0^0 +$ "the exponential function is total"

Peano arithmetic:

$$\mathsf{PA} := \mathsf{Q} + I \Pi^0_\omega$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Statements of the form

"If ϕ is provable in T then ϕ is true."

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Statements of the form

"If ϕ is provable in T then ϕ is true."

Formally,

 $\Box_T \phi \to \phi.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Statements of the form

"If ϕ is provable in T then ϕ is true."

Formally,

 $\Box_T \phi \to \phi.$

• If ϕ is a sentence, this is an instance of local reflection.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Statements of the form

"If ϕ is provable in T then ϕ is true."

Formally,

 $\Box_T \phi \to \phi.$

- If ϕ is a sentence, this is an instance of local reflection.
- Uniform reflection generalizes this to formulas $\phi = \phi(x)$:

 $RFN_{\phi}[T] = \forall x (\Box_T \phi(\bar{x}) \to \phi(x)).$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Statements of the form

"If ϕ is provable in T then ϕ is true."

Formally,

 $\Box_T \phi \to \phi.$

• If ϕ is a sentence, this is an instance of local reflection.

• Uniform reflection generalizes this to formulas $\phi = \phi(x)$:

 $RFN_{\phi}[T] = \forall x (\Box_T \phi(\bar{x}) \to \phi(x)).$

If Γ is a set of formulas,

 $RFN_{\Gamma}[T] := \{RFN_{\phi}[T] : \phi \in \Gamma\}.$

A D F A 同 F A E F A E F A Q A

Extending theories by reflection

Löb's rule: *T* only proves its reflection instances when we already have that $T \vdash \phi$:

$$\frac{T \vdash \Box_T \phi \to \phi}{T \vdash \phi}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Extending theories by reflection

Löb's rule: *T* only proves its reflection instances when we already have that $T \vdash \phi$:

$$rac{{\mathcal T}dash \Box_{\mathcal T} \phi o \phi}{{\mathcal T}dash \phi}.$$

This generalizes Gödel's second incompleteness theorem if $\phi = \bot$:

$$\frac{T \vdash \Diamond_T \top}{T \vdash \bot}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Arithmetic through reflection

```
Theorem (Kreisel and Levy) PA \equiv EA + RFN[EA].
```


Arithmetic through reflection

```
Theorem (Kreisel and Levy) PA \equiv EA + RFN[EA].
```

More specifically:

```
Theorem (Beklemishev)
For all n \ge 1, I\Sigma_n \equiv EA + RFN_{\Sigma_{n+1}}[EA].
```

This was previously proven for $n \ge 2$ by Leviant using PRA.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Reasoning in EA + *RFN*[EA]:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Reasoning in EA + *RFN*[EA]:

► Consider an instance $I\phi$ of induction: $\phi(0) \land \forall x(\phi(x) \to \phi(x+1)) \to \forall x\phi(x).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Reasoning in EA + *RFN*[EA]:

► Consider an instance $I\phi$ of induction: $\phi(0) \land \forall x(\phi(x) \to \phi(x+1)) \to \forall x\phi(x).$

 If φ has unbounded quantifiers then EA cannot prove Iφ directly.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

```
Reasoning in EA + RFN[EA]:
```

► Consider an instance $I\phi$ of induction: $\phi(0) \land \forall x(\phi(x) \to \phi(x+1)) \to \forall x\phi(x).$

 If φ has unbounded quantifiers then EA cannot prove Iφ directly.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► However, for any *n*, EA can prove that $\phi(0) \land \forall x(\phi(x) \to \phi(x+1)) \to \phi(\bar{n}).$

```
Reasoning in EA + RFN[EA]:
```

► Consider an instance $I\phi$ of induction: $\phi(0) \land \forall x(\phi(x) \to \phi(x+1)) \to \forall x\phi(x).$

 If φ has unbounded quantifiers then EA cannot prove Iφ directly.

- ► However, for any *n*, EA can prove that $\phi(0) \land \forall x(\phi(x) \rightarrow \phi(x+1)) \rightarrow \phi(\bar{n}).$
- ► EA can even prove this fact: $\forall n \square_{\mathsf{EA}} \left(\phi(\mathbf{0}) \land \forall x(\phi(x) \to \phi(x+1)) \to \phi(\bar{n}) \right).$

```
Reasoning in EA + RFN[EA]:
```

► Consider an instance $I\phi$ of induction: $\phi(0) \land \forall x(\phi(x) \to \phi(x+1)) \to \forall x\phi(x).$

 If φ has unbounded quantifiers then EA cannot prove Iφ directly.

- ► However, for any *n*, EA can prove that $\phi(0) \land \forall x(\phi(x) \rightarrow \phi(x+1)) \rightarrow \phi(\bar{n}).$
- ► EA can even prove this fact: $\forall n \square_{\mathsf{EA}} \left(\phi(\mathbf{0}) \land \forall x(\phi(x) \to \phi(x+1)) \to \phi(\bar{n}) \right).$
- By reflection we have $I\phi$.

The 'standard' proof of reflection

All axioms of EA are true, and all rules preserve truth. Thus by induction on the length of a derivation, all theorems of EA are true.

(ロ) (同) (三) (三) (三) (○) (○)
The 'standard' proof of reflection

All axioms of EA are true, and all rules preserve truth. Thus by induction on the length of a derivation, all theorems of EA are true.

Formally, we are proving by induction on *n* that

 $\forall \phi \in \Pi^0_{\omega} (\operatorname{Proof}(n, \phi) \to \operatorname{True}(\phi)).$

The 'standard' proof of reflection

All axioms of EA are true, and all rules preserve truth. Thus by induction on the length of a derivation, all theorems of EA are true.

Formally, we are proving by induction on n that

 $\forall \phi \in \Pi^0_{\omega} (\operatorname{Proof}(n, \phi) \to \operatorname{True}(\phi)).$

But in the language of PA, we have only partial truth predictes $True_{\Pi_n}$. So we need to bound the complexity of formulas appearing in our derivations.

The 'standard' proof of reflection

All axioms of EA are true, and all rules preserve truth. Thus by induction on the length of a derivation, all theorems of EA are true.

Formally, we are proving by induction on *n* that

 $\forall \phi \in \Pi^0_{\omega} (\operatorname{Proof}(n, \phi) \to \operatorname{True}(\phi)).$

But in the language of PA, we have only partial truth predictes $True_{\Pi_n}$. So we need to bound the complexity of formulas appearing in our derivations.

Solution: Cut elimination!

The Tait calculus

Sequent-based calculus, where all negations are pushed down to atomic formulas.

(LEM) $\overline{\Gamma, \alpha, \neg \alpha}$ (\wedge) $\frac{\Gamma, \phi \qquad \Gamma, \psi}{\Gamma, \phi \land \psi}$ (\vee) $\frac{\Gamma, \phi, \psi}{\Gamma, \phi \lor \psi}$ (\forall) $\frac{\Gamma, \phi(\nu)}{\Gamma, \forall x \phi(x)}$ (\exists) $\frac{\Gamma, \phi(t)}{\Gamma, \exists x \phi(x)}$ (CUT) $\frac{\Gamma, \phi \qquad \Gamma, \neg \phi}{\Gamma}$,

where α is atomic and v does not appear free in Γ .

Cut elimination

Theorem

It is provable in PA that any sequent derivable in the Tait calculus can be derived without the cut rule.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Cut elimination

Theorem

It is provable in PA that any sequent derivable in the Tait calculus can be derived without the cut rule.

In fact, we do not need full PA.

Let EA^+ be the theory EA_+ "the superexponential is total".

(日) (日) (日) (日) (日) (日) (日)

Then, EA⁺ suffices to prove cut-elimination.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Suppose that $EA \vdash \phi$.

- Suppose that $\mathsf{EA} \vdash \phi$.
- By the cut-elimination theorem, we have a cut-free proof of

$$\neg \alpha_1, \ldots, \neg \alpha_m, \phi$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where the α_i 's are an axiomatization of EA.

- Suppose that $\mathsf{EA} \vdash \phi$.
- By the cut-elimination theorem, we have a cut-free proof of

$$\neg \alpha_1, \ldots, \neg \alpha_m, \phi$$

where the α_i 's are an axiomatization of EA.

We can prove by induction that

$$\forall \Gamma (\vdash \Gamma \rightarrow \mathit{True}_{\Pi_n}(\bigvee \Gamma)),$$

where *n* is large enough so that all negated axioms of EA and ϕ are in Π_n .

- Suppose that $\mathsf{EA} \vdash \phi$.
- By the cut-elimination theorem, we have a cut-free proof of

$$\neg \alpha_1, \ldots, \neg \alpha_m, \phi$$

where the α_i 's are an axiomatization of EA.

We can prove by induction that

$$\forall \Gamma (\vdash \Gamma \rightarrow \mathit{True}_{\Pi_n}(\bigvee \Gamma)),$$

where *n* is large enough so that all negated axioms of EA and ϕ are in Π_n .

 Since all axioms of EA are provable in PA, we conclude that φ.

Strong extensions of T

We may obtain stronger reflection principles by passing to possibly non-computable extensions of T.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Strong extensions of T

We may obtain stronger reflection principles by passing to possibly non-computable extensions of T.

For $n \in \mathbb{N}$, define $[n]_T \phi$ if and only if ϕ is provable from T using an oracle for Π_n^0 sentences.

(日) (日) (日) (日) (日) (日) (日)

Strong extensions of T

We may obtain stronger reflection principles by passing to possibly non-computable extensions of T.

For $n \in \mathbb{N}$, define $[n]_T \phi$ if and only if ϕ is provable from T using an oracle for Π_n^0 sentences.

Formally,

$$[n]_{\mathcal{T}}\phi \equiv \exists \psi \big(\mathit{True}_{\Pi^0_n}(\psi) \land \Box_{\mathcal{T}}(\psi \to \phi) \big) \in \Sigma^0_{n+1}.$$

(日) (日) (日) (日) (日) (日) (日)

Reflection and *n*-consistency

We may then consider principles of the form $[n]_T \phi \rightarrow \phi$, or simply $\langle n \rangle_T \phi := \neg [n]_T \neg \phi$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Reflection and *n*-consistency

We may then consider principles of the form $[n]_T \phi \rightarrow \phi$, or simply $\langle n \rangle_T \phi := \neg [n]_T \neg \phi$:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem For all $n \in \mathbb{N}$, $\mathsf{EA} \vdash \langle \bar{n} \rangle_T \top \leftrightarrow RFN_{\Sigma^0}[T].$

Reflection and *n*-consistency

We may then consider principles of the form $[n]_T \phi \rightarrow \phi$, or simply $\langle n \rangle_T \phi := \neg [n]_T \neg \phi$:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem For all $n \in \mathbb{N}$, $\mathsf{EA} \vdash \langle \bar{n} \rangle_T \top \leftrightarrow RFN_{\Sigma^0}[T].$

Corollary PA = EA + { $\langle \bar{n} \rangle_{EA} \top : n < \omega$ }.

Language: Add to the first-order arithmetic language:

Language: Add to the first-order arithmetic language:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• set-variables X, Y, Z, \ldots

Language: Add to the first-order arithmetic language:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• set-variables X, Y, Z, \ldots

• new atomic formulas $t \in X$

Language: Add to the first-order arithmetic language:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- set-variables X, Y, Z, \ldots
- new atomic formulas $t \in X$
- ▶ second-order quantifiers $\forall X, \exists X$

Language: Add to the first-order arithmetic language:

- set-variables X, Y, Z, \ldots
- new atomic formulas $t \in X$
- ▶ second-order quantifiers $\forall X, \exists X$
- Π_n^1 , Σ_n^1 formulas have *n* alternating second-order quantifiers.

Basic second-order axioms

Induction axiom (Ind):

$$\forall X \Big(0 \in X \land \forall n \ (n \in X \rightarrow (n+1) \in X) \rightarrow \forall n \ (n \in X) \Big)$$

Basic second-order axioms

Induction axiom (Ind):

$$orall X \Big(0 \in X \land orall n \, (n \in X
ightarrow (n+1) \in X)
ightarrow orall n \, (n \in X) \Big)$$

Comprehension axioms: State the existence of sets of the form

 $\{n \in \mathbb{N} : \phi(n)\}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $CA(\Gamma)$: comprehension for $\phi \in \Gamma$.

Basic second-order axioms

Induction axiom (Ind):

$$orall X \Big(0 \in X \land orall n \, (n \in X
ightarrow (n+1) \in X)
ightarrow orall n \, (n \in X) \Big)$$

Comprehension axioms: State the existence of sets of the form

 $\{n \in \mathbb{N} : \phi(n)\}.$

 $CA(\Gamma)$: comprehension for $\phi \in \Gamma$.

$$\begin{aligned} \boldsymbol{CA}(\Delta_1^0) &: \text{for } \pi \in \Pi_1^0, \, \sigma \in \Sigma_1^0, \\ &\forall n \big(\pi(n) \leftrightarrow \sigma(n) \big) \to \exists X \forall n \; \big(n \in X \leftrightarrow \sigma(n) \big). \end{aligned}$$

くしゃ (中)・(中)・(中)・(日)

► RCA₀: Q + CA(Δ⁰₁) + IΣ⁰₁. (Second-order analogue of PRA).

- ► RCA₀: Q + CA(Δ⁰₁) + IΣ⁰₁. (Second-order analogue of PRA).
- WKL₀: Weak König's Lemma.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- ► RCA₀: Q + CA(Δ⁰₁) + IΣ⁰₁. (Second-order analogue of PRA).
- WKL₀: Weak König's Lemma.
- ► ACA₀: Q + CA(Σ⁰₁) + Ind. (Second-order analogue of PA).

- ► RCA₀: Q + CA(Δ⁰₁) + IΣ⁰₁. (Second-order analogue of PRA).
- WKL₀: Weak König's Lemma.
- ► ACA₀: Q + CA(Σ⁰₁) + Ind. (Second-order analogue of PA).
- ► ATR₀: Arithmetic transfinite recursion.

- ► RCA₀: Q + CA(Δ⁰₁) + IΣ⁰₁. (Second-order analogue of PRA).
- WKL₀: Weak König's Lemma.
- ► ACA₀: Q + CA(Σ⁰₁) + Ind. (Second-order analogue of PA).
- ► ATR₀: Arithmetic transfinite recursion.

•
$$\Pi_1^1$$
-*CA*₀: Q + *CA*(Π_1^1) + *Ind*.

► RCA₀: Q + CA(Δ⁰₁) + IΣ⁰₁. (Second-order analogue of PRA).

Base theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

- WKL₀: Weak König's Lemma.
- ► ACA₀: Q + CA(Σ⁰₁) + Ind. (Second-order analogue of PA).
- ► ATR₀: Arithmetic transfinite recursion.

•
$$\Pi_1^1$$
-*CA*₀: Q + *CA*(Π_1^1) + *Ind*.

► RCA₀: Q + CA(Δ⁰₁) + IΣ⁰₁. (Second-order analogue of PRA).

- WKL₀: Weak König's Lemma.
- ► ACA₀: Q + CA(Σ⁰₁) + Ind. (Second-order analogue of PA).
- ► ATR₀: Arithmetic transfinite recursion.

•
$$\Pi_1^1$$
-*CA*₀: Q + *CA*(Π_1^1) + *Ind*.

Weaker base theories

RCA₀: Q + CA(Δ⁰₁) + IΣ⁰₁.
 (Second-order analogue of PRA).

Weaker base theories

RCA₀: Q + CA(Δ⁰₁) + IΣ⁰₁.
 (Second-order analogue of PRA).

► RCA_0^* : $\operatorname{Q} + CA(\Delta_1^0) + \operatorname{Ind} + exp$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Weaker base theories

RCA₀: Q + CA(Δ⁰₁) + IΣ⁰₁.
 (Second-order analogue of PRA).

•
$$\operatorname{RCA}_0^*$$
: $\operatorname{Q} + CA(\Delta_1^0) + \operatorname{Ind} + exp$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Arithmetic comprehension

ACA₀ is equivalent to either:
ACA₀ is equivalent to either:

```
► Q + CA(\Sigma_1^0) + Ind.
```


ACA₀ is equivalent to either:

•
$$Q + CA(\Sigma_1^0) + Ind.$$

▶ $Q + CA(\Pi^0_\omega) + Ind.$

ACA₀ is equivalent to either:

•
$$Q + CA(\Sigma_1^0) + Ind.$$

•
$$Q + CA(\Pi^0_\omega) + Ind.$$

It is conservative over PA.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

ACA₀ is equivalent to either:

•
$$Q + CA(\Sigma_1^0) + Ind.$$

•
$$Q + CA(\Pi^0_\omega) + Ind.$$

It is conservative over PA.

Goal: Represent ACA₀ in the form $RCA_0 + R$ where *R* is some appropriate reflection principle.

(ロ) (同) (三) (三) (三) (○) (○)

First approximation:

Let us first consider the theory

$$\mathsf{RCA}_0 + \left\{ \forall n \left(\Box_{\mathsf{RCA}_0} \phi(\bar{n}) \to \phi(n) \right) : \phi \in \Pi^0_\omega \right\}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

First approximation:

Let us first consider the theory

$$\mathsf{RCA}_0 + \left\{ \forall n \left(\Box_{\mathsf{RCA}_0} \phi(\bar{n}) \to \phi(n) \right) : \phi \in \Pi^0_\omega \right\}.$$

This will indeed give us the first-order part of ACA_0 (Peano Arithmetic).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

First approximation:

Let us first consider the theory

$$\mathsf{RCA}_0 + \ \Big\{ \forall n \left(\Box_{\mathsf{RCA}_0} \phi(\bar{n}) \to \phi(n) \right) : \phi \in \Pi^0_\omega \Big\}.$$

This will indeed give us the first-order part of ACA_0 (Peano Arithmetic).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

However, we do not get any new comprehension.

Instead, we will formalize provability using a least fixed point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Instead, we will formalize provability using a least fixed point.

For a theory *T*, let $Thm_T(P)$ be a formula stating:

P is the least set containing all axioms of T and closed under the rules of T.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Instead, we will formalize provability using a least fixed point.

For a theory *T*, let $Thm_T(P)$ be a formula stating: *P* is the least set containing all axioms of *T* and closed under the rules of *T*.

Then define

$$[0]_T \phi = \forall P(Thm_T(P) \to \phi \in P).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Instead, we will formalize provability using a least fixed point.

For a theory *T*, let $Thm_T(P)$ be a formula stating: *P* is the least set containing all axioms of *T* and closed under the rules of *T*.

Then define

$$[0]_T \phi = \forall P(Thm_T(P) \to \phi \in P).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Note: $\langle 0 \rangle_T \top$ implies $\exists P \ Thm_T(P)$.

Our second approximation

For a set of formulas Γ , we define the schema

```
0\text{-}RFN_{\Gamma}[T] = \forall X \forall n ([0]_{T} \phi(\bar{n}) \to \phi(n)).
```

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

(for $\phi \in \Gamma$).

Our second approximation

For a set of formulas Γ , we define the schema

$$0\text{-}RFN_{\Gamma}[T] = \forall X \forall n ([0]_T \phi(\bar{n}) \to \phi(n)).$$

(for $\phi \in \Gamma$).

Our second approximation is

 $\mathsf{RCA}_0 + 0\text{-}\mathsf{RFN}_{\Sigma^0_1}[\mathsf{RCA}_0].$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Idea: Let $\phi(n)$ be a Σ_1^0 formula. We wish to form the set

 $\{\boldsymbol{n}:\phi(\boldsymbol{n})\}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Idea: Let $\phi(n)$ be a Σ_1^0 formula. We wish to form the set $\{n : \phi(n)\}.$

Reasoning in $RCA_0 + 0$ - $RFN_{\Sigma_1^0}[RCA_0]$, there exists *P* such that $Thm_{RCA_0}(P)$ holds. We instead form the set

$$\boldsymbol{E} = \{\boldsymbol{n} : \phi(\bar{\boldsymbol{n}}) \in \boldsymbol{P}\}.$$

Idea: Let $\phi(n)$ be a Σ_1^0 formula. We wish to form the set $\{n : \phi(n)\}.$

Reasoning in $\text{RCA}_0 + 0$ -*RFN*_{Σ_1^0}[RCA₀], there exists *P* such that *Thm*_{RCA₀}(*P*) holds. We instead form the set

$$\boldsymbol{E} = \{\boldsymbol{n} : \phi(\bar{\boldsymbol{n}}) \in \boldsymbol{P}\}.$$

• If $n \in E$ then $\phi(n)$ holds by reflection.

Idea: Let $\phi(n)$ be a Σ_1^0 formula. We wish to form the set $\{n : \phi(n)\}.$

Reasoning in $\text{RCA}_0 + 0$ - $RFN_{\Sigma_1^0}[\text{RCA}_0]$, there exists P such that $Thm_{\text{RCA}_0}(P)$ holds. We instead form the set

$$\boldsymbol{E} = \{\boldsymbol{n} : \phi(\bar{\boldsymbol{n}}) \in \boldsymbol{P}\}.$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

- If $n \in E$ then $\phi(n)$ holds by reflection.
- ▶ If $\phi(n)$ then $n \in E$ should hold by Σ_1^0 -completeness.

Idea: Let $\phi(n)$ be a Σ_1^0 formula. We wish to form the set $\{n : \phi(n)\}.$

Reasoning in $\text{RCA}_0 + 0$ - $RFN_{\Sigma_1^0}[\text{RCA}_0]$, there exists P such that $Thm_{\text{RCA}_0}(P)$ holds. We instead form the set

$$\boldsymbol{E} = \{\boldsymbol{n} : \phi(\bar{\boldsymbol{n}}) \in \boldsymbol{P}\}.$$

- If $n \in E$ then $\phi(n)$ holds by reflection.
- ▶ If $\phi(n)$ then $n \in E$ should hold by Σ_1^0 -completeness.
- But we lose completeness when \u03c6 has free set variables!

For a theory T and a set X, let T|X be the extension of T with a new set-constant O and all axioms of the form

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

For a theory T and a set X, let T|X be the extension of T with a new set-constant O and all axioms of the form

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• $\bar{n} \in O$ for $n \in X$

For a theory T and a set X, let T|X be the extension of T with a new set-constant O and all axioms of the form

•
$$\bar{n} \in O$$
 for $n \in X$

• $\bar{n} \notin O$ for $n \notin X$

For a theory T and a set X, let T|X be the extension of T with a new set-constant O and all axioms of the form

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

•
$$\bar{n} \in O$$
 for $n \in X$

•
$$\bar{n} \notin O$$
 for $n \notin X$

Let $[0|X]_T \phi = \forall P(Thm_{T|X}(P) \rightarrow \phi \in P).$

Oracle reflection

Let 0-*OrRFN*_{Γ} $[T] = \forall X \forall n ([0|X]_T \phi(\bar{n}, O) \to \phi(n, X)).$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Oracle reflection

Let 0-*OrRFN*_Γ[*T*] = $\forall X \forall n ([0|X]_T \phi(\bar{n}, O) \rightarrow \phi(n, X)).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Theorem $ACA_0 \equiv RCA_0 + 0$ - $OrRFN_{\Pi_2^1}[RCA_0]$.

Proving reflection in ACA₀

A set satisfying Thm_{RCA₀|X}(P) can be constructed within ACA₀ by

$$P = \{\phi : \exists x \operatorname{Proof}_{\operatorname{\mathsf{RCA}}_0|X}(x,\phi)\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proving reflection in ACA₀

A set satisfying $Thm_{\text{RCA}_0|X}(P)$ can be constructed within ACA₀ by

$$P = \{\phi : \exists x Proof_{\mathsf{RCA}_0|X}(x,\phi)\}.$$

• Then we may use ω -models of RCA₀ to prove reflection.

ω -models

Definition

An ω -model is a set $\mathfrak{M} = (\mathfrak{M}_n)_{n \in \mathbb{N}}$ of subsets of \mathbb{N} . We write $\mathfrak{M} \models \phi$ if ϕ holds when all first-order quantifiers range over \mathbb{N} and all second-order quantifiers over $\{\mathfrak{M}_n\}_{n \in \mathbb{N}}$

(ロ) (同) (三) (三) (三) (○) (○)

ω -models

Definition

An ω -model is a set $\mathfrak{M} = (\mathfrak{M}_n)_{n \in \mathbb{N}}$ of subsets of \mathbb{N} . We write $\mathfrak{M} \models \phi$ if ϕ holds when all first-order quantifiers range over \mathbb{N} and all second-order quantifiers over $\{\mathfrak{M}_n\}_{n \in \mathbb{N}}$

A satisfaction class on \mathfrak{M} is a set S such that for all $\phi, \phi \in S$ if and only if $\mathfrak{M} \models \phi$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

ω -models

Definition

An ω -model is a set $\mathfrak{M} = (\mathfrak{M}_n)_{n \in \mathbb{N}}$ of subsets of \mathbb{N} . We write $\mathfrak{M} \models \phi$ if ϕ holds when all first-order quantifiers range over \mathbb{N} and all second-order quantifiers over $\{\mathfrak{M}_n\}_{n \in \mathbb{N}}$

A satisfaction class on \mathfrak{M} is a set S such that for all $\phi, \phi \in S$ if and only if $\mathfrak{M} \models \phi$.

A partial satisfaction class on \mathfrak{M} for Γ is a set S such that for all $\phi \in \Gamma$, $\phi \in S$ if and only if $\mathfrak{M} \models \phi$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

ω -models of RCA₀

Theorem ACA₀ proves that, given any set X, there is an ω -model \mathfrak{M} of RCA₀ such that $\mathfrak{M} \models \text{RCA}_0$ and $\mathfrak{M}_0 = X$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem ACA₀ proves that, given any set *X*, there is an ω -model \mathfrak{M} of RCA₀ such that $\mathfrak{M} \models \text{RCA}_0$ and $\mathfrak{M}_0 = X$.

Theorem

Given a finite set of formulas Γ , ACA₀ proves that, given an ω -model \mathfrak{M} , there is a partial satisfaction class S for the set of substitution instances of formulas of Γ and their subformulas.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Reason in ACA₀:

Reason in ACA₀:

Fix a formula φ(n,Z) = ∀X∃Yψ(n,X,Y,Z) ∈ Π₂¹ and assume that RCA₀|Z proves φ(n̄, O).

(ロ) (同) (三) (三) (三) (○) (○)

Reason in ACA₀:

► Fix a formula $\phi(n, Z) = \forall X \exists Y \psi(n, X, Y, Z) \in \Pi_2^1$ and assume that RCA₀|*Z* proves $\phi(\bar{n}, O)$.

(日) (日) (日) (日) (日) (日) (日)

• Then there is a cut-free derivation of $\Gamma = \neg Ax_1, \ldots, \neg Ax_m, \phi(\bar{n}, O).$

Reason in ACA₀:

- Fix a formula φ(n,Z) = ∀X∃Yψ(n,X,Y,Z) ∈ Π₂¹ and assume that RCA₀|Z proves φ(n̄, O).
- ► Then there is a cut-free derivation of $\Gamma = \neg Ax_1, \ldots, \neg Ax_m, \phi(\bar{n}, O).$
- Let X be an arbitrary set and build an ω-model m containing X with a satisfaction class S for Γ.

(日) (日) (日) (日) (日) (日) (日)

Reason in ACA₀:

- ► Fix a formula $\phi(n, Z) = \forall X \exists Y \psi(n, X, Y, Z) \in \Pi_2^1$ and assume that RCA₀|*Z* proves $\phi(\bar{n}, O)$.
- ► Then there is a cut-free derivation of $\Gamma = \neg Ax_1, \ldots, \neg Ax_m, \phi(\bar{n}, O).$
- Let X be an arbitrary set and build an ω-model m containing X with a satisfaction class S for Γ.
- Prove by induction on the length of a derivation that $\Gamma \in S$.

(日) (日) (日) (日) (日) (日) (日)
Reflection via ω -models

Reason in ACA₀:

- ► Fix a formula $\phi(n, Z) = \forall X \exists Y \psi(n, X, Y, Z) \in \Pi_2^1$ and assume that RCA₀|*Z* proves $\phi(\bar{n}, O)$.
- Then there is a cut-free derivation of $\Gamma = \neg Ax_1, \ldots, \neg Ax_m, \phi(\bar{n}, O).$
- Let X be an arbitrary set and build an ω-model m containing X with a satisfaction class S for Γ.
- Prove by induction on the length of a derivation that $\Gamma \in S$.
- By upwards-persistence of Σ¹₁ formulas, ∃Yψ(n, X, Y, Z) holds in N.

Reflection via ω -models

Reason in ACA₀:

- ► Fix a formula $\phi(n, Z) = \forall X \exists Y \psi(n, X, Y, Z) \in \Pi_2^1$ and assume that RCA₀|*Z* proves $\phi(\bar{n}, O)$.
- ► Then there is a cut-free derivation of $\Gamma = \neg Ax_1, \ldots, \neg Ax_m, \phi(\bar{n}, O).$
- Let X be an arbitrary set and build an ω-model m containing X with a satisfaction class S for Γ.
- Prove by induction on the length of a derivation that $\Gamma \in S$.
- By upwards-persistence of Σ¹₁ formulas, ∃Yψ(n, X, Y, Z) holds in N.
- ▶ But X was arbitrary, so $\forall X \exists Y \psi(n, X, Y, Z)$ holds in \mathbb{N} .

Notation: $[n]_P \Gamma := \langle n, \Gamma \rangle \in P$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Notation: $[n]_P \Gamma := \langle n, \Gamma \rangle \in P$

Definition A iterated provability class of depth n > 0 for a theory T is a set P such that

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

```
Notation: [n]_P \Gamma := \langle n, \Gamma \rangle \in P
```

Definition

A iterated provability class of depth n > 0 for a theory *T* is a set *P* such that

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1. For all axioms Ax of T, $[0]_T Ax$;

Notation: $[n]_P \Gamma := \langle n, \Gamma \rangle \in P$

Definition

A iterated provability class of depth n > 0 for a theory T is a set P such that

1. For all axioms Ax of T, $[0]_T Ax$;

2. if *m* ≤ *n*

$$\frac{\Delta_1 \dots, \Delta_k}{\Gamma}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is a rule of *T* and for all $i \leq k$ we have that $[m]_P \Delta_i$ then also $[m]_P \Gamma$;

Notation: $[n]_P \Gamma := \langle n, \Gamma \rangle \in P$

Definition

A iterated provability class of depth n > 0 for a theory T is a set P such that

1. For all axioms Ax of T, $[0]_T Ax$;

2. if *m* ≤ *n*

$$\frac{\Delta_1 \dots, \Delta_k}{\Gamma}$$

is a rule of *T* and for all $i \leq k$ we have that $[m]_P \Delta_i$ then also $[m]_P \Gamma$;

3. if $i < j \le n$ and for all k, $[i]_{\mathcal{P}}(\Gamma, \phi(\overline{k}))$, then $[j]_{\mathcal{P}}(\Gamma, \forall x \phi(x))$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Notation: $[n]_P \Gamma := \langle n, \Gamma \rangle \in P$

Definition

A iterated provability class of depth n > 0 for a theory T is a set P such that

1. For all axioms Ax of T, $[0]_T Ax$;

2. if *m* ≤ *n*

$$\frac{\Delta_1 \dots, \Delta_k}{\Gamma}$$

is a rule of *T* and for all $i \leq k$ we have that $[m]_P \Delta_i$ then also $[m]_P \Gamma$;

3. if $i < j \le n$ and for all k, $[i]_P(\Gamma, \phi(\bar{k}))$, then $[j]_P(\Gamma, \forall x \phi(x))$. Let $IPC_T^n(P)$ be a formula expressing that P is an iterated provability class of depth n for T.

Theorem

Given n > 0 and a theory T, it is provable in ACA₀ that an iterated provability class of depth n exists for T.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem

Given n > 0 and a theory T, it is provable in ACA₀ that an iterated provability class of depth n exists for T.

Definition We define

$$[n]_T \Gamma := \forall P (IPC^n_T(n, P) \to [n]_P \Gamma).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem

Given n > 0 and a theory T, it is provable in ACA₀ that an iterated provability class of depth n exists for T.

Definition We define

$$[n]_T \Gamma := \forall P (IPC^n_T(n, P) \to [n]_P \Gamma).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $[n|X]_T\Gamma$ is defined similarly but with an oracle for X.

Theorem

Given n > 0 and a theory T, it is provable in ACA₀ that an iterated provability class of depth n exists for T.

Definition We define

$$[n]_T \Gamma := \forall P (IPC^n_T(n, P) \to [n]_P \Gamma).$$

 $[n|X]_T\Gamma$ is defined similarly but with an oracle for X.

If cuts are not allowed we will write $[n|X]_T^{cf}\Gamma$ (although then we may also add negated axioms to Γ).

(日) (日) (日) (日) (日) (日) (日)

Definition

Given a theory T and a set of formulas Γ , we define schemas

Definition

Given a theory T and a set of formulas Γ , we define schemas

► *n*-OrCons^{cf}_Γ[T] = $\forall X \forall x \neg ([\bar{n}|X]^{cf}_T \phi(\bar{x}, O) \land [\bar{n}|X]^{cf}_T \neg \phi(\bar{x}, O))$

(日) (日) (日) (日) (日) (日) (日)

Definition

Given a theory T and a set of formulas Γ , we define schemas

► *n*-OrCons^{cf}_Γ[T] = $\forall X \forall x \neg ([\bar{n}|X]^{cf}_T \phi(\bar{x}, O) \land [\bar{n}|X]^{cf}_T \neg \phi(\bar{x}, O))$

(日) (日) (日) (日) (日) (日) (日)

► *n*-OrRFN^{cf}_Γ[T] = $\forall X \forall x ([n|X]^{cf}_T \phi(\bar{x}, O) \rightarrow \phi(x, X)),$

where $\phi \in \Gamma$.

Definition

Given a theory T and a set of formulas Γ , we define schemas

• n- $OrCons_{\Gamma}^{cf}[T] = \forall X \forall x \neg ([\bar{n}|X]_{T}^{cf}\phi(\bar{x}, O) \land [\bar{n}|X]_{T}^{cf}\neg \phi(\bar{x}, O))$

(日) (日) (日) (日) (日) (日) (日)

► *n*-OrRFN^{cf}_Γ[T] = $\forall X \forall x ([n|X]^{cf}_T \phi(\bar{x}, O) \rightarrow \phi(x, X)),$

where $\phi \in \Gamma$.

Theorem

Definition

Given a theory T and a set of formulas Γ , we define schemas

• n- $OrCons_{\Gamma}^{cf}[T] = \forall X \forall x \neg ([\bar{n}|X]_{T}^{cf}\phi(\bar{x}, O) \land [\bar{n}|X]_{T}^{cf}\neg \phi(\bar{x}, O))$

(日) (日) (日) (日) (日) (日) (日)

► *n*-OrRFN^{cf}_Γ[T] = $\forall X \forall x ([n|X]^{cf}_T \phi(\bar{x}, O) \rightarrow \phi(x, X)),$

where $\phi \in \Gamma$.

Theorem

The following theories are equivalent:

► ACA₀

Definition

Given a theory T and a set of formulas Γ , we define schemas

► *n*-OrCons^{cf}_Γ[T] = $\forall X \forall x \neg ([\bar{n}|X]^{cf}_T \phi(\bar{x}, O) \land [\bar{n}|X]^{cf}_T \neg \phi(\bar{x}, O))$

(日) (日) (日) (日) (日) (日) (日)

► *n*-OrRFN^{cf}_Γ[T] = $\forall X \forall x ([n|X]^{cf}_T \phi(\bar{x}, O) \rightarrow \phi(x, X)),$

where $\phi \in \Gamma$.

Theorem

- ACA₀
- ► $RCA_0 + 0$ -OrRFN_{Σ_1^0}[RCA₀]

Definition

Given a theory T and a set of formulas Γ , we define schemas

► *n*-OrCons^{cf}_Γ[T] = $\forall X \forall x \neg ([\bar{n}|X]^{cf}_T \phi(\bar{x}, O) \land [\bar{n}|X]^{cf}_T \neg \phi(\bar{x}, O))$

(日) (日) (日) (日) (日) (日) (日)

► *n*-OrRFN^{cf}_Γ[T] = $\forall X \forall x ([n|X]^{cf}_T \phi(\bar{x}, O) \rightarrow \phi(x, X)),$

where $\phi \in \Gamma$.

Theorem

- ACA₀
- ► $RCA_0 + 0$ -OrRFN_{Σ_1^0}[RCA₀]
- ► $RCA_0 + 1$ -OrCons^{cf}_{Σ_1^0}[RCA₀]

Definition

Given a theory T and a set of formulas Γ , we define schemas

► *n*-OrCons^{cf}_Γ[T] = $\forall X \forall x \neg ([\bar{n}|X]^{cf}_T \phi(\bar{x}, O) \land [\bar{n}|X]^{cf}_T \neg \phi(\bar{x}, O))$

(日) (日) (日) (日) (日) (日) (日)

► *n*-OrRFN^{cf}_Γ[T] = $\forall X \forall x ([n|X]^{cf}_T \phi(\bar{x}, O) \rightarrow \phi(x, X)),$

where $\phi \in \Gamma$.

Theorem

- ACA₀
- ► $RCA_0 + 0$ -OrRFN_{Σ_1^0}[RCA₀]
- ► $RCA_0 + 1$ -OrCons^{cf}_{Σ_1}[RCA_0]
- ► $\mathsf{RCA}_0 + \{\bar{n}\text{-}OrCons^{cf}_{\Pi^{1}_{\omega}}[\mathsf{RCA}_0] : n \in \mathbb{N}\}$

Definition

Given a theory T and a set of formulas Γ , we define schemas

► *n*-OrCons^{cf}_Γ[T] = $\forall X \forall x \neg ([\bar{n}|X]^{cf}_T \phi(\bar{x}, O) \land [\bar{n}|X]^{cf}_T \neg \phi(\bar{x}, O))$

(日) (日) (日) (日) (日) (日) (日)

► *n*-OrRFN^{cf}_Γ[T] = $\forall X \forall x ([n|X]^{cf}_T \phi(\bar{x}, O) \rightarrow \phi(x, X)),$

where $\phi \in \Gamma$.

Theorem

- ACA₀
- ► $RCA_0 + 0$ - $OrRFN_{\Sigma_1^0}[RCA_0]$
- ► $RCA_0 + 1$ -OrCons^{cf}_{Σ_1}[RCA_0]
- ► $\mathsf{RCA}_0 + \{\bar{n}\text{-}OrCons^{cf}_{\Pi^1_{\omega}}[\mathsf{RCA}_0] : n \in \mathbb{N}\}$
- ► $\mathsf{RCA}_0 + \{\bar{n}\text{-}OrRFN^{cf}_{\Pi^1_2}[\mathsf{RCA}_0] : n \in \mathbb{N}\}$

Well-orders are represented by pairs $\Lambda = (|\Lambda|, <_{\Lambda})$, where

Well-orders are represented by pairs $\Lambda = (|\Lambda|, <_{\Lambda})$, where

• $|\Lambda|$ is a set of natural numbers

Well-orders are represented by pairs $\Lambda = (|\Lambda|, <_{\Lambda})$, where

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• $|\Lambda|$ is a set of natural numbers

•
$$<_{\Lambda} \subseteq |\Lambda| \times |\Lambda|$$
 well-orders Λ .

Well-orders are represented by pairs $\Lambda = (|\Lambda|, <_{\Lambda})$, where

• $|\Lambda|$ is a set of natural numbers

•
$$<_{\Lambda} \subseteq |\Lambda| \times |\Lambda|$$
 well-orders Λ .

Let $wo(\Lambda)$ be a formula stating that Λ is a well-order.

Well-orders are represented by pairs $\Lambda = (|\Lambda|, <_{\Lambda})$, where

• $|\Lambda|$ is a set of natural numbers

•
$$<_{\Lambda} \subseteq |\Lambda| \times |\Lambda|$$
 well-orders Λ .

Let $wo(\Lambda)$ be a formula stating that Λ is a well-order.

A is definable if there are formulas δ, σ such that

Well-orders are represented by pairs $\Lambda = (|\Lambda|, <_{\Lambda})$, where

|A| is a set of natural numbers

•
$$<_{\Lambda} \subseteq |\Lambda| \times |\Lambda|$$
 well-orders Λ .

Let $wo(\Lambda)$ be a formula stating that Λ is a well-order.

A is definable if there are formulas δ, σ such that

1. for all $n, n \in |\Lambda|$ if and only if $\delta(n)$;

Well-orders are represented by pairs $\Lambda = (|\Lambda|, <_{\Lambda})$, where

|A| is a set of natural numbers

•
$$<_{\Lambda} \subseteq |\Lambda| \times |\Lambda|$$
 well-orders Λ .

Let $wo(\Lambda)$ be a formula stating that Λ is a well-order.

A is definable if there are formulas δ, σ such that

1. for all $n, n \in |\Lambda|$ if and only if $\delta(n)$;

2. for all $n, m \in |\Lambda|$, $n <_{\Lambda} m$ if and only if $\sigma(n, m)$.

We can iterate ω -rules along any well-order Λ using the same definition as in the finite case.

We can iterate ω -rules along any well-order Λ using the same definition as in the finite case.

Given a definable well-order Λ and a theory T, we can consider

$$T^{\Lambda} = T + \Lambda$$
-OrCons^{cf} _{Σ_1^0 [RCA₀].}

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We can iterate ω -rules along any well-order Λ using the same definition as in the finite case.

Given a definable well-order Λ and a theory T, we can consider

$$T^{\Lambda} = T + \Lambda$$
- $OrCons^{cf}_{\Sigma_1^0}[\text{RCA}_0].$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We have seen that $ACA_0 = \bigcup_{n < \omega} RCA_0^n$.

We can iterate ω -rules along any well-order Λ using the same definition as in the finite case.

Given a definable well-order Λ and a theory T, we can consider

$$T^{\Lambda} = T + \Lambda$$
-OrCons^{cf} _{Σ_1^0 [RCA₀].}

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We have seen that $ACA_0 = \bigcup_{n < \omega} RCA_0^n$.

But we may consider RCA_0^{Λ} for transfinite Λ .

We can iterate ω -rules along any well-order Λ using the same definition as in the finite case.

Given a definable well-order Λ and a theory T, we can consider

$$T^{\Lambda} = T + \Lambda$$
-OrCons^{cf} _{Σ_1^0 [RCA₀].}

We have seen that $ACA_0 = \bigcup_{n < \omega} RCA_0^n$.

But we may consider RCA_0^{Λ} for transfinite Λ .

Question: Are any of the theories RCA_0^{Λ} equivalent to well-known theories?

We can iterate ω -rules along any well-order Λ using the same definition as in the finite case.

Given a definable well-order Λ and a theory T, we can consider

$$T^{\Lambda} = T + \Lambda$$
-OrCons^{cf} _{Σ_1^0 [RCA₀].}

We have seen that $ACA_0 = \bigcup_{n < \omega} RCA_0^n$.

But we may consider RCA_0^{Λ} for transfinite Λ .

Question: Are any of the theories RCA_0^{Λ} equivalent to well-known theories?

What if we allow cuts?

Arithmetic Transfinite Recursion

Define

 $T\!R^{\Lambda}_{\phi}(X,Y) \equiv \forall n \forall \lambda \big(\langle n, \lambda \rangle \in Y \leftrightarrow \phi(n,\lambda,X,Y_{<_{\Lambda}\lambda}) \big).$

Arithmetic Transfinite Recursion

Define

$$TR^{\Lambda}_{\phi}(X,Y) \equiv \forall n \forall \lambda \big(\langle n,\lambda \rangle \in Y \leftrightarrow \phi(n,\lambda,X,Y_{<_{\Lambda}\lambda}) \big).$$

The second-order system ATR₀ is ACA₀ with the axiom scheme

$$\forall X \forall \Lambda \Big(wo(\Lambda) \rightarrow \exists Y TR_{\phi}^{\Lambda}(X, Y) \Big),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

where the formula ϕ is arithmetic.
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Х

X **Y**₀

$$Y_0 = \{ n \in \mathbb{N} : \phi(n, 1, X, \emptyset) \}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

$$X \qquad \underbrace{Y_0}_{Y_{<_{\Lambda}1}} \qquad Y_1$$
$$Y_1 = \{n \in \mathbb{N} : \phi(n, 1, X, Y_{<_{\Lambda}1})\}$$

$$X \qquad \underbrace{Y_0 \qquad Y_1}_{Y_{<\Lambda^2}} \qquad Y_2$$
$$Y_2 = \{n \in \mathbb{N} : \phi(n, 1, X, Y_{<\Lambda^2})\}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$X \qquad \underbrace{Y_0 \qquad Y_1 \qquad Y_2 \dots \qquad Y_{\omega}}_{Y_{<_{\Lambda}\omega}} Y_{\omega}$$
$$Y_{\omega} = \{n \in \mathbb{N} : \phi(n, 1, X, Y_{<_{\Lambda}\omega})\}$$

$$X \qquad \underbrace{Y_0 \qquad Y_1 \qquad Y_2 \dots \qquad Y_{\omega}}_{Y_{<_{\Lambda}\omega+1}} Y_{\omega+1} = \{n \in \mathbb{N} : \phi(n, 1, X, Y_{<_{\Lambda}\omega+1})\}$$

$$X \qquad \underbrace{Y_0 \qquad Y_1 \qquad Y_2 \dots \qquad Y_{\omega}}_{Y_{<_{\Lambda}\omega+1}} Y_{\omega+1} = \{n \in \mathbb{N} : \phi(n, 1, X, Y_{<_{\Lambda}\omega+1})\}$$

Goal: Use strong reflection principles to represent ATR₀.

Predicative reflection principles

Predicative consistency:

 $\textit{PredCons}[T] := \forall \Lambda \forall X(\textit{wo}(\Lambda) \rightarrow \langle \Lambda | X \rangle_T \top)$

$$PredCons[T] := \forall \Lambda \forall X(wo(\Lambda) \to \langle \Lambda | X \rangle_T \top)$$

Predicative reflection:

$$\mathsf{PredRFN}_{\phi}[\mathsf{T}] := orall \Lambda orall X \Big(\mathsf{wo}(\Lambda) o ig([\Lambda | X]_{\mathsf{T}} \phi o \phi ig) \Big)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$\textit{PredCons}[T] := \forall \Lambda \forall X(\textit{wo}(\Lambda) \rightarrow \langle \Lambda | X \rangle_T \top)$$

Predicative reflection:

$$\textit{PredRFN}_{\phi}[\mathcal{T}] := orall \Lambda orall X \Big(\textit{wo}(\Lambda)
ightarrow ig([\Lambda|X]_{\mathcal{T}} \phi
ightarrow \phi ig) \Big)$$

 $PredRFN_{\Gamma}[T] := \{PredRFN_{\phi}[T] : \phi \in \Gamma\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$PredCons[T] := \forall \Lambda \forall X(wo(\Lambda) \to \langle \Lambda | X \rangle_T \top)$$

Predicative reflection:

$$\mathsf{PredRFN}_{\phi}[\mathsf{T}] := orall \Lambda orall X \Big(\mathsf{wo}(\Lambda) o ig([\Lambda | X]_{\mathsf{T}} \phi o \phi ig) \Big)$$

$$PredRFN_{\Gamma}[T] := \{PredRFN_{\phi}[T] : \phi \in \Gamma\}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (Cordón-Franco, DFD, Joosten, Lara-Martín) The following theories are equivalent:

$$PredCons[T] := \forall \Lambda \forall X(wo(\Lambda) \to \langle \Lambda | X \rangle_T \top)$$

Predicative reflection:

$$\mathsf{PredRFN}_{\phi}[\mathsf{T}] := orall \Lambda orall X \Big(\mathsf{wo}(\Lambda) o ig([\Lambda | X]_{\mathsf{T}} \phi o \phi ig) \Big)$$

$$PredRFN_{\Gamma}[T] := \{PredRFN_{\phi}[T] : \phi \in \Gamma\}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (Cordón-Franco, DFD, Joosten, Lara-Martín) *The following theories are equivalent:*

ATR₀

$$\textit{PredCons}[T] := \forall \Lambda \forall X(\textit{wo}(\Lambda) \rightarrow \langle \Lambda | X \rangle_T \top)$$

Predicative reflection:

$$\mathsf{PredRFN}_{\phi}[\mathsf{T}] := orall \Lambda orall X \Big(\mathsf{wo}(\Lambda) o ig([\Lambda | X]_{\mathsf{T}} \phi o \phi ig) \Big)$$

$$PredRFN_{\Gamma}[T] := \{PredRFN_{\phi}[T] : \phi \in \Gamma\}$$

(ロ) (同) (三) (三) (三) (○) (○)

Theorem (Cordón-Franco, DFD, Joosten, Lara-Martín) *The following theories are equivalent:*

- ATR₀
- RCA₀ + PredCons[RCA₀]

$$\textit{PredCons}[T] := \forall \Lambda \forall X(\textit{wo}(\Lambda) \rightarrow \langle \Lambda | X \rangle_T \top)$$

Predicative reflection:

$$\mathsf{PredRFN}_{\phi}[\mathsf{T}] := orall \Lambda orall X \Big(\mathsf{wo}(\Lambda) o ig([\Lambda | X]_{\mathsf{T}} \phi o \phi ig) \Big)$$

$$PredRFN_{\Gamma}[T] := \{PredRFN_{\phi}[T] : \phi \in \Gamma\}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (Cordón-Franco, DFD, Joosten, Lara-Martín) *The following theories are equivalent:*

- ATR₀
- RCA₀ + PredCons[RCA₀]
- $ACA_0 + PredRFN_{\Pi_2^1}[ACA_0]$

Reason in $ACA_0 + PredRFN_{\Pi^1_1}[RCA_0]$

Reason in $ACA_0 + PredRFN_{\Pi_1^1}[RCA_0]$

Given a well-order Λ and arithmetic $\phi(n, X) \in \Pi_{2m}^{0}$, we wish to construct a set *R* satisfying

$$\forall \boldsymbol{n} \,\forall \lambda \, \Big(\boldsymbol{n} \in \boldsymbol{R}_{\lambda} \leftrightarrow \phi(\boldsymbol{n}, \boldsymbol{R}_{<_{\Lambda}\lambda}) \Big).$$

Reason in $ACA_0 + PredRFN_{\Pi_1^1}[RCA_0]$

Given a well-order Λ and arithmetic $\phi(n, X) \in \Pi_{2m}^{0}$, we wish to construct a set *R* satisfying

$$\forall n \,\forall \lambda \, \Big(n \in \mathcal{R}_{\lambda} \leftrightarrow \phi(n, \mathcal{R}_{<_{\Lambda}\lambda}) \Big).$$

For this we define

$$R_{\lambda} = \left\{ \boldsymbol{n} : [\boldsymbol{m} \cdot \lambda | \Lambda]_{\mathsf{RCA}_{0}} \Big(\forall Z \big(TR_{\phi}^{\Lambda | \bar{\lambda}}(Z) \to \phi(\bar{\boldsymbol{n}}, Z_{<\bar{\lambda}}) \big) \Big) \right\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Reason in $ACA_0 + PredRFN_{\Pi_1^1}[RCA_0]$

Given a well-order Λ and arithmetic $\phi(n, X) \in \Pi_{2m}^{0}$, we wish to construct a set *R* satisfying

$$\forall \boldsymbol{n} \,\forall \lambda \, \Big(\boldsymbol{n} \in \boldsymbol{R}_{\lambda} \leftrightarrow \phi(\boldsymbol{n}, \boldsymbol{R}_{<_{\Lambda}\lambda}) \Big).$$

For this we define

$$R_{\lambda} = \left\{ \boldsymbol{n} : [\boldsymbol{m} \cdot \lambda | \boldsymbol{\Lambda}]_{\mathsf{RCA}_{0}} \Big(\forall \boldsymbol{Z} \big(TR_{\phi}^{\boldsymbol{\Lambda} | \bar{\lambda}} (\boldsymbol{Z}) \to \phi(\bar{\boldsymbol{n}}, \boldsymbol{Z}_{<\bar{\lambda}}) \big) \Big) \right\}.$$

The set *R* satisfies $TR^{\Lambda}_{\phi}(R)$ by completeness and reflection.

ω -models in ATR₀

Theorem

It is provable in ATR_0 that any ω -model \mathfrak{M} admits a full satisfaction class.

ω -models in ATR₀

Theorem

It is provable in ATR_0 that any ω -model \mathfrak{M} admits a full satisfaction class.

Theorem

It is provable in ATR_0 that any set X can be included in an ω -model $\mathfrak{M}[X]$ for ACA_0 .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Reasoning in ATR₀:

Reasoning in ATR₀:

Pick a well-order Λ, a Π₂¹-formula φ = ∀X∃Yψ(X, Y), a set X and assume that [Λ|Z]_{ACA₀}φ for some Z.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Reasoning in ATR₀:

- Pick a well-order Λ, a Π₂¹-formula φ = ∀X∃Yψ(X, Y), a set X and assume that [Λ|Z]_{ACA₀}φ for some Z.
- Construct a Λ-IPC P and consider the ω-model m[X] of ACA₀ with full satisfaction class S.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Reasoning in ATR₀:

- Pick a well-order Λ, a Π¹₂-formula φ = ∀X∃Yψ(X, Y), a set X and assume that [Λ|Z]_{ACA₀}φ for some Z.
- Construct a Λ-IPC P and consider the ω-model M[X] of ACA₀ with full satisfaction class S.
- By a straightforward transfinite induction show that [λ]_Pθ implies θ ∈ S.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Reasoning in ATR₀:

- Pick a well-order Λ, a Π¹₂-formula φ = ∀X∃Yψ(X, Y), a set X and assume that [Λ|Z]_{ACA₀}φ for some Z.
- Construct a Λ-IPC P and consider the ω-model M[X] of ACA₀ with full satisfaction class S.
- By a straightforward transfinite induction show that [λ]_Pθ implies θ ∈ S.
- ▶ In particular $\mathfrak{M}[X] \models \exists Y \psi(X, Y)$, so $\exists Y \psi(X, Y)$ holds. Since *X* was arbitrary, so does ϕ .

(日) (日) (日) (日) (日) (日) (日)

Π_1^1 -comprehension

< ロ > < 母 > < 豆 > < 豆 > < 豆 > のへの

Π_1^1 -comprehension

Π_1^1 -CA₀: Add to RCA₀ all axioms of the form

$$\forall X \exists Y \forall n (n \in Y \leftrightarrow \forall Z \phi(n, X, Z))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

where ϕ is arithmetic.

Π_1^1 -comprehension

Π_1^1 -CA₀: Add to RCA₀ all axioms of the form

$$\forall X \exists Y \forall n \ (n \in Y \leftrightarrow \forall Z \ \phi(n, X, Z))$$

where ϕ is arithmetic.

Impredicativity: The set *Y* is defined using a collection which includes *Y*!

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Define $[\infty]_T \phi$ as

" ϕ is provable using an arbitrary number of ω -rules."

Define $[\infty]_T \phi$ as

" ϕ is provable using an arbitrary number of ω -rules."

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Formally:

Say that P is a saturated provability class for T if

Define $[\infty]_T \phi$ as

" ϕ is provable using an arbitrary number of ω -rules."

Formally:

- Say that P is a saturated provability class for T if
 - P contains all axioms of T and is closed under all rules of the Tait calculus as well as the ω-rule;

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Define $[\infty]_T \phi$ as

" ϕ is provable using an arbitrary number of ω -rules."

Formally:

- Say that P is a saturated provability class for T if
 - P contains all axioms of T and is closed under all rules of the Tait calculus as well as the ω-rule;

(日) (日) (日) (日) (日) (日) (日)

P is the least set with this property.

Define $[\infty]_T \phi$ as

" ϕ is provable using an arbitrary number of ω -rules."

Formally:

- Say that P is a saturated provability class for T if
 - P contains all axioms of T and is closed under all rules of the Tait calculus as well as the ω-rule;

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

P is the least set with this property.

We can write this in a formula $SPC_T(P)$.

Define $[\infty]_T \phi$ as

" ϕ is provable using an arbitrary number of ω -rules."

Formally:

- Say that P is a saturated provability class for T if
 - P contains all axioms of T and is closed under all rules of the Tait calculus as well as the ω-rule;
 - P is the least set with this property.

We can write this in a formula $SPC_T(P)$.

Define

$$[\infty]_T \Gamma := \forall P \Big(SPC_T(P) \to \Gamma \in P \Big).$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Define $[\infty]_T \phi$ as

" ϕ is provable using an arbitrary number of ω -rules."

Formally:

- Say that P is a saturated provability class for T if
 - P contains all axioms of T and is closed under all rules of the Tait calculus as well as the ω-rule;
 - P is the least set with this property.

We can write this in a formula $SPC_T(P)$.

Define

$$[\infty]_T \Gamma := \forall P \Big(SPC_T(P) \to \Gamma \in P \Big).$$

► As before, [∞|X]_T Γ means that we also have an oracle for X.

Existence of an SPC

Theorem

It is provable in Π_1^1 -CA that given a theory T and a set X there exists an SPC for T with and oracle for X.

▲□▶▲□▶▲□▶▲□▶ □ のQ@
Theorem

It is provable in Π_1^1 -CA that given a theory T and a set X there exists an SPC for T with and oracle for X.

Proof.

• Let C(Y) be a formula stating

Y contains T|X and is closed under all the rules of ω -logic.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem

It is provable in Π_1^1 -CA that given a theory T and a set X there exists an SPC for T with and oracle for X.

Proof.

• Let C(Y) be a formula stating

Y contains T|X and is closed under all the rules of ω -logic.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Define

$$P = \Big\{ \Gamma : \forall Y (C(Y) \rightarrow \Gamma \in Y) \Big\}.$$

Theorem

It is provable in Π_1^1 -CA that given a theory T and a set X there exists an SPC for T with and oracle for X.

Proof.

• Let C(Y) be a formula stating

Y contains T|X and is closed under all the rules of ω -logic.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Define

$$P = \Big\{ \Gamma : \forall Y (C(Y) \rightarrow \Gamma \in Y) \Big\}.$$

• *P* exists by Π_1^1 comprehension.

Theorem

It is provable in Π_1^1 -CA that given a theory T and a set X there exists an SPC for T with and oracle for X.

Proof.

• Let C(Y) be a formula stating

Y contains T|X and is closed under all the rules of ω -logic.

Define

$$P = \Big\{ \Gamma : \forall Y (C(Y) \rightarrow \Gamma \in Y) \Big\}.$$

- *P* exists by Π_1^1 comprehension.
- It is not hard to check that P itself satisfies C(P).

Theorem

It is provable in Π_1^1 -CA that given a theory T and a set X there exists an SPC for T with and oracle for X.

Proof.

• Let C(Y) be a formula stating

Y contains T|X and is closed under all the rules of ω -logic.

Define

$$P = \Big\{ \Gamma : \forall Y (C(Y) \rightarrow \Gamma \in Y) \Big\}.$$

- *P* exists by Π_1^1 comprehension.
- ▶ It is not hard to check that *P* itself satisfies *C*(*P*).
- By definition, P is contained in any set Y satisfying C(Y), hence it is the least such set.

Theorem

It is provable in ACA₀ that for any theory *T*, if $\phi(X) \in \Pi_1^1$ then $\phi \to [\infty|X]_T \phi$.

Theorem

It is provable in ACA₀ that for any theory *T*, if $\phi(X) \in \Pi_1^1$ then $\phi \to [\infty|X]_T \phi$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Proof: We proceed by contrapositive.

Theorem

It is provable in ACA₀ that for any theory *T*, if $\phi(X) \in \Pi_1^1$ then $\phi \to [\infty|X]_T \phi$.

Proof: We proceed by contrapositive.

• If $\Gamma(Y)$ is not provable, use a standard proof-search to build

 $\Gamma=\Gamma_0\subseteq\Gamma_1\subseteq\Gamma_2\dots$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

which decides any subformula of Γ and such that no Γ_i is derivable.

Theorem

It is provable in ACA₀ that for any theory *T*, if $\phi(X) \in \Pi_1^1$ then $\phi \to [\infty|X]_T \phi$.

Proof: We proceed by contrapositive.

• If $\Gamma(Y)$ is not provable, use a standard proof-search to build

 $\Gamma=\Gamma_0\subseteq\Gamma_1\subseteq\Gamma_2\dots$

which decides any subformula of Γ and such that no Γ_i is derivable.

Define

$$Y^* := \left\{ n : \exists i \big(\bar{n} \notin Y \in \Gamma_i \big) \right\}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem

It is provable in ACA₀ that for any theory *T*, if $\phi(X) \in \Pi_1^1$ then $\phi \to [\infty|X]_T \phi$.

Proof: We proceed by contrapositive.

If Γ(Y) is not provable, use a standard proof-search to build

 $\Gamma = \Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_2 \dots$

which decides any subformula of Γ and such that no Γ_i is derivable.

Define

$$Y^* := \left\{ n : \exists i \big(\bar{n} \notin Y \in \Gamma_i \big) \right\}$$

(ロ) (同) (三) (三) (三) (○) (○)

• Y^* is a witness for $\neg \lor \Gamma$, hence $\forall Y \lor \Gamma(Y)$ is not true.

Theorem

It is provable in ACA₀ that for any theory *T*, if $\phi(X) \in \Pi_1^1$ then $\phi \to [\infty|X]_T \phi$.

Proof: We proceed by contrapositive.

• If $\Gamma(Y)$ is not provable, use a standard proof-search to build

 $\Gamma = \Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_2 \dots$

which decides any subformula of Γ and such that no Γ_i is derivable.

Define

$$Y^* := \left\{ n : \exists i \big(\bar{n} \notin Y \in \Gamma_i \big) \right\}$$

• Y^* is a witness for $\neg \lor \Gamma$, hence $\forall Y \lor \Gamma(Y)$ is not true.

Corollary

For $\phi \in \Sigma_2^1$ it is provble in ACA₀ that $\phi \to \exists Z[\infty | Z]_T \phi$.

Definition We define:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Definition We define:

•
$$\infty$$
-OrCons_Γ[T] := $\forall X \langle \infty | X \rangle_T \top$;

Definition We define:

- ∞ -OrCons_Γ[T] := $\forall X \langle \infty | X \rangle_T \top$;
- ∞ -OrRFN_Γ[T] := $\forall X \forall x ([\infty|X]_T \phi(\bar{x}, \bar{X}) \to \phi(x, X))$ for $\phi \in \Gamma$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition We define:

•
$$\infty$$
-OrCons_Γ[T] := $\forall X \langle \infty | X \rangle_T \top$;

► ∞-*OrRFN*_Γ[*T*] :=
$$\forall X \forall x ([\infty|X]_T \phi(\bar{x}, \bar{X}) \rightarrow \phi(x, X))$$

for $\phi \in \Gamma$.

Observation: Over ACA₀, ∞ -*OrCons*[*T*] implies ∞ -*OrRFN*_{Σ_1^1}[*T*] by Π_1^1 completeness.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition We define:

•
$$\infty$$
-OrCons_Γ[T] := $\forall X \langle \infty | X \rangle_T \top$;

► ∞-*OrRFN*_Γ[*T*] :=
$$\forall X \forall x ([\infty|X]_T \phi(\bar{x}, \bar{X}) \rightarrow \phi(x, X))$$

for $\phi \in \Gamma$.

Observation: Over ACA₀, ∞ -*OrCons*[*T*] implies ∞ -*OrRFN*_{Σ_1^1}[*T*] by Π_1^1 completeness.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem The following theories are equivalent:

Definition We define:

•
$$\infty$$
-OrCons_Γ[T] := $\forall X \langle \infty | X \rangle_T \top$;

► ∞-*OrRFN*_Γ[*T*] :=
$$\forall X \forall x ([\infty|X]_T \phi(\bar{x}, \bar{X}) \rightarrow \phi(x, X))$$

for $\phi \in \Gamma$.

Observation: Over ACA₀, ∞ -*OrCons*[*T*] implies ∞ -*OrRFN*_{Σ_1^1}[*T*] by Π_1^1 completeness.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem

The following theories are equivalent:

Definition We define:

•
$$\infty$$
-OrCons_Γ[T] := $\forall X \langle \infty | X \rangle_T \top$;

► ∞-*OrRFN*_Γ[*T*] :=
$$\forall X \forall x ([\infty|X]_T \phi(\bar{x}, \bar{X}) \rightarrow \phi(x, X))$$

for $\phi \in \Gamma$.

Observation: Over ACA₀, ∞ -*OrCons*[*T*] implies ∞ -*OrRFN*_{Σ_1^1}[*T*] by Π_1^1 completeness.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem

The following theories are equivalent:

- Π¹₁-CA₀
- $RCA_0 + \infty$ -OrCons[RCA_0];

Definition We define:

•
$$\infty$$
-OrCons_Γ[T] := $\forall X \langle \infty | X \rangle_T \top$;

$$\bullet \quad \infty \text{-} OrRFN_{\Gamma}[T] := \forall X \forall x ([\infty|X]_T \phi(\bar{x}, \bar{X}) \to \phi(x, X))$$
for $\phi \in \Gamma$.

Observation: Over ACA₀, ∞ -*OrCons*[*T*] implies ∞ -*OrRFN*_{Σ_1^1}[*T*] by Π_1^1 completeness.

(ロ) (同) (三) (三) (三) (○) (○)

Theorem

The following theories are equivalent:

- ► Π¹₁-CA₀
- $RCA_0 + \infty$ -OrCons[RCA_0];
- $ACA_0 + \infty$ -OrRFN_{Π_3^1}[ACA₀].

Impredicative reflection implies Π_1^1 comprehension

Reason in $ACA_0 + \infty$ -*OrRFN*_{Π^1}[ACA₀]:

Impredicative reflection implies Π_1^1 comprehension

Reason in ACA₀ + ∞ -OrRFN_П¹[ACA₀]:

To construct the set

 $\{n: \forall X\phi(n, X, Y)\},\$

Impredicative reflection implies Π_1^1 comprehension

Reason in ACA₀ + ∞ -OrRFN_П¹[ACA₀]:

To construct the set

$$\{\mathbf{n}: \forall \mathbf{X}\phi(\mathbf{n},\mathbf{X},\mathbf{Y})\},\$$

we instead consider

$$\big\{n: [\infty|Y]_{\mathsf{ACA}_0} \forall X \phi(n, X, Y)\big\}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

β -models and Π_1^1 comprehension

Definition A β -model is a full ω -model \mathfrak{M} such that whenever $\phi \in \Pi_1^1$ is a formula with parameters in \mathfrak{M} such that $\mathfrak{M} \models \phi$, it follows that $\mathbb{N} \models \phi$.

β -models and Π_1^1 comprehension

Definition A β -model is a full ω -model \mathfrak{M} such that whenever $\phi \in \Pi_1^1$ is a formula with parameters in \mathfrak{M} such that $\mathfrak{M} \models \phi$, it follows that $\mathbb{N} \models \phi$.

Theorem

It is provable in Π_1^1 -CA₀ that any set X can be included in an β -model $\mathfrak{M}[X]$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

β -models and Π_1^1 comprehension

Definition A β -model is a full ω -model \mathfrak{M} such that whenever $\phi \in \Pi_1^1$ is a formula with parameters in \mathfrak{M} such that $\mathfrak{M} \models \phi$, it follows that $\mathbb{N} \models \phi$.

Theorem

It is provable in Π_1^1 -CA₀ that any set X can be included in an β -model $\mathfrak{M}[X]$.

Theorem

It is provable in Π_1^1 -CA₀ that any β -model is a model of ATR₀, or even the stronger Π_{ω}^1 -TI₀.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Reasoning in Π_1^1 -CA₀:

Reasoning in Π_1^1 -CA₀:

Pick a Π₃¹-formula φ = ∀X∃Yψ(X, Y), a set X and assume that [∞|Z]_{ACA₀}φ for some Z.

(ロ) (同) (三) (三) (三) (○) (○)

Reasoning in Π_1^1 -CA₀:

- Pick a Π₃¹-formula φ = ∀X∃Yψ(X, Y), a set X and assume that [∞|Z]_{ACA₀}φ for some Z.
- Construct an SPC P and consider the β-model m[X] with full satisfaction class S.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Reasoning in Π_1^1 -CA₀:

- Pick a Π₃¹-formula φ = ∀X∃Yψ(X, Y), a set X and assume that [∞|Z]_{ACA₀}φ for some Z.
- Construct an SPC P and consider the β-model m[X] with full satisfaction class S.
- By a straightforward transfinite induction show that θ ∈ P implies θ ∈ S.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Reasoning in Π_1^1 -CA₀:

- Pick a Π₃¹-formula φ = ∀X∃Yψ(X, Y), a set X and assume that [∞|Z]_{ACA₀}φ for some Z.
- Construct an SPC P and consider the β-model m[X] with full satisfaction class S.
- By a straightforward transfinite induction show that θ ∈ P implies θ ∈ S.
- ▶ In particular $\mathfrak{M}[X] \models \exists Y \psi(X, Y)$, so $\exists Y \psi(X, Y)$ holds. Since *X* was arbitrary, so does ϕ .

We have shown how three of the Big Five theories of Reverse Mathematics can be represented as strong consistency or reflection principles over a weak base theory.

(ロ) (同) (三) (三) (三) (○) (○)

- We have shown how three of the Big Five theories of Reverse Mathematics can be represented as strong consistency or reflection principles over a weak base theory.
- ► These principles naturally fall within a large spectrum of theories between ACA₀ and Π¹₁-CA₀.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- We have shown how three of the Big Five theories of Reverse Mathematics can be represented as strong consistency or reflection principles over a weak base theory.
- ► These principles naturally fall within a large spectrum of theories between ACA₀ and Π¹₁-CA₀.
- Can stronger theories such as Π¹₂-CA₀ be represented in a similar fashion?

- We have shown how three of the Big Five theories of Reverse Mathematics can be represented as strong consistency or reflection principles over a weak base theory.
- ► These principles naturally fall within a large spectrum of theories between ACA₀ and Π¹₁-CA₀.
- Can stronger theories such as Π¹₂-CA₀ be represented in a similar fashion?
- How about natural theories in the language of set-theory?

- We have shown how three of the Big Five theories of Reverse Mathematics can be represented as strong consistency or reflection principles over a weak base theory.
- ► These principles naturally fall within a large spectrum of theories between ACA₀ and Π¹₁-CA₀.
- Can stronger theories such as Π¹₂-CA₀ be represented in a similar fashion?
- How about natural theories in the language of set-theory?
- Can these principles be used for Π⁰₁ ordinal analysis in the spirit of Beklemishev's analysis of PA?

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●