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Plan of the presentation

I Review uniform reflection principles in first-order arithmetic.

I Show how Peano Arithmetic can be represented as
uniform reflection over Kalmàr Elementary Arithmetic.

I Present reflection principles in second-order arithmetic and
show how ACA0 can also be represented as reflection over
RCA0.

I Show how infinitary reflection principles may also be used
to represent more of the ‘Big Five’ systems of Reverse
Mathematics.
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First-order arithmetic
L1 = Π0

ω denotes the language of first-order arithmetic over the
signature

〈0,1,+,×〉

I ∆0
0 formulas: all quantifiers are of the form ∃x < t or
∀x < t .

I Σ0
n : ∃xn∀xn−1 . . . δ(x1, . . . , xn)

I Π0
n : ∀xn∃xn−1 . . . δ(x1, . . . , xn)

We will fix a Gödel numbering φ 7→ pφq and define numerals

n̄ = 0 +1 + . . .+ 1︸ ︷︷ ︸
n

.

We assume all theories are elementarily presented:

T ` φ ⇔ ∃x Proof T (x , pφq)︸ ︷︷ ︸
∈∆0

0

.
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Notation

I �Tφ := ∃x Proof T (x , pφq)

I ♦Tφ := ¬�T¬φ

I > := 0 = 0

I ⊥ := ¬>

I Cons[T ] := ♦T> ∈ Π0
1
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Some first-order theories of arithmetic

Induction schema:

Iφ = φ(0) ∧ ∀x
(
φ(x)→ φ(x + 1)

)
→ ∀xφ(x).

IΓ = {Iφ : φ ∈ Γ}.

I Robinson’s Q: Includes axioms for +,× but no induction.
I Kalmár elementary arithmetic:

EA := Q + I∆0
0 + “the exponential function is total”

I Peano arithmetic:
PA := Q + IΠ0

ω
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Arithmetic reflection principles
Statements of the form

“If φ is provable in T then φ is true.”

Formally,
�Tφ→ φ.

I If φ is a sentence, this is an instance of local reflection.
I Uniform reflection generalizes this to formulas φ = φ(x):

RFNφ[T ] = ∀x
(
�Tφ(x̄)→ φ(x)

)
.

If Γ is a set of formulas,

RFNΓ[T ] := {RFNφ[T ] : φ ∈ Γ}.
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Extending theories by reflection

Löb’s rule: T only proves its reflection instances when we
already have that T ` φ:

T ` �Tφ→ φ

T ` φ
.

This generalizes Gödel’s second incompleteness theorem if
φ = ⊥ :

T ` ♦T>
T ` ⊥

.
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Arithmetic through reflection

Theorem (Kreisel and Levy)
PA ≡ EA + RFN[EA].

More specifically:

Theorem (Beklemishev)
For all n ≥ 1, IΣn ≡ EA + RFNΣn+1 [EA].

This was previously proven for n ≥ 2 by Leviant using PRA.
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Reflection proves induction

Reasoning in EA + RFN[EA]:

I Consider an instance Iφ of induction:
φ(0) ∧ ∀x(φ(x)→ φ(x + 1))→ ∀xφ(x).

I If φ has unbounded quantifiers then EA cannot prove Iφ
directly.

I However, for any n, EA can prove that
φ(0) ∧ ∀x(φ(x)→ φ(x + 1))→ φ(n̄).

I EA can even prove this fact:
∀n �EA

(
φ(0) ∧ ∀x(φ(x)→ φ(x + 1))→ φ(n̄)

)
.

I By reflection we have Iφ.
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The ‘standard’ proof of reflection

All axioms of EA are true, and all rules preserve truth. Thus by
induction on the length of a derivation, all theorems of EA are
true.

Formally, we are proving by induction on n that

∀φ ∈ Π0
ω

(
Proof (n, φ)→ True(φ)

)
.

But in the language of PA, we have only partial truth predictes
TrueΠn . So we need to bound the complexity of formulas
appearing in our derivations.

Solution: Cut elimination!
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The Tait calculus

Sequent-based calculus, where all negations are pushed down
to atomic formulas.

(LEM)
Γ, α,¬α

(∧)
Γ, φ Γ, ψ

Γ, φ ∧ ψ
(∨)

Γ, φ, ψ

Γ, φ ∨ ψ

(∀)
Γ, φ(v)

Γ,∀xφ(x)
(∃)

Γ, φ(t)
Γ, ∃xφ(x)

(CUT)
Γ, φ Γ,¬φ

Γ
,

where α is atomic and v does not appear free in Γ.



Cut elimination

Theorem
It is provable in PA that any sequent derivable in the Tait
calculus can be derived without the cut rule.

In fact, we do not need full PA.

Let EA+ be the theory EA+“the superexponential is total”.

Then, EA+ suffices to prove cut-elimination.
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Induction proves reflection
Reasoning in PA:

I Suppose that EA ` φ.

I By the cut-elimination theorem, we have a cut-free proof of

¬α1, . . . ,¬αm, φ

where the αi ’s are an axiomatization of EA.

I We can prove by induction that

∀Γ
(
` Γ→ TrueΠn (

∨
Γ)
)
,

where n is large enough so that all negated axioms of EA
and φ are in Πn.

I Since all axioms of EA are provable in PA, we conclude
that φ.
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Strong extensions of T

We may obtain stronger reflection principles by passing to
possibly non-computable extensions of T .

For n ∈ N, define [n]Tφ if and only if φ is provable from T using
an oracle for Π0

n sentences.

Formally,

[n]Tφ ≡ ∃ψ
(
TrueΠ0

n
(ψ) ∧�T (ψ → φ)

)
∈ Σ0

n+1.
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Reflection and n-consistency

We may then consider principles of the form [n]Tφ→ φ, or
simply 〈n〉Tφ := ¬[n]T¬φ:

Theorem
For all n ∈ N,

EA ` 〈n̄〉T> ↔ RFNΣ0
n
[T ].

Corollary
PA ≡ EA + {〈n̄〉EA> : n < ω}.
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Second-order arithmetic

Language: Add to the first-order arithmetic language:

I set-variables X ,Y ,Z , . . .

I new atomic formulas t ∈ X

I second-order quantifiers ∀X , ∃X

I Π1
n, Σ1

n formulas have n alternating second-order
quantifiers.
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Basic second-order axioms

Induction axiom (Ind):

∀X
(

0 ∈ X ∧ ∀n (n ∈ X → (n + 1) ∈ X )→ ∀n (n ∈ X )
)

Comprehension axioms: State the existence of sets of the form

{n ∈ N : φ(n)}.

CA(Γ): comprehension for φ ∈ Γ.

CA(∆0
1) : for π ∈ Π0

1, σ ∈ Σ0
1,

∀n
(
π(n)↔ σ(n)

)
→ ∃X∀n

(
n ∈ X ↔ σ(n)

)
.
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ACA0 is equivalent to either:

I Q + CA(Σ0
1) + Ind .

I Q + CA(Π0
ω) + Ind .

It is conservative over PA.

Goal: Represent ACA0 in the form RCA0 + R where R is some
appropriate reflection principle.
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First approximation:

Let us first consider the theory

RCA0 +
{
∀n
(
�RCA0φ(n̄)→ φ(n)

)
: φ ∈ Π0

ω

}
.

This will indeed give us the first-order part of ACA0 (Peano
Arithmetic).

However, we do not get any new comprehension.
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Second-order formalization of provability

Instead, we will formalize provability using a least fixed point.

For a theory T , let ThmT (P) be a formula stating:

P is the least set containing all axioms of T and
closed under the rules of T .

Then define

[0]Tφ = ∀P
(
ThmT (P)→ φ ∈ P

)
.

Note: 〈0〉T> implies ∃P ThmT (P).
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Our second approximation

For a set of formulas Γ, we define the schema

0-RFNΓ[T ] = ∀X ∀n
(
[0]Tφ(n̄)→ φ(n)

)
.

(for φ ∈ Γ).

Our second approximation is

RCA0 + 0-RFNΣ0
1
[RCA0].
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Does 0-RFNΣ0
1
[RCA0] prove ACA0?

Idea: Let φ(n) be a Σ0
1 formula. We wish to form the set

{n : φ(n)}.

Reasoning in RCA0 + 0-RFNΣ0
1
[RCA0], there exists P such that

ThmRCA0(P) holds. We instead form the set

E = {n : φ(n̄) ∈ P}.

I If n ∈ E then φ(n) holds by reflection.
I If φ(n) then n ∈ E should hold by Σ0

1-completeness.
I But we lose completeness when φ has free set variables!
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Theories with oracles

For a theory T and a set X , let T |X be the extension of T with a
new set-constant O and all axioms of the form

I n̄ ∈ O for n ∈ X

I n̄ 6∈ O for n 6∈ X

Let [0|X ]Tφ = ∀P
(
ThmT |X (P)→ φ ∈ P

)
.
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Oracle reflection

Let 0-OrRFNΓ[T ] = ∀X ∀n
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Theorem
ACA0 ≡ RCA0 + 0-OrRFNΠ1
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Proving reflection in ACA0

I A set satisfying ThmRCA0|X (P) can be constructed within
ACA0 by

P = {φ : ∃xProof RCA0|X (x , φ)}.

I Then we may use ω-models of RCA0 to prove reflection.
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ω-models

Definition
An ω-model is a set M = (Mn)n∈N of subsets of N. We write
M |= φ if φ holds when all first-order quantifiers range over N
and all second-order quantifiers over {Mn}n∈N

A satisfaction class on M is a set S such that for all φ, φ ∈ S if
and only if M |= φ.

A partial satisfaction class on M for Γ is a set S such that for all
φ ∈ Γ, φ ∈ S if and only if M |= φ.
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ω-models of RCA0

Theorem
ACA0 proves that, given any set X , there is an ω-model M of
RCA0 such that M |= RCA0 and M0 = X.

Theorem
Given a finite set of formulas Γ, ACA0 proves that, given an
ω-model M, there is a partial satisfaction class S for the set of
substitution instances of formulas of Γ and their subformulas.
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Reflection via ω-models

Reason in ACA0:

I Fix a formula φ(n,Z ) = ∀X∃Yψ(n,X ,Y ,Z ) ∈ Π1
2 and

assume that RCA0|Z proves φ(n̄,O).

I Then there is a cut-free derivation of
Γ = ¬Ax1, . . . ,¬Axm, φ(n̄,O).

I Let X be an arbitrary set and build an ω-model M
containing X with a satisfaction class S for Γ.

I Prove by induction on the length of a derivation that Γ ∈ S.

I By upwards-persistence of Σ1
1 formulas, ∃Yψ(n,X ,Y ,Z )

holds in N.

I But X was arbitrary, so ∀X∃Yψ(n,X ,Y ,Z ) holds in N.
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Strong provability operators

Notation: [n]PΓ := 〈n, Γ〉 ∈ P

Definition
A iterated provability class of depth n > 0 for a theory T is a set
P such that

1. For all axioms Ax of T , [0]T Ax ;
2. if m ≤ n

∆1 . . . ,∆k

Γ

is a rule of T and for all i ≤ k we have that [m]P∆i then
also [m]PΓ;

3. if i < j ≤ n and for all k , [i]P(Γ, φ(k̄)), then [j]P(Γ,∀x φ(x)).
Let IPCn

T (P) be a formula expressing that P is an iterated
provability class of depth n for T .
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Reasoning about strong provability operators in ACA0

Theorem
Given n > 0 and a theory T , it is provable in ACA0 that an
iterated provability class of depth n exists for T .

Definition
We define

[n]T Γ := ∀P
(
IPCn

T (n,P)→ [n]PΓ
)
.

[n|X ]T Γ is defined similarly but with an oracle for X .

If cuts are not allowed we will write [n|X ]cf
T Γ (although then we

may also add negated axioms to Γ).
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Well-orders in second order arithmetic

Well-orders are represented by pairs Λ = (|Λ|, <Λ), where

I |Λ| is a set of natural numbers

I <Λ ⊆ |Λ| × |Λ| well-orders Λ.

Let wo(Λ) be a formula stating that Λ is a well-order.

Λ is definable if there are formulas δ, σ such that

1. for all n, n ∈ |Λ| if and only if δ(n);

2. for all n,m ∈ |Λ|, n <Λ m if and only if σ(n,m).
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Beyond ACA0

We can iterate ω-rules along any well-order Λ using the same
definition as in the finite case.

Given a definable well-order Λ and a theory T , we can consider

T Λ = T + Λ-OrConscf
Σ0

1
[RCA0].

We have seen that ACA0 =
⋃

n<ω RCAn
0.

But we may consider RCAΛ
0 for transfinite Λ.

Question: Are any of the theories RCAΛ
0 equivalent to

well-known theories?

What if we allow cuts?
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Arithmetic Transfinite Recursion

Define

TRΛ
φ(X ,Y ) ≡ ∀n∀λ

(
〈n, λ〉 ∈ Y ↔ φ(n, λ,X ,Y<Λλ)

)
.

The second-order system ATR0 is ACA0 with the axiom scheme

∀X∀Λ
(

wo(Λ)→ ∃YTRΛ
φ(X ,Y )

)
,

where the formula φ is arithmetic.
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Arithmetic Transfinite Recursion

X Y0 Y1 Y2 . . . Yω︸ ︷︷ ︸
Y<Λω+1

Yω+1

Yω+1 = {n ∈ N : φ(n,1,X ,Y<Λω+1)}

Goal: Use strong reflection principles to represent ATR0.



Predicative reflection principles
Predicative consistency:

PredCons[T ] := ∀Λ∀X (wo(Λ)→ 〈Λ|X 〉T>)

Predicative reflection:

PredRFNφ[T ] := ∀Λ∀X
(

wo(Λ)→
(
[Λ|X ]Tφ→ φ

))
PredRFNΓ[T ] := {PredRFNφ[T ] : φ ∈ Γ}

Theorem (Cordón-Franco, DFD, Joosten, Lara-Martı́n)
The following theories are equivalent:
I ATR0

I RCA0 + PredCons[RCA0]

I ACA0 + PredRFNΠ1
2
[ACA0]
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Predicative reflection proves transfinite recursion

Reason in ACA0 + PredRFNΠ1
1
[RCA0]

Given a well-order Λ and arithmetic φ(n,X ) ∈ Π0
2m, we wish to

construct a set R satisfying

∀n ∀λ
(

n ∈ Rλ ↔ φ(n,R<Λλ)
)
.

For this we define

Rλ =

{
n : [m · λ|Λ]RCA0

(
∀Z
(
TRΛ�λ̄

φ (Z )→ φ(n̄,Z<λ̄)
))}

.

The set R satisfies TRΛ
φ(R) by completeness and reflection.
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ω-models in ATR0

Theorem
It is provable in ATR0 that any ω-model M admits a full
satisfaction class.

Theorem
It is provable in ATR0 that any set X can be included in an
ω-model M[X ] for ACA0.
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Reasoning in ATR0:

I Pick a well-order Λ, a Π1
2-formula φ = ∀X∃Yψ(X ,Y ), a set

X and assume that [Λ|Z ]ACA0φ for some Z .

I Construct a Λ-IPC P and consider the ω-model M[X ] of
ACA0 with full satisfaction class S.
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implies θ ∈ S.

I In particular M[X ] |= ∃Yψ(X ,Y ), so ∃Yψ(X ,Y ) holds.
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Π1
1-comprehension

Π1
1-CA0: Add to RCA0 all axioms of the form
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n ∈ Y ↔ ∀Z φ(n,X ,Z )

)
where φ is arithmetic.

Impredicativity: The set Y is defined using a collection which
includes Y !
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Unbounded ω-logic

Define [∞]Tφ as

“φ is provable using an arbitrary number of ω-rules.”

Formally:
I Say that P is a saturated provability class for T if

I P contains all axioms of T and is closed under all rules of
the Tait calculus as well as the ω-rule;

I P is the least set with this property.

We can write this in a formula SPCT (P).
I Define

[∞]T Γ := ∀P
(

SPCT (P)→ Γ ∈ P
)
.

I As before, [∞|X ]T Γ means that we also have an oracle for
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Existence of an SPC
Theorem
It is provable in Π1

1-CA that given a theory T and a set X there
exists an SPC for T with and oracle for X .

Proof.
I Let C(Y ) be a formula stating

Y contains T |X and is closed under all the rules
of ω-logic.

I Define
P =

{
Γ : ∀Y

(
C(Y )→ Γ ∈ Y

)}
.

I P exists by Π1
1 comprehension.

I It is not hard to check that P itself satisfies C(P).
I By definition, P is contained in any set Y satisfying C(Y ),

hence it is the least such set.
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Completeness
Theorem
It is provable in ACA0 that for any theory T , if φ(X ) ∈ Π1

1 then
φ→ [∞|X ]Tφ.

Proof: We proceed by contrapositive.

I If Γ(Y ) is not provable, use a standard proof-search to build

Γ = Γ0 ⊆ Γ1 ⊆ Γ2 . . .

which decides any subformula of Γ and such that no Γi is
derivable.

I Define
Y ∗ :=

{
n : ∃i

(
n̄ 6∈ Y ∈ Γi

)}
I Y ∗ is a witness for ¬

∨
Γ, hence ∀Y

∨
Γ(Y ) is not true.

Corollary
For φ ∈ Σ1

2 it is provble in ACA0 that φ→ ∃Z [∞|Z ]Tφ.
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Impredicative consistency and reflection

Definition
We define:

I ∞-OrConsΓ[T ] := ∀X 〈∞|X 〉T>;
I ∞-OrRFNΓ[T ] := ∀X∀x

(
[∞|X ]Tφ(x̄ , X̄ )→ φ(x ,X )

)
for φ ∈ Γ.

Observation: Over ACA0,∞-OrCons[T ] implies∞-OrRFNΣ1
1
[T ]

by Π1
1 completeness.

Theorem
The following theories are equivalent:

I Π1
1-CA0

I RCA0 +∞-OrCons[RCA0];

I ACA0 +∞-OrRFNΠ1
3
[ACA0].
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Impredicative reflection implies Π1
1 comprehension

Reason in ACA0 +∞-OrRFNΠ1
1
[ACA0]:

To construct the set {
n : ∀Xφ(n,X ,Y )

}
,

we instead consider{
n : [∞|Y ]ACA0∀Xφ(n,X ,Y )

}
.
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β-models and Π1
1 comprehension

Definition
A β-model is a full ω-model M such that whenever φ ∈ Π1

1 is a
formula with parameters in M such that M |= φ, it follows that
N |= φ.

Theorem
It is provable in Π1

1-CA0 that any set X can be included in an
β-model M[X ].

Theorem
It is provable in Π1

1-CA0 that any β-model is a model of ATR0, or
even the stronger Π1

ω-TI0.



β-models and Π1
1 comprehension

Definition
A β-model is a full ω-model M such that whenever φ ∈ Π1

1 is a
formula with parameters in M such that M |= φ, it follows that
N |= φ.

Theorem
It is provable in Π1

1-CA0 that any set X can be included in an
β-model M[X ].

Theorem
It is provable in Π1

1-CA0 that any β-model is a model of ATR0, or
even the stronger Π1

ω-TI0.



β-models and Π1
1 comprehension

Definition
A β-model is a full ω-model M such that whenever φ ∈ Π1

1 is a
formula with parameters in M such that M |= φ, it follows that
N |= φ.

Theorem
It is provable in Π1

1-CA0 that any set X can be included in an
β-model M[X ].

Theorem
It is provable in Π1

1-CA0 that any β-model is a model of ATR0, or
even the stronger Π1

ω-TI0.



Π1
1 comprehension implies impredicative reflection

Reasoning in Π1
1-CA0:

I Pick a Π1
3-formula φ = ∀X∃Yψ(X ,Y ), a set X and assume

that [∞|Z ]ACA0φ for some Z .

I Construct an SPC P and consider the β-model M[X ] with
full satisfaction class S.

I By a straightforward transfinite induction show that θ ∈ P
implies θ ∈ S.

I In particular M[X ] |= ∃Yψ(X ,Y ), so ∃Yψ(X ,Y ) holds.
Since X was arbitrary, so does φ.
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implies θ ∈ S.

I In particular M[X ] |= ∃Yψ(X ,Y ), so ∃Yψ(X ,Y ) holds.
Since X was arbitrary, so does φ.
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I How about natural theories in the language of set-theory?

I Can these principles be used for Π0
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Thank you!


