
Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

1

Lecture I

First Order Languages

In a first order language L, all the primitive symbols are among the following:

Connectives: ~ , ⊃ .

Parentheses: (,).

Variables: x1, x2, x3,

Constants: a1, a2, a3,

Function letters: f11, f
1
2, ... (one-place);

f2
1, f

2
2, ... (two-place);

:
 :
Predicate letters: P11, P 12, ... (one-place);

P2
1, P

2
2, ... (two-place);

 :
 :

Moreover, we place the following constraints on the set of primitive symbols of a first order
language L. L must contain all of the variables, as well as the connectives and parentheses.
The constants of L form an initial segment of a1, a2, a3, . . ., i.e., either L contains all the
constants, or it contains all and only the constants a1, . . ., an for some n, or L contains no
constants. Similarly, for any n, the n-place predicate letters of L form an initial segment of
Pn

1, P
n
2, ... and the n-place function letters form an initial segment of fn

1, f
n
2, ... However, we

require that L contain at least one predicate letter; otherwise, there would be no formulae of
L.

(We could have relaxed these constraints, allowing, for example, the constants of a
language L to be a1, a3, a5, . . . However, doing so would not have increased the expressive
power of first order languages, since by renumbering the constants and predicates of L, we
could rewrite each formula of L as a formula of some language L' that meets our
constraints. Moreover, it will be convenient later to have these constraints.)

A first order language L is determined by a set of primitive symbols (included in the set
described above) together with definitions of the notions of a term of L and of a formula of
L. We will define the notion of a term of a first order language L as follows:

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

2

(i) Variables and constants of L are terms of L.
(ii) If t 1, ..., tn are terms of L and fn

i is a function letter of L, then fn
i t1...tn is a term of L.

(iii) The terms of L are only those things generated by clauses (i) and (ii).

Note that clause (iii) (the “extremal clause”) needs to be made more rigorous; we shall
make it so later on in the course.

An atomic formula of L is an expression of the form Pn
i t1...tn, where Pni is a predicate

letter of L and t1, ..., tn are terms of L. Finally, we define formula of L as follows:

(i) An atomic formula of L is a formula of L.
(ii) If A is a formula of L, then so is ~A.
(iii) If A and B are formulae of L, then (A ⊃ B) is a formula of L.

(iv) If A is a formula of L, then for any i, (xi) A is a formula of L.
(v) The formulae of L are only those things that are required to be so by clauses (i)-

(iv).

Here, as elsewhere, we use 'A', 'B', etc. to range over formulae.
Let xi be a variable and suppose that (xi)B is a formula which is a part of a formula A.

Then B is called the scope of the particular occurrence of the quantifier (xi) in A. An
occurrence of a variable xi in A is bound if it falls within the scope of an occurrence of the
quantifier (xi), or if it occurs inside the quantifier (xi) itself; and otherwise it is free. A
sentence (or closed formula) of L is a formula of L in which all the occurrences of variables
are bound.

Note that our definition of formula allows a quantifier (xi) to occur within the scope of
another occurrence of the same quantifier (xi), e.g. (x1)(P

1
1x1 ⊃ (x1) P

1
2x1). This is a bit

hard to read, but is equivalent to (x1)(P
1
1x1 ⊃ (x2) P

1
2x2). Formulae of this kind could be

excluded from first order languages; this could be done without loss of expressive power,
for example, by changing our clause (iv) in the definition of formula to a clause like:

(iv') If A is a formula of L, then for any i, (xi) A is a formula of L, provided that (xi)
does not occur in A.

(We may call the restriction in (iv') the “nested quantifier restriction”). Our definition of
formula also allows a variable to occur both free and bound within a single formula; for
example, P11x1 ⊃ (x1) P

1
2x1 is a well formed formula in a language containing P1

1 and P12. A

restriction excluding this kind of formulae could also be put in, again without loss of
expressive power in the resulting languages. The two restrictions mentioned were adopted
by Hilbert and Ackermann, but it is now common usage not to impose them in the definition
of formula of a first order language. We will follow established usage, not imposing the

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

3

restrictions, although imposing them might have some advantages and no important
disadvantadge.

We have described our official notation; however, we shall often use an unofficial
notation. For example, we shall often use 'x', 'y', 'z', etc. for variables, while officially we
should use 'x1', 'x2', etc. A similar remark applies to predicates, constants, and function
letters. We shall also adopt the following unofficial abbreviations:

(A ∨ B) for (~A ⊃ B);
(A ∧ B) for ~(A ⊃ ~B);
(A ≡ B) for ((A ⊃ B) ∧ (B ⊃ A));
(∃ xi) A for ~(xi) ~A.

Finally, we shall often omit parentheses when doing so will not cause confusion; in
particular, outermost parentheses may usually be omitted (e.g. writing A ⊃ B for (A ⊃ B)).

It is important to have parentheses in our official notation, however, since they serve the
important function of disambiguating formulae. For example, if we did not have
parentheses (or some equivalent) we would have no way of distinguishing the two readings
of A ⊃ B ⊃ C, viz. (A ⊃ (B ⊃ C)) and ((A ⊃ B) ⊃ C). Strictly speaking, we ought to prove

that our official use of parentheses successfully disambiguates formulae. (Church proves
this with respect to his own use of parentheses in his Introduction to Mathematical Logic.)

Eliminating Function Letters

In principle, we are allowing function letters to occur in our languages. In fact, in view of a
famous discovery of Russell, this is unnecessary: if we had excluded function letters, we
would not have decreased the expressive power of first order languages. This is because we
can eliminate function letters from a formula by introducing a new n+1-place predicate letter
for each n-place function letter in the formula. Let us start with the simplest case. Let f be
an n-place function letter, and let F be a new n+1-place predicate letter. We can then rewrite

f(x1, ..., xn) = y

as

F(x1, ..., xn, y).

If P is a one-place predicate letter, we can then rewrite

P(f(x1, ..., xn))

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

4

as

(∃ y) (F(x1, ..., xn, y) ∧ P(y)).

The general situation is more complicated, because formulae can contain complex terms like
f(g(x)); we must rewrite the formula f(g(x)) = y as (∃ z) (G(x, z) ∧ F(z, y)). By repeated

applications of Russell's trick, we can rewrite all formulae of the form t = x, where t is a
term. We can then rewrite all formulae, by first rewriting

A(t1, ..., tn)

as

(∃ x1)...(∃ xn) (x1 = t1 ∧ ... ∧ xn = tn ∧ A(x1, ..., xn)),

and finally eliminating the function letters from the formulae xi = ti.
Note that we have two different ways of rewriting the negation of a formula A(t1,...,tn).

We can either simply negate the rewritten version of A(t1, ..., tn):

~(∃ x1)...(∃ xn) (x1 = t1 ∧ ... ∧ xn = tn ∧ A(x1, ..., xn));

or we can rewrite it as

(∃ x1)...(∃ xn) (x1 = t1 ∧ ... ∧ xn = tn ∧ ~A(x1, ..., xn)).

Both versions are equivalent. Finally, we can eliminate constants in just the same way we
eliminated function letters, since x = ai can be rewritten P(x) for a new unary predicate P.

Interpretations

By an interpretation of a first order language L (or a model of L, or a structure appropriate
for L), we mean a pair <D, F>, where D (the domain) is a nonempty set, and F is a function
that assigns appropriate objects to the constants, function letters and predicate letters of L.
Specifically,

- F assigns to each constant of L an element of D;
- F assigns to each n-place function letter an n-place function with domain Dn and
 range included in D; and

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

5

- F assigns to each n-place predicate letter of L an n-place relation on D (i.e., a subset
of Dn).

Let I = <D, F> be an interpretation of a first order language L. An assignment in I is a
function whose domain is a subset of the set of variables of L and whose range is a subset
of D (i.e., an assignment that maps some, possibly all, variables into elements of D). We
now define, for given I, and for all terms t of L and assignments s in I, the function Den(t,s)
(the denotation (in I) of a term t with respect to an assignment s (in I)), that (when defined)
takes a term and an assignment into an element of D, as follows:

(i) if t is a constant, Den(t, s)=F(t);
(ii) if t is a variable and s(t) is defined, Den(t, s)=s(t); if s(t) is undefined, Den(t, s) is

also undefined;

(iii) if t is a term of the form fni (t1, ..., tn) and Den(tj,s)=bj (for j = 1, ..., n), then Den(t,

s)=F(fni)(b1, ..., bn); if Den(tj,s) is undefined for some j≤n, then Den(t,s) is also

undefined.

Let us say that an assignment s is sufficient for a formula A if and only if it makes the
denotations of all terms in A defined, if and only if it is defined for every variable occurring
free in A (thus, note that all assignments, including the empty one, are sufficient for a
sentence). We say that an assignment s in I satisfies (in I) a formula A of L just in case

(i) A is an atomic formula Pni (t1, ..., tn), s is sufficient for A and

<Den(t1,s),...,Den(tn,s)> ∈ F(Pn
i); or

(ii) A is ~B, s is sufficient for B but s does not satisfy B; or
(iii) A is (B ⊃ C), s is sufficient for B and C and either s does not satisfy B or s

satisfies C; or
(iv) A is (xi)B, s is sufficient for A and for every s' that is sufficient for B and such

that for all j≠i, s'(xj)=s(xj), s' satisfies B.

We also say that a formula A is true (in an interpretation I) with respect to an assignment s
(in I) iff A is satisfied (in I) by s; if s is sufficient for A and A is not true with respect to s,
we say that A is false with respect to s.

If A is a sentence, we say that A is true in I iff all assignments in I satisfy A (or, what is
equivalent, iff at least one assignment in I satisfies A).

We say that a formula A of L is valid iff for every interpretation I and all assignments s
in I, A is true (in I) with respect to s (we also say, for languages L containing P2

1, that a

formula A of L is valid in the logic with identity iff for every interpretation I=<D,F> where
F(P2

1) is the identity relation on D, and all assignments s in I, A is true (in I) with respect to

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

6

s). More generally, we say that A is a consequence of a set Γ of formulas of L iff for every
interpretation I and every assignment s in I, if all the formulas of Γ are true (in I) with

respect to s, then A is true (in I) with respect to s. Note that a sentence is valid iff it is true
in all its interpretations iff it is a consequence of the empty set. We say that a formula A is
satisfiable iff for some interpretation I, A is true (in I) with respect to some assignment in I.
A sentence is satisfiable iff it is true in some interpretation.

For the following definitions, let an interpretation I=<D,F> be taken as fixed. If A is a
formula whose only free variables are x1, ..., xn, then we say that the n-tuple <a1, ..., an>
(∈ Dn) satisfies A (in I) just in case A is satisfied by an assignment s (in I), where s(xi) = ai

for i = 1, ..., n. (In the case n = 1, we say that a satisfies A just in case the 1-tuple <a> does.)
We say that A defines (in I) the relation R (⊆ Dn) iff R={<b1, ..., bn>: <b1,...,bn> satisfies
A}. An n-place relation R (⊆ Dn) is definable (in I) in L iff there is a formula A of L whose

only free variables are x1, ..., xn, and such that A defines R (in I). Similarly, if t is a term
whose free variables are x1, ..., xn, then we say that t defines the function h, where h(a1, ...,
an) = b just in case Den(t,s)=b for some assignment s such that s(xi) = ai. (So officially
formulae and terms only define relations and functions when their free variables are x1, ...,
xn for some n; in practice we shall ignore this, since any formula can be rewritten so that its
free variables form an initial segment of all the variables.)

The Language of Arithmetic

We now give a specific example of a first order language, along with its standard or
intended interpretation. The language of arithmetic contains one constant a1, one function
letter f11, one 2-place predicate letter P2

1, and two 3-place predicate letters P3
1, and P32. The

standard interpretation of this language is <N, F> where N is the set {0, 1, 2, ...} of natural
numbers, and where

F(a1) = 0;
F(f11) = the successor function s(x) = x+1;
F(P2

1) = the identity relation {<x, y>: x = y};
F(P3

1) = {<x, y, z>: x + y = z}, the graph of the addition function;
F(P3

2) = {<x, y, z>: x.y = z}, the graph of the multiplication function.

We also have an unofficial notation: we write

0 for a1;
x' for f11x;
x = y for P2

1xy;
A(x, y, z) for P3

1xyz;

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

7

M(x, y, z) for P3
2xyz.

This presentation of the language of arithmetic is rather atypical, since we use a function
letter for successor but we use predicates for addition and multiplication. Note, however, that
formulae of a language involving function letters for addition and multiplication instead of
the corresponding predicate letters could be rewritten as formulae of the language of
arithmetic via Russell’s trick.

A numeral is a term of the form 0'...', i.e. the constant 0 followed by zero or more
successor function signs. The numeral for a number n is zero followed by n successor
function signs; we shall use the notation 0(n) for the numeral for n (note that ‘n’ is not a
variable of our formal system, but a variable of our informal talk). It may be noted that the
only terms of the language of arithmetic, as we have set it up, are the numerals and
expressions of the form xi'...'.

Finally, note that for the language of arithmetic, we can define satisfaction in terms of
truth and substitution. This is because a k-tuple <n1, ..., nk> of numbers satisfies A(x1, ...,
xk) just in case the sentence A(0(n1), ..., 0(nk)) is true (where A(0(n1), ..., 0(nk)) comes from A
by substituting the numeral 0(ni) for all of the free occurrences of the variable xi).

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

8

Lecture II

The Language RE

We shall now introduce the language RE. This is not strictly speaking a first order
language, in the sense just defined. However, it can be regarded as a fragment of the first
order language of arithmetic.

In RE, the symbols ∧ and ∨ are the primitive connectives rather than ~ and ⊃ . RE
further contains the quantifier symbol ∃ and the symbol < as primitive. The terms and

atomic formulae of RE are those of the language of arithmetic as presented above. Then the
notion of formula of RE is defined as follows:

(i) An atomic formula of RE is a formula.
(ii) If A and B are formulae, so are (A ∧ B) and (A ∨ B).
(iii) If t is a term not containing the variable xi, and A is a formula, then (∃ xi) A and (xi

< t) A are formulae.
(iv) Only those things generated by the previous clauses are formulae.

The intended interpretation of RE is the same as the intended interpretation of the first
order language of arithmetic (it is the same pair <D,F>). Such notions as truth and
satisfaction for formulae of RE and definability by formulae of RE are defined in a way
similar to that in which they would be defined for the language of arithmetic using our
general definitions of truth and satisfaction; in the appropriate clause, the quantifier (xi < t)
is intuitively interpreted as "for all xi less than t..." (it is a so called “bounded universal
quantifier”).

Note that RE does not contain negation, the conditional or unbounded universal
quantification. These are not definable in terms of the primitive symbols of RE. The
restriction on the term t of (xi < t) in clause (iii) above is necessary if we are to exclude
unbounded universal quantification from RE, because (xi < xi') B is equivalent to (xi) B.

The Intuitive Concept of Computability and its Formal Counterparts

The importance of the language RE lies in the fact that with its help we will offer a definition
that will try to capture the intuitive concept of computability. We call an n-place relation on
the set of natural numbers computable if there is an effective procedure which, when given
an arbitrary n-tuple as input, will in a finite time yield as output 'yes' or 'no' as the n-tuple is
or isn't in the relation. We call an n-place relation semi-computable if there is an effective

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

9

procedure such that, when given an n-tuple which is in the relation as input, it eventually
yields the output 'yes', and which when given an n-tuple which is not in the relation as input,
does not eventually yield the output 'yes'. We do not require the procedure to eventually
yield the output 'no' in this case. An n-place total function φ is called computable if there is
an effective procedure that, given an n-tuple <p1,...,pn> as input, eventually yields φ(p1,...,pn)

as output (unless otherwise noted, an n-place function is defined for all n-tuples of natural
numbers (or all natural numbers if n = 1) —this is what it means for it to be total; and only
takes natural numbers as values.)

It is important to note that we place no time limit on the length of computation for a
given input, as long as the computation takes place within a finite amount of time. If we
required there to be a time limit which could be effectively determined from the input, then
the notions of computability and semi-computability would collapse. For let S be a semi-
computable set, and let P be a semi-computation procedure for S. Then we could find a
computation procedure for S as follows. Set P running on input x, and determine a time
limit L from x. If x ∈ S, then P will halt sometime before the limit L. If we reach the limit
L and P has not halted, then we will know that x ∉ P. So as soon as P halts or we reach L,

we give an output 'yes' or 'no' as P has or hasn't halted. We will see later in the course,
however, that the most important basic result of recursion theory is that the unrestricted
notions of computability and semi-computability do not coincide: there are semi-computable
sets and relations that are not computable.

The following, however, is true (the complement of an n-place relation R (-R) is the
collection of n-tuples of natural numbers not in R):

Theorem: A set S (or relation R) is computable iff S (R) and its complement are semi-
computable.
Proof: If a set S is computable, there is a computation procedure P for S. P will also be a
semi-computation procedure for S. To semi-compute the complement of S, simply follow
the procedure of changing a ‘no’ delivered by P to a ‘yes’. Now suppose we have semi-
computation procedures for both S and its complement. To compute whether a number n is
in S, run simultaneously the two semi-computation procedures on n. If the semi-
computation procedure for S delivers a ‘yes’, the answer is yes; if the semi-computation
procedure for -S delivers a ‘yes’, the answer is no.

We intend to give formal definitions of the intuitive notions of computable set and
relation, semi-computable set and relation, and computable function. Formal definitions of
these notions were offered for the first time in the thirties. The closest in spirit to the ones
that will be developed here were based on the formal notion of λ-definable function
presented by Church. He invented a formalism that he called ‘λ-calculus’, introduced the
notion of a function definable in this calculus (a λ-definable function), and put forward the
thesis that the computable functions are exactly the λ-definable functions. This is Church’s

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

10

thesis in its original form. It states that a certain formal concept correctly captures a certain
intuitive concept.

Our own approach to recursion theory will be based on the following form of Church’s
thesis:

Church’s Thesis: A set S (or relation R) is semi-computable iff S (R) is definable in the
language RE.

We also call the relations definable in RE recursively enumerable (or r.e.). Given our
previous theorem, we can define a set or relation to be recursive if both it and its
complement are r.e.

Our version of Church's Thesis implies that the recursive sets and relations are precisely
the computable sets and relations. To see this, suppose that a set S is computable. Then, by
the above theorem, S and its complement are semi-computable, and hence by Church’s
Thesis, both are r.e.; so S is recursive. Conversely, suppose S is recursive. Then S and -S
are both r.e., and therefore by Church's Thesis both are semi-computable. Then by the
above theorem, S is computable.

The following theorem will be of interest for giving a formal definition of the remaining
intuitive notion of computable function:

Theorem: A total function φ(m1,...,mn) is computable iff the n+1 place relation
φ(m1,...,mn)=p is semi-computable iff the n+1 place relation φ(m1,...,mn)=p is computable.
Proof: If φ(m1,...,mn) is computable, the following is a procedure that computes (and hence
also semi-computes) the n+1 place relation φ(m1,...,mn)=p. Given an input <p1,...,pn,p>,
compute φ(p1,...,pn). If φ(p1,...,pn)=p, the answer is yes; if φ(p1,...,pn)≠p, the answer is no.
Now suppose that the n+1 place relation φ(m1,...,mn)=p is semi-computable (thus the

following would still follow under the assumption that it is computable); then to compute
φ(p1,...,pn), run the semi-computation procedure on sufficient n+1 tuples of the form

<p1,...,pn,m>, via some time-sharing trick. For example, run five steps of the semi-
computation procedure on <p1,...,pn,0>, then ten steps on <p1,...,pn,0> and <p1,...,pn,1>, and
so on, until you get the n+1 tuple <p1,...,pn,p> for which the ‘yes’ answer comes up. And
then give as output p.

A partial function is a function defined on a subset of the natural numbers which need
not be the set of all natural numbers. We call an n-place partial function partial computable
iff there is a procedure which delivers φ(p1,...,pn) as output when φ is defined for the
argument tuple <p1,...,pn>, and that does not deliver any output if φ is undefined for the

argument tuple <p1,...,pn>. The following result, partially analogous to the above, still holds:

Theorem: A function φ(m1,...,mn) is partial computable iff the n+1 relation φ(m1,...,mn)=p

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

11

is semi-computable.
Proof: Suppose φ(m1,...,mn) is partial computable; then the following is a semi-computation
procedure for the n+1 relation φ(m1,...,mn)=p: given an argument tuple <p1,...,pn,p>, apply

the partial computation procedure to <p1,...,pn>; if and only if it eventually delivers p as
output, the answer is yes. Now suppose that the n+1 relation φ(m1,...,mn)=p is semi-
computable. Then the following is a partial computation procedure for φ(m1,...,mn). Given

an input <p1,...,pn>, run the semi-computation procedure on n+1 tuples of the form
<p1,...,pn,m>, via some time-sharing trick. For example, run five steps of the semi-
computation procedure on <p1,...,pn,0>, then ten steps on <p1,...,pn,0> and <p1,...,pn,1>, and
so on. If you get an n+1 tuple <p1,...,pn,p> for which the ‘yes’ answer comes up, then give
as output p.

But it is not the case anymore that a function φ(m1,...,mn) is partial computable iff the
n+1 relation φ(m1,...,mn)=p is computable. There is no guarantee that a partial computation
procedure will provide a computation procedure for the relation φ(m1,...,mn)=p; if φ is

undefined for <p1,...,pn>, the partial computation procedure will never deliver an output, but
we may have no way of telling that it will not.

In view of these theorems, we now give formal definitions that intend to capture the
intuitive notions of computable function and partial computable function. An n-place partial
function is called partial recursive iff its graph is r.e. An n-place total function is called
total recursive (or simply recursive) iff its graph is r.e. Sometimes the expression ‘general
recursive’ is used instead of ‘total recursive’, but this is confusing, since the expression
‘general recursive’ was originally used not as opposed to ‘partial recursive’ but as opposed
to ‘primitive recursive’.

It might seem that we can avoid the use of partial functions entirely, say by replacing a
partial function φ with a total function ψ which agrees with φ wherever φ is defined, and
which takes the value 0 where φ is undefined. Such a ψ would be a total extension of φ, i.e.
a total function which agrees with φ wherever φ is defined. However, this will not work,

since there are some partial recursive functions which are not totally extendible, i.e. which
do not have any total extensions which are recursive functions. (We shall prove this later on
in the course.)

Our version of Church's Thesis implies that a function is computable iff it is recursive.
To see this, suppose that φ is a computable function. Then, by one of the theorems above, its
graph is semi-computable, and so by Church’s Thesis, it is r.e., and so φ is recursive.
Conversely, suppose that φ is recursive. Then φ's graph is r.e., and by Church's Thesis it is
semi-computable; so by the same theorem, φ is computable.

Similarly, our version of Church’s Thesis implies that a function is partial computable
iff it is partial recursive.

We have the result that if a total function has a semi-computable graph, then it has a
computable graph. That means that the complement of the graph is also semi-computable.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

12

We should therefore be able to show that the graph of a recursive function is also recursive.
In order to do this, suppose that φ is a recursive function, and let R be its graph. R is r.e., so

it is defined by some RE formula B(x1, ..., xn, xn+1). To show that R is recursive, we must
show that -R is r.e., i.e. that there is a formula of RE which defines -R. A natural attempt is
the formula

(∃ xn+2)(B(x1, ..., xn, xn+2) ∧ xn+1 ≠ xn+2).

This does indeed define -R as is easily seen, but it is not a formula of RE, for its second
conjunct uses negation, and RE does not have a negation sign. However, we can fix this
problem if we can find a formula of RE that defines the nonidentity relation {<m,n>:m≠n}.

Let us define the formula

Less (x, y) =df. (∃ z) A(x, z', y).

Less (x, y) defines the less-than relation {<m, n>: m < n}. We can now define inequality as
follows:

x ≠ y =df. Less(x, y) ∨ Less (y, x).

This completes the proof that the graph of a total recursive function is a recursive relation,
and also shows that the less-than and nonidentity relations are r.e., which will be useful in
the future.

While we have not introduced bounded existential quantification as a primitive notation
of RE, we can define it in RE, as follows:

(∃ x < t) B =df. (∃ x) (Less(x, t) ∧ B).

In practice, we shall often write 'x < y' for 'Less (x, y)'. However, it is important to
distinguish the defined symbol '<' from the primitive symbol '<' as it appears within the
bounded universal quantifier. We also define

(∃ x ≤ t) B(x) =df. (∃ x < t) B(x) ∨ B(t);
(x ≤ t) B(x) =df. (x < t) B(x) ∧ B(t).

The Status of Church's Thesis

Our form of Church's thesis is that the intuitive notion of semi-computability and the formal
notion of recursive enumerability coincide. That is, a set or relation is semi-computable iff it

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

13

is r.e. Schematically:

r.e. = semi-computable.

The usual form of Church's Thesis is: recursive = computable. But as we saw, our form of
Church's Thesis implies the usual form.

In some introductory textbooks on recursion theory Church's Thesis is assumed in
proofs, e.g. in proofs that a function is recursive that appeal to the existence of an effective
procedure (in the intuitive sense) that computes it. (Hartley Rogers' Theory of Recursive
Functions and Effective Computability is an example of this.) There are two advantages to
this approach. The first is that the proofs are intuitive and easier to grasp than very
“formal” proofs. The second is that it allows the student to cover relatively advanced
material fairly early on. The disadvantage is that, since Church's Thesis has not actually
been proved, the student never sees the proofs of certain fundamental theorems. We shall
therefore not assume Church's Thesis in our proofs that certain sets or relations are
recursive. (In practice, if a recursion theorist is given an informal effective procedure for
computing a function, he or she will regard it as proved that that function is recursive.
However, an experienced recursion theorist will easily be able to convert this proof into a
rigorous proof which makes no appeal whatsoever to Church's Thesis. So working
recursion theorists should not be regarded as appealing to Church's Thesis in the sense of
assuming an unproved conjecture. The beginning student, however, will not in general have
the wherewithal to convert informal procedures into rigorous proofs.)

Another usual standpoint in some presentations of recursion theory is that Church's
Thesis is not susceptible of proof or disproof, because the notion of recursiveness is a
precise mathematical notion and the notion of computability is an intuitive notion. Indeed,
it has not in fact been proved (although there is a lot of evidence for it), but in the author's
opinion, no one has shown that it is not susceptible of proof or disproof. Although the
notion of computability is not taken as primitive in standard formulations of mathematics,
say in set theory, it does have many intuitively obvious properties, some of which we have
just used in the proofs of perfectly rigorous theorems. Also, y = x! is evidently computable,
and so is z=xy (although it is not immediately obvious that these functions are recursive, as
we have defined these notions). So suppose it turned out that one of these functions was
not recursive. That would be an absolute disproof of Church's Thesis. Years before the
birth of recursion theory a certain very wide class of computable functions was isolated, that
later would come to be referred to as the class of “primitive recursive” functions. In a
famous paper, Ackermann presented a function which was evidently computable (and which
is in fact recursive), but which was not primitive recursive. If someone had conjectured that
the computable functions are the primitive recursive functions, Ackermann’s function would
have provided an absolute disproof of that conjecture. (Later we will explain what is the
class of primitive recursive functions and we will define Ackermann’s function.) For

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

14

another example, note that the composition of two computable functions is intuitively
computable; so, if it turned out that the formal notion of recursiveness was not closed under
composition, this would show that Church’s Thesis is wrong.

Perhaps some authors acknowledge that Church's Thesis is open to absolute disproof,
as in the examples above, but claim that it is not open to proof. However, the conventional
argument for this goes on to say that since computability and semi-computability are merely
intuitive notions, not rigorous mathematical notions, a proof of Church's Thesis could not be
given. This position, however, is not consistent if the intuitive notions in question cannot be
used in rigorous mathematical arguments. Then a disproof of Church's Thesis would be
impossible also, for the same reason as a proof. In fact, suppose for example that we could
give a list of principles intuitively true of the computable functions and were able to prove
that the only class of functions with these properties was exactly the class of the recursive
functions. We would then have a proof of Church's Thesis. While this is in principle
possible, it has not yet been done (and it seems to be a very difficult task).

In any event, we can give a perfectly rigorous proof of one half of Church's thesis,
namely that every r.e relation (or set) is semi-computable.

Theorem: Every r.e. relation (or set) is semi-computable.
Proof: We show by induction on the complexity of formulae that for any formula B of RE,
the relation that B defines is semi-computable, from which it follows that all r.e. relations are
semi-computable. We give, for each formula B of RE, a procedure PB which is a semi-
computation of the relation defined by B.

 If B is atomic, then it is easy to see that an appropriate PB exists; for example, if B is
the formula x1''' = x2', then PB is the following procedure: add 3 to the first input, then add
1 to the second input, and see if they are the same, and if they are, halt with output 'yes'.

If B is (C ∧ D), then PB is the following procedure: first run PC, and if it halts with

output 'yes', run PD; if that also halts, then halt with output 'yes'.
If B is (C ∨ D), then PB is as follows. Run PC and PD simultaneously via some time-

sharing trick. (For example, run 10 steps of PC, then 10 steps of PD, then 10 more steps of
PC,) As soon as one answers 'yes', then let PB halt with output 'yes'.

Suppose now that B is (y < t) C(x1, ..., xn, y). If t is a numeral 0(p), then <m1, ..., mn>
satisfies B just in case all of <m1, ..., mn, 0> through <m1, ..., mn, p-1> satisfy C, so run PC

on input <m1, ..., mn, 0>; if PC answers yes, run PC on input <m1, ..., mn, 1>, If you
reach p-1 and get an answer yes, then <m1, ..., mn> satisfies B, so halt with output 'yes'. If t
is a term xi'...', then the procedure is basically the same. Given an input which includes the
values m1, ..., mn of x1, ..., xn, as well as the value of xi, first calculate the value p of the term
t, and then run PC on <m1, ..., mn, 0> through <m1, ..., mn, p-1>, as above. So in either case,
an appropriate PB exists.

Finally, if B = (∃ y) C(x1, ..., xn, y), then PC is as follows: given input <m1, ..., mn>, run

PC on <m1, ..., mn, k> simultaneously for all k and wait for PC to deliver 'yes' for some k.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

15

Again, we use a time-sharing trick; for example: first run PC on <m1, ..., mn, 0> for 10
steps, then run PC on <m1, ..., mn, 0> and <m1, ..., mn, 1> for 20 steps each, then Thus,
an appropriate PB exists in this case as well, which completes the proof.

This proof cannot be formalized in set theory, so in that sense the famous thesis of the
logicists that all mathematics can be done in set theory might be wrong. But a weaker thesis
that every intuitive mathematical notion can always be replaced by one definable in set
theory (and coextensive with it) might yet be right.

Kreisel's opinion—in a review—appears to be that computability is a legitimate primitive
only for intuitionistic mathematics. In classical mathematics it is not a primitive, although
(pace Kreisel) it could be taken to be one. In fact the above argument, that the recursive sets
are all computable, is not intuitionistically valid, because it assumes that a number will be
either in a set or in its complement. (If you don't know what intuitionism is, don't worry.)

It is important to notice that recursiveness (and recursive enumerability) is a
property of a set, function or relation, not a description of a set, function or relation. In
other words, recursiveness is a property of extensions, not intensions. To say that a set is
r.e. is just to say that there exists a formula in RE which defines it, and to say that a set is
recursive is to say that there exists a pair of formulae in RE which define it and its
complement. But you don't necessarily have to know what these formulae are, contrary to
the point of view that would be taken on this by intuitionistic or constructivist
mathematicians. We might have a theory of recursive descriptions, but this would not be
conventional recursive function theory. So for example, we know that any finite set is
recursive; every finite set will be defined in RE by a formula of the form
x1=0(k1)∨...∨ xn=0(kn), and its complement by a formula of the form
x1≠0(k1)∧...∧ xn≠0(kn). But we may have no procedure for deciding whether something is
in a certain finite set or not - finding such a procedure might even be a famous unsolved
problem. Consider this example: let S = {n: at least n consecutive 7's appear in the decimal
expansion of π}. Now it's hard to say what particular n's are in S (it's known that at least
four consecutive 7's appear, but we certainly don't know the answer for numbers much
greater than this), but nonetheless S is recursive. For, if n ∈ S then any number less than n
is also in S, so S will either be a finite initial segment of the natural numbers, or else it will
contain all the natural numbers. Either way, S is recursive.

There is, however, an intensional version of Church’s Thesis that, although hard to state
in a rigorous fashion, seems to be true in practice: whenever we have an intuitive procedure
for semi-computing a set or relation, it can be “translated” into an appropriate formula of
the formalism RE, and this can be done in some sense effectively (the “translation” is
intuitively computable). This version of Church’s Thesis operates with the notion of
arbitrary descriptions of sets or relations (in English, or in mathematical notation, say),
which is somewhat vague. It would be good if a more rigorous statement of this version of
Church’s Thesis could be made.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

16

The informal notion of computability we intend to study in this course is a notion
different from a notion of analog computability that might be studied in physics, and for
which there is no reason to believe that Church’s Thesis holds. It is not at all clear that every
function of natural numbers computable by a physical device, that can use analog properties
of physical concepts, is computable by a digital algorithm. There have been some
discussions of this matter in a few papers, although the ones known to the author are quite
complicated. Here we will make a few rather unsophisticated remarks.

There are certain numbers in physics known as universal constants. Some of these
numbers are given in terms of units of measure, an are different depending on the system of
units of measures adopted. Some other of these numbers, however, are not given in terms of
units of measure, for example, the electron-proton mass ratio; that is, the ratio of the mass of
an electron to the mass of a proton. We know that the electron-proton mass ratio is a
positive real number r less than 1 (the proton is heavier than the electron). Consider the
following function ψ: ψ(k) = the kth number in the decimal expansion of r. (There are two

ways of expanding finite decimals, with nines at the end or with zeros at the end; in case r is
finite, we arbitrarily stipulate that its expansion is with zeros at the end.) As far as I know,
nothing known in physics allows us to ascribe to r any mathematical properties (e.g., being
rational or irrational, being algebraic or transcendental, even being a finite or an infinite
decimal). Also, as far as I know, it is not known whether this number is recursive, or Turing
computable.

However, people do attempt to measure these constants. There might be problems in
carrying out the measurement to an arbitrary degree of accuracy. It might take longer and
longer to calculate each decimal place, it might take more and more energy, time might be
finite, etc. Nevertheless, let us abstract from all these difficulties, assuming, e.g., that time is
infinite. Then, as far as I can see, there is no reason to believe that there cannot be any
physical device that would actually calculate each decimal place of r. But this is not an
algorithm in the standard sense. ψ might even then be uncomputable in the standard sense.

Let us review another example. Consider some quantum mechanical process where we
can ask, e.g., whether a particle will be emitted by a certain source in the next second, or
hour, etc. According to current physics, this kind of thing is not a deterministic process, and
only relevant probabilities can be given that a particle will be emitted in the next second, say.
Suppose we set up the experiment in such a way that there is a probability of 1/2 for an
emission to occur in the next second, starting at some second s0. We can then define a
function χ(k) = 1 if an emission occurs in sk, and = 0 if an emission does not occur in sk.
This is not a universally defined function like ψ, but if time goes on forever, this experiment

is a physical device that gives a universally defined function. There are only a denumerable
number of recursive functions (there are only countably many strings in RE, and hence only
countably many formulae). In terms of probability theory, for any infinite sequence such as
the one determined by χ there is a probability of 1 that it will lie outside any denumerable
set (or set of measure zero). So in a way we can say with certainty that χ, even though

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

17

“computable” by our physical device, is not recursive, or, equivalently, Turing computable.
(Of course, χ may turn out to be recursive if there is an underlying deterministic structure to

our experiment, but assuming quantum mechanics, there is not.) This example again
illustrates the fact that the concept of physical computability involved is not the informal
concept of computability referred to in Church’s Thesis.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

18

Lecture III

The Language Lim

In the language RE, we do not have a negation operator. However, sometimes, the
complement of a relation definable by a formula of RE is definable in RE by means of some
trick. We have already seen that the relation defined by t1≠t2 (where t1, t2 are two terms of
RE) is definable in RE, and whenever B defines the graph of a total function, the
complement of this graph is definable.

In RE we also do not have the conditional. However, if A is a formula whose negation
is expressible in RE, say by a formula A* (notice that A need not be expressible in RE),
then the conditional (A ⊃ B) would be expressible by means of (A*∨ B) (provided B is a
formula of RE); thus, for example, (t1=t2⊃ B) is expressible in RE, since t1≠t2 is. So when

we use the conditional in our proofs by appeal to formulae of RE, we’ll have to make sure
that if a formula appears in the antecedent of a conditional, its negation is expressible in the
language. In fact, this requirement is too strong, since a formula appearing in the antecedent
of a conditional may appear without a negation sign in front of it when written out only in
terms of negation, conjunction and disjunction. Consider, for example, a formula

(A ⊃ B) ⊃ C,

in which the formula A appears as a part in the antecedent of a conditional. This conditional
is equivalent to

(~A∨ B)⊃ C,

and in turn to

~(~A∨ B)∨ C,

and to

(A∧ ~B)∨ C.

In the last formula, in which only negation, conjunction and disjunction are used, A appears
purely positively, so it’s not necessary that its negation be expressible in RE in order for (A
⊃ B) ⊃ C to be expressible in RE.

A bit more rigorously, we give an inductive construction that determines when an

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

19

occurrence of a formula A in a formula F whose only connectives are ~ and ⊃ is positive or

negative: if A is F, A's occurrence in F is positive; if F is ~B, A's occurrence in F is negative
if it is positive in B, and vice versa; if F is (B⊃ C), an occurrence of A in B is negative if

positive in B, and vice versa, and an occurrence of A in C is positive if positive in C, and
negative if negative in C.

It follows from this that if an occurrence of a formula appears as a part in another
formula in an even number of antecedents (e.g., A in the formula of the example above), the
corresponding occurrence will be positive in an ultimately reduced formula employing only
negation, conjunction and disjunction. If an occurrence of a formula appears as a part in
another formula in an odd number of antecedents (e.g., B in the formula above), the
corresponding occurrence will appear with a negation sign in front of it in the ultimately
reduced formula (i.e., it will be negative) and we will have to make sure that the negated
formula is expressible in RE.

In order to avoid some of these complications involved in working within RE, we will
now define a language in which we have unrestricted use of negation, but such that all the
relations definable in it will also be definable in RE. We will call this language Lim. Lim has
the same primitive symbols as RE, plus a symbol for negation (~). The terms and atomic
formulae of Lim are just those of RE. Then the notion of formula of Lim is defined as
follows:

(i) An atomic formula of Lim is a formula of Lim;
(ii) If A and B are formulae of Lim, so are ~A, (A ∧ B) and (A ∨ B);
(iii) If t is a term not containing the variable xi, and A is a formula of Lim, then (∃ xi<t))

A and (xi < t) A are formulae of Lim;
(iv) Only those things generated by the previous clauses are formulae.

Notice that in Lim we no longer have unbounded existential quantification, but only
bounded existential quantification. This is the price of having negation in Lim.

Lim is weaker than RE in the sense that any set or relation definable in Lim is also
definable in RE. This will mean that if we are careful to define a relation using only
bounded quantifiers, its complement will be definable in Lim, and hence in RE, and this will
show that the relation is recursive. Call two formulae with the same free variables equivalent
just in case they define the same set or relation. (So closed formulae, i.e. sentences, are
equivalent just in case they have the same truth value.) To show that Lim is weaker than RE,
we prove the following

Theorem: Any formula of Lim is equivalent to some formula of RE.
Proof: We show by induction on the complexity of formulae that if B is a formula of Lim,
then both B and ~B are equivalent to formulae of RE. First, suppose B is atomic. B is then
a formula of RE, so obviously B is equivalent to some RE formula. Since inequality is an

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

20

r.e. relation and the complement of the graph of any recursive function is r.e., ~B is
equivalent to an RE formula. If B is ~C, then by inductive hypothesis C is equivalent to an
RE formula C* and ~C is equivalent to an RE formula C**; then B is equivalent to C**
and ~B (i.e., ~~C) is equivalent to C*. If B is (C ∧ D), then by the inductive hypothesis, C

and D are equivalent to RE formulae C* and D*, respectively, and ~C, ~D are equivalent to
RE formulae C** and D**, respectively. So B is equivalent to (C* ∧ D*), and ~B is
equivalent to (C** ∨ D**). Similarly, if B is (C ∨ D), then B and ~B are equivalent to (C*
∨ D*) and (C** ∧ D**), respectively. If B is (∃ xi < t) C, then B is equivalent to (∃ xi

)(Less(xi, t)∧ C*), and ~B is equivalent to (xi < t) ~C and therefore to (xi < t) C**. Finally,

the case of bounded universal quantification is similar.

A set or relation definable in Lim is recursive: if B defines a set or relation in Lim, then
~B is a formula of Lim that defines its complement, and so by the foregoing theorem both it
and its complement are r.e. (Once we have shown that not all r.e. sets are recursive, it will
follow that Lim is strictly weaker than RE, i.e. that not all sets and relations definable in RE
are definable in Lim.) Since negation is available in Lim, the conditional is also available, as
indeed are all truth-functional connectives. Because of this, showing that a set or relation is
definable in Lim is a particularly convenient way of showing that it is recursive; in general, if
you want to show that a set or relation is recursive, it is a good idea to show that it is
definable in Lim (if you can).

We can expand the language Lim by adding extra predicate letters and function letters
and interpreting them as recursive sets and relations and recursive functions. If we do so,
the resulting language will still be weaker than RE:

Theorem: Let Lim' be an expansion of Lim in which the extra predicates and function
letters are interpreted as recursive sets and relations and recursive functions. Then every
formula of Lim' is equivalent to some formula of RE.
Proof: As before, we show by induction on the complexity of formulae that each formula
of Lim' and its negation are equivalent to RE formulae. The proof is analogous to the proof
of the previous theorem. Before we begin the proof, let us note that every term of Lim'
stands for a recursive function; this is simply because the function letters of Lim' define
recursive functions, and the recursive functions are closed under composition. So if t is a
term of Lim', then both t = y and ~(t = y) define recursive relations and are therefore
equivalent to formulae of RE.

 Suppose B is the atomic formula P(t1, ..., tn), where t1, ..., tn are terms of Lim' and P is a
predicate of Lim' defining the recursive relation R. Using Russell's trick, we see that B is
equivalent to (∃ x1)...(∃ xn)(t1 = x1 ∧ ... ∧ tn = xn ∧ P(x1, ..., xn)), where x1, ..., xn do not

occur in any of the terms t1, ..., tn. Letting Ci be an RE formula which defines the relation
defined by ti = xi, and letting D be an RE formula which defines the relation that P defines,
we see that B is equivalent to the RE formula (∃ x1)...(∃ xn)(C1(x1) ∧ ... Cn(xn) ∧ D(x1, ...,

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

21

xn)). To see that ~B is also equivalent to an RE formula, note that R is a recursive relation,
so its complement is definable in RE, and so the formula (∃ x1)...(∃ xn)(t1 = x1 ∧ ... ∧ tn = xn

∧ ~P(x1, ..., xn)), which is equivalent to ~B, is also equivalent to an RE formula.

The proof is the same as the proof of the previous theorem in the cases of conjunction,
disjunction, and negation. In the cases of bounded quantification, we have to make a slight
adjustment, because the term t in (xi < t) B or (∃ xi < t) B might contain new function letters.

Suppose B and ~B are equivalent to the RE formulae B* and B**, and let t = y be
equivalent to the RE formula C(y). Then (xi < t) B is equivalent to the RE formula (∃ y)
(C(y) ∧ (xi < y) B*)), and ~(xi < t) B is equivalent to (∃ xi < t) ~B, which is in turn
equivalent to the RE formula (∃ y) (C(y) ∧ (∃ xi < y) B**). The case of bounded existential

quantification is similar.

This fact will be useful, since in RE and Lim the only bounds we have for the bounded
quantifiers are terms of the forms 0(n) and xi'...'. In expanded languages containing
function letters interpreted as recursive functions there will be other kinds of terms that can
serve as bounds for quantifiers in formulae of the language, without these formulae failing
to be expressible in RE.

There is a variant of Lim that should be mentioned because it will be useful in future
proofs. Lim+ is the language which is just like Lim except that it has function letters rather
than predicates for addition and multiplication. (So in particular, quantifiers in Lim+ can be
bounded by terms containing + and ..) It follows almost immediately from the previous
theorem that every formula of Lim+ is equivalent to some formula of RE. We call a set or
relation limited if it is definable in the language Lim+. We call it strictly limited if it is
definable in Lim.

Pairing Functions

We will define a pairing function on the natural numbers to be a dominating total binary
recursive function φ such that for all m1, m2, n1, n2, if φ(m1, m2) = φ(n1, n2) then m1 = n1

and m2 = n2 (that a binary function φ is dominating means that for all m, n, m≤φ(m, n) and
n≤φ(m, n)). Pairing functions allow us to code pairs of numbers as individual numbers,
since if p is in the range of a pairing function φ, then there is exactly one pair (m, n) such
that φ(m, n) = p, so the constituents m and n of the pair that p codes are uniquely determined

by p alone.
We are interested in finding a pairing function. If we had one, that would show that the

theory of recursive functions in two variables essentially reduces to the theory of recursive
functions in one variable. This will be because it is easily proved that for all binary relations
R, if φ is a pairing function, R is recursive (r.e.) iff the set {φ(m, n): R(m, n)} is recursive

(r.e.). We are going to see that there are indeed pairing functions, so that there is no

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

22

essential difference between the theories of recursive binary relations and of recursive sets.
This is in contrast to the situation in the topologies of the real line and the plane. Cantor

discovered that there is a one-to-one function from the real line onto the plane. This result
was found to be surprising by Cantor himself and by others, since the difference between
the line and the plane seemed to lie in the fact that points in the plane could only be
specified or uniquely determined by means of pairs of real numbers, and Cantor’s result
seemed to imply that every point in the plane could be identified by a single real number.
But the real line and the plane are topologically distinct, that is, there is no homeomorphism
of the real line onto the plane, which means that they are essentially different topological
spaces. In fact, Brouwer proved a theorem from which the general result follows that there is
no homeomorphism between m-dimensional Euclidean space and n-dimensional Euclidean
space (for m ≠ n).

The following will be our pairing function. Let us define [x, y] to be (x+y)2+x. This
function is evidently recursive, since it is limited, as it is defined by the Lim+ formula z = (x
+ y).(x + y) + x, and is clearly dominating. Let us show that it is a pairing function, that is,
that for all z, if z = [x, y] for some x and y, then x and y are uniquely determined. Let z =
(x+y)2+x. (x+y)2 is uniquely determined, and it is the greatest perfect square ≤ z: if it
weren't, then we would have (x + y + 1)2 ≤ z, but (x + y + 1)2 = (x + y)2 + 2x + 2y + 1 >
(x + y)2 + x = z. Let s=x+y, so that s2=(x+y)2. Since z>s2, we can put x=z-s2, which is
uniquely determined, and y=s-x=s-(z-s2), which is uniquely determined. This completes the
proof that [x,y] is a pairing function. Note that it is not onto, i.e. some numbers do not code
pairs of numbers. For our purposes this will not matter.

(The earliest mention of this pairing function known to the author is in Goodstein’s
Recursive Number Theory. Several years later, the same function was used by Quine, who
probably thought of it independently.)

Our pairing function can be extended to n-place relations. First, note that we can get a
recursive tripling function by letting [x, y, z] = [[x, y], z]. We can similarly get a recursive
n-tupling function, [m1, ..., mn], and we can prove an analogous result to the above in the
case of n-place relations: for all n-place relations R, if φ is a recursive n-tupling function, R
is recursive (r.e.) iff the set {φ(m1,...,mn): R(m1,...,mn)} is recursive (r.e.).

Our pairing function has recursive inverses, i.e. there are recursive functions K1 and K2

such that K1([x, y]) = x and K2([x, y]) = y for all x and y. When z does not code any pair,
we could let K1 and K2 be undefined on z; here, however, we let K1 and K2 have the value 0
on z. (So we can regard z as coding the pair <0, 0>, though in fact z ≠ [0, 0].) Intuitively,
K1 and K2 are computable functions, and indeed they are recursive. To see this, note that
K1's graph is defined by the formula of Lim (∃ y ≤ z) (z = [x, y]) ∨ (x = 0 ∧ ~(∃ y ≤ z) (∃ w
≤ z) z = [w, y]); similarly, K2's graph is defined by the formula of Lim (∃ x ≤ z) (z = [x, y])
∨ (y = 0 ∧ ~(∃ x ≤ z) (∃ w ≤ z) z = [x, w]).

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

23

Coding Finite Sequences

We have seen that for any n, there is a recursive n-tupling function; or in other words,
we have a way of coding finite sequences of fixed length. Furthermore, all these n-tupling
functions have recursive inverses. This does not, however, give us a single, one-to-one
function for coding finite sequences of arbitrary length. One of the things Cantor showed is
that there is a one-to-one correspondence between the natural numbers and the set of finite
sequences of natural numbers, so a function with the relevant property does exist. What we
need to do, in addition, is to show that an effective way of assigning different numbers to
different sequences exists, and such that the decoding of the sequences from their codes can
be done also effectively.

A method of coding finite sequences of variable length, due to Gödel, consists in
assigning to an n-tuple <m1, ..., mn> the number k=2m1+1.3m2+1.pn

mn+1 as code
(where p1=2 and pi+1=the first prime greater than pi). It is clear that k can be uniquely
decoded, since every number has a unique prime factorization, and intuitively the decoding
function is computable. If we had exponentiation as a primitive of RE, it would be quite
easy to see that the decoding function is recursive; but we do not have it as a primitive.
Although Gödel did not take exponentiation as primitive, he found a trick, using the Chinese
Remainder Theorem, for carrying out the above coding with only addition, multiplication
and successor as primitive. We could easily have taken exponentiation as a primitive — it is
not essential to recursion theory that the language of RE have only successor, addition and
multiplication as primitive and other operations as defined. If we had taken it as primitive,
our proof of the easy half of Church's thesis, i.e. that all r.e. relations are semi-computable,
would still have gone through, since exponentiation is clearly a computable function.
Similarly, we could have added to RE new variables to range over finite sets of numbers, or
over finite sequences. In fact, doing so might have saved us some time at the beginning of
the course. However, it is traditional since Gödel’s work to take quantification over
numbers, and successor, addition, and multiplication as primitive and to show how to define
the other operations in terms of them.

We will use a different procedure for coding finite sequences, the basic idea of which is
due to Quine. If you want to code the sequence <5, 4, 7>, why not use the number 547? In
general, a sequence of positive integers less than 10 can be coded by the number whose
decimal expansion is the sequence. Unfortunately, if you want to code sequences
containing numbers larger than or equal to 10, this won't quite work. (Also, if the first
element of a sequence <m1, ..., mn> is 0, its code will be the same as the code for the
sequence <m2, ..., mn>; this problem is relatively minor compared to the other). Of course, it
is always possible to use a larger base; if you use a number to code its base-100 expansion,
for example, then you can code sequences of numbers as large as 99. Still, this doesn't
provide a single method for coding sequences of arbitrary length.

To get around this, we shall use a modification of Quine's trick, due to the author. The

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

24

main idea is to use a variable base, so that a number may code a different sequence to a
different base. It also proves convenient in this treatment to use only prime bases. Another
feature of our treatment is that we will code finite sets first, rather than finite sequences; this
will mean that every finite set will have many different codes (thus, using base 10 only for
purposes of motivation, 547 and 745 would code the same set {4, 5, 7}). We will not allow
0 as the first digit of a code (in a base p) of a set, because otherwise 0 would be classified as
a member of the set, whether it was in it or not (of course, 0 will be allowed as an
intermediate or final digit).

Our basic idea is to let a number n code the set of all the numbers that appear as digits
in n's base-p expansion, for appropriate prime p. No single p will do for all sets, since for
any prime p, there is a finite set containing numbers larger than p, and which therefore
cannot be represented as a base-p numeral. However, in view of a famous theorem due to
Euclid, we can get around this.

Theorem (Euclid): There are infinitely many primes.
Proof. Let n be any number, and let's show that there are primes greater than n . n! + 1 is
either prime or composite. If it is prime, it is a prime greater than n. If it is composite, then
it has some prime factor p; but then p must be greater than n, since n!+1 is not divisible by
any prime less than or equal to n. Either way, there is a prime number greater than n; and
since n was arbitrary, there are arbitrarily large primes.

So for any finite set S of numbers, we can find a prime p greater than any element of S, and
a number n such that the digits of the base-p expansion of n are the elements of S. (To give
an example, consider the finite set {1, 2}. This will have as “codes” in base 3 the numbers
denoted by '12' and '21' in base 3 notation, that is, 5 and 7; it will have as “codes” in base 5
the numbers 7 and 11, etc.) We can then take [n, p] as a code of the set S (so, in the
example, [5,3], [7,3], [7,5] and [11,5] are all codes of {1,2}). In this fashion different finite
sets will never be assigned the same code. Further, from a code the numbers n and p are
uniquely determined and effectively recoverable, and from n and p the set S is determined
uniquely.

We will now show how to carry out our coding scheme in RE. To this effect, we will
show that a number of relations are definable in Lim or Lim+ (and hence not only r.e, but
also recursive). Before we begin, let us note that the relation of nonidentity is definable in
Lim and in Lim+, for we can define a formula Less*(x,y) equivalent to the formula
Less(x,y) of RE with only bounded quantification: Less*(x,y) =df. (∃ z<y)(x+z'=y) (an even
simpler formula defining the less than relation in Lim and Lim+ would be (∃ z<y)(x=z)).

Now, let's put

Pr (x) =df. x ≠ 0 ∧ x ≠ 0' ∧ (y ≤ x)(z ≤ x)(M(y,z,x)⊃ (y=x∨ z=x)).

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

25

Pr(x) defines the set of primes in Lim, as is easily seen. We want next to define the relation
w is a power of p, for prime numbers p. This is done by

Ppow (p, w) =df. Pr(p) ∧ w ≠ 0 ∧ (x ≤ w)(y ≤ w)((M(x,y,w) ∧ Pr(x)) ⊃ x = p).

Ppow (p, w) says that p is w's only prime factor, and that w ≠ 0; this only holds if w = pk

for some k and p is prime. Note that if p is not prime, then this trick won't work.
Next, we want to define a formula Digp (m, n, p), which holds iff m is a digit in the

base-p expansion of n and p is prime. How might we go about this? Let's use base 10
again for purposes of illustration. Suppose n > 0, and let d be any number < 10. If d is the
first digit of n's decimal expansion, then n = d.10k + y, for some k and some y < 10k, and
moreover d ≠ 0. (For example, 4587 = 4.103 + 587.) Conversely, if n = d.10k + y for
some k and some y < 10k and if d ≠ 0, then d is the initial digit of the decimal expansion of
n. If d is an intermediate or final digit in n's decimal expansion, then n = x.10k+1 + d.10k +
y for some k, x and y with y < 10k and x ≠ 0, and conversely. (This works for final digits
because we can always take y = 0.) So if d < 10 and n ≠ 0, then d is a digit of n iff d is
either an initial digit or an intermediate or final digit, iff there exist x, k, and y with y < 10k

and such that either d ≠ 0 and n = d.10k + y, or x ≠ 0 and n = x.10k+1 + d.10k + y. If 10 ≤
d then d is not a digit of n's decimal expansion, and we allow 0 to occur in its own decimal
expansion. The restrictions d ≠ 0 and x ≠ 0 are necessary, since otherwise 0 would occur in
the decimal expansion of every number: 457 = 0.103 + 457 = 0.104 + 0.103 + 457; and if
we want to code any finite sets that do not have 0 as an element, we must prevent this.
Noting that none of this depends on the fact that the base 10 was used, and finding bounds
for our quantifiers, we can define a formula Digp*(m, n, p) in Lim+, which is true of m,n,p
iff m is a digit in the base-p expansion of n and p is prime:

Digp* (m, n, p) =df. { n≠0 ∧ m < p ∧
[[m ≠ 0 ∧ (∃ w ≤ n)(∃ z < w)(n = m.w + z ∧ Ppow (p, w))] ∨
(∃ w ≤ n)(∃ z1 ≤ n)(∃ z2 < w)(z1 ≠ 0 ∧ n = z1.w.p + m.w + z2

∧ Ppow (p, w))]}
∨

(m = 0 ∧ n = 0 ∧ Pr(p)).

This formula mirrors the justification given above. However, much of it turns out to be
redundant. Specifically, the less complicated formula

Digp (m, n, p) =df. (n≠0 ∧ m < p ∧
(∃ w ≤ n)(∃ z1 ≤ n)(∃ z2 < w)(n = z1.w.p + m.w + z2 ∧

Ppow (p, w))])

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

26

 ∨ (m = 0 ∧ n = 0∧ Pr(p))

is equivalent to Digp* (this remark is due to John Barker). To see this, suppose first that
Digp*(m,n,p), m<p and n≠0. Then n = z1.pk+1 + m.pk + z2 for some k, z1 and some z2 <
pk. This includes initial digits (let z1 = 0) and final digits (let z2 = 0). So Digp (m, n, p)
holds. Conversely, suppose Digp (m, n, p) holds, and assume that m<p and n≠0. Then n =
z1.pk+1 + m.pk + z2 for some k, z1 and some z2 < pk, and moreover pk ≤ n. If z1 > 0, then
m must be an intermediate or final digit of n, so suppose z1 = 0. Then m > 0: for if m = 0,
then n = 0.pk+1 + 0.pk + z2 = z2, but z2 < pk and pk ≤ n, and so n < n. So m must be the
first digit of n.

We can now define

x ∈ y =df. (∃ n ≤ y)(∃ p ≤ y)(y = [n, p] ∧ Digp (x, n, p)).

x ∈ y is true of two numbers a,b if b codes a finite set S and a is a member of S. Note that
Digp(m,n,p) and x ∈ y are formulae of Lim+. We could have carried out the construction

in Lim, but it would have been more tedious, and would not have had any particular
advantage for the purposes of this course.

There are two special cases we should check to make sure our coding scheme works:
namely, we should make sure that the sets {0} and Ø have codes. If y is not in the range of
our pairing function, then x ∈ y will be false for all x; so y will code Ø. And since Digp(0,

0, p) holds for any p, [0, p] codes the set {0}.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

27

Lecture IV

Let us now note a few bounding tricks that will be useful in the future. The function z =
[x, y] is monotone in both variables: i.e. if x ≤ x1 and y ≤ y1 then [x, y] ≤ [x1, y1].
Moreover, x, y ≤ [x, y]. Finally, if n codes a set S, and x ∈ S, then x ≤ n: if n codes S, then

n is [k, p] for some k and p, so k ≤ n; and x is a digit in k's base-p expansion, so x ≤ k. So
we can introduce some new bounded quantifiers into Lim+:

(x ∈ y) B =df. (x ≤ y) (x ∈ y ⊃ B);
(∃ x ∈ y) B =df. (∃ x ≤ y) (x ∈ y ∧ B).

Note also that if n codes a set S and S' ⊆ S, then there is an m ≤ n which codes S'. (This is

because, if the elements of S are the digits of the base-p expansion of k, then there is a
number j ≤ k such that the digits in j's base-p expansion are the elements of S'; since j ≤ k,
[j, p] ≤ [k, p] and [j, p] codes S'.) We can therefore define

x ⊆ y =df. (z ∈ x) z ∈ y;
(x ⊆ y) B =df. (x ≤ y) (x ⊆ y ⊃ B);

(∃ x ⊆ y) B =df. (∃ x ≤ y) (x ⊆ y ∧ B).

Now that we can code finite sets of numbers, it is easy to code finite sequences. For a
sequence <m1, ..., mn> is simply a function φ with domain {1, ..., n} and with φ(i) = mi; we

can identify functions with their graphs, which are relations, i.e. sets of ordered pairs, which
we can in turn identify with sets of numbers, since we can code up ordered pairs as
numbers. (So, for example, we can identify the sequence <7, 5, 10> with the set {[1, 7], [2,
5], [3, 10]}.) Finally, those sets can themselves be coded up as numbers. We define a
formula Seql (s, n) of Lim+ which holds just in case s codes a sequence of length n:

Seql (s, n) =df. (x ∈ s)(∃ m1 ≤ s)(∃ m2 ≤ s)(x = [m1, m2] ∧ m1 ≠ 0∧ m1 ≤ n) ∧
(m1 ≤ s)(m2 ≤ s)(m3 ≤ s)(([m1, m2] ∈ s ∧ [m1, m3] ∈ s) ⊃ m2 = m3)
∧ (m1≤ n)(∃ m2 ≤ s)(m1 ≠ 0 ⊃ [m1, m2] ∈ s).

The first conjunct simply says that every element of s is a pair whose first member is a
positive integer ≤ n; the second says that s is single valued, i.e. is (the graph of) a function;
and the third says that every positive integer ≤ n is in s's domain.

We can also define a formula Seq (s), which says that s codes a finite sequence of some
length or other:

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

28

Seq(s) =df. (∃ n ≤ s) Seql (s, n).

We can bound the initial quantifier, because if s codes a sequence of length n, then [n, x] ∈
s for some x, and so n ≤ [n, x] ≤ s. Also, if x is the ith element of some sequence s, then x
≤ [i, x] ≤ s; we can use this fact to find bounds for quantifiers.

The following formula holds of two numbers if the second codes a sequence and the
first occurs in that sequence:

x on s =df. Seq(s)∧ (∃ y ≤ s) ([y,x]∈ s).

Gödel Numbering

We can use our method of coding up finite sequences of numbers to code up finite strings
of symbols. As long as we have a countable alphabet, we will be able to find a 1-1
correspondence between our primitive symbols and the natural numbers; we can thus code
up our primitive symbols as numbers. We can then identify strings of symbols with
sequences of numbers, which we then identify with individual numbers. A scheme for
coding strings of symbols numerically is called a Gödel numbering, and a numerical code
for a symbol or expression is called a Gödel number for it.

Exactly how we do this is arbitrary. One way of doing it is this: if S = s1...sn is a string
of symbols, and a1, ..., an are the numerical codes for s1, ..., sn, then <a1, ..., an> is a
sequence of numbers, and it therefore has a code number p; we can take p to be a Gödel
number of S. (Note that, on our way of coding finite sequences, each sequence will have
many different code numbers, so we must say "a Gödel number" rather than "the Gödel
number.") Call this the simple-minded coding scheme.

We shall adopt a slightly more complicated coding scheme, which will make things
easier later on. First, we code the terms of the language via the simple-minded scheme.
Then, when coding formulae, we again use as a code for a string of symbols a code for the
corresponding sequence of codes of symbols, except that now we treat terms as single
symbols. So if a, b, c, d are the codes of the primitive symbols P1

1, f
2
1, x1, x2, then any code

p for <b, c, d> is a code for the term f2
1x1x2, and any code for <a, p> codes P1

1f2
1x1x2.

We want a single coding scheme for all the languages we shall consider, namely, the
various first-order languages and the languages RE and Lim (and its variants). So we shall
need to take all of the symbols (,), ⊃ , ~, ∧ , ∨ , <, and ∃ as primitive, and provide code

numbers for all of them. We also need code numbers for the constants, variables,
predicates, and function letters. Our general scheme for doing this is to code a symbol s by
a pair [x, y], where x represents s's grammatical category, and y represents additional
information about s (e.g. its sub- and superscript). For definiteness, we make the following

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

29

our official Gödel numbering:

Individual symbols: () ∃ < ⊃ ~ ∧ ∨
 [0, 0] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5] [0, 6] [0, 7]

Variables: [1, i] codes xi

Constants: [2, i] codes ai

(Special constants,
or “choice” constants: [3, i] codes bi)

Function letters: [4, [n, i]] codes fn
i

Predicate letters: [5, [n, i]] codes Pn
i

(We do not have special constants in the languages we have developed so far; but in case we
need them, we have codes for them.) Note that this coding scheme is open-ended; we could
add extra individual symbols, or even extra grammatical categories (e.g. new styles of
variables), without disruption.

Identification

Strictly speaking, when we use an entity A to code an entity B, A and B are (in general)
different entities. However, we often speak as though they were the same; for example, we
say that the number 105 = [5, [1, 1]] is the symbol P11, whereas strictly speaking we should
say that it codes P1

1. (Similarly, we will say, for example, that a certain predicate is true of

exactly the formulae, or of exactly the terms, where we should say that it is true of the codes
of formulae, or of the codes of terms). This has the problem that, since we have many
different codes for a single expression, many different numbers are identified with the same
expression. In order to avoid this talk of identification, we might modify our coding scheme
so as to make the coding correspondence one-to-one, for example taking the least number
among the codes to be the real code.

According to Geach's doctrine of relative identity, this talk of identification would be not
only harmless, but absolutely legitimate. For Geach, it does not make sense to say simply
that two objects are the same, this being only a disguised way of saying that they are the
same F, for some property F. In this sense there is no such thing as absolute identity,
according to Geach. His doctrine of relative identity would then allow us to say that
although two objects are different numbers, they are the same formula. The author does not

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

30

share Geach's views on this point, but it is useful to think in terms of relative identity in our
context. Geach has applied his doctrine in other contexts.

The Generated Sets Theorem.

We shall now use our coding of finite sequences to show that some intuitively computable
functions which are not obviously recursive are in fact recursive. Let's start with the
factorial function y = x!. Note that 0! = 1 and (n+1)! = (n+1).n! for all n, and that this is an
inductive definition that specifies the function uniquely. The sequence <0!, ..., n!> is
therefore the unique sequence <x1, ..., xn+1> such that x1 = 0 and for all k ≤ n, xk+1 =
(k+1).xk. Thus, y = x! just in case y is the x+1st member of some such sequence. So the
following formula of RE defines the graph of the factorial function:

(∃ s)(Seql (s, x') ∧ [0', [0, 0']] ∈ s ∧ (z ≤ s)(i ≤ x')([i'', [i', z]] ∈ s ⊃ (∃ z1≤s) ([i',[i,z1]] ∈
s ∧ z = z1.i')) ∧ [x', [x, y]] ∈ s).

(Note that we could have written 0' ∈ s instead of [0', [0, 0']] ∈ s, since [1, [0, 1]] = (1+
((0+1)2+0))2 + 1 = 5. Note also that, while ⊃ is not definable in RE, its use in this formula
is permissible, since its antecedent, [i'', [i', z]] ∈ s, expresses a relation whose complement is
r.e. Also, the part of the formula following the initial unbounded quantifier (∃ s) is a
formula of Lim+ (in which ⊃ is definable), and is therefore equivalent to a formula of RE,

and so the entire formula is a formula of RE.)
The above definition of y = x! is an example of a definition by primitive recursion; we

have a base clause

0! = 1

in which the function's value at zero is specified, and an induction clause

(n+1)! = (n+1)(n!)

in which the value at n+1 is specified in terms of its value at n. Another example of this
kind of definition is that of the exponentiation function z = xy: we stipulate that x0 = 1 and
xy+1 = xy.x. Here, the induction is carried out on the variable y; however the value of the
function also depends on x, which is kept fixed while y varies. x is called a parameter; the
primitive recursive definition of exponentiation is called a primitive recursive definition with
parameters, and that of the factorial function is said to be parameter free. We can show
that the exponentiation function is recursive, using a similar argument to the above.

In general, if h is an n-1-place function and g is an n+1-place function, then the n-place

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

31

function f is said to come from g and h by primitive recursion if f is the unique function
such that

f(0, x2, ..., xn) = h(x2, ... xn)

and

f(x1+1, x2, ..., xn) = g(x2, ..., xn, x1, f(x1, x2, ..., xn))

for all x1, ..., xn. (Here we take 0-place functions to be constants, i.e. when n = 1, we let h
be a number and let f(0) = h.) We define the class of primitive recursive functions
inductively, as follows. (i) The basic primitive recursive functions are the zero function z(x)
= 0, the successor function s(x) = x+1, and the identity functions idn

i (x1, ..., xn) = xi (where

i ≤ n). (ii) The composition of primitive recursive functions is primitive recursive (that is, if
ψ(m1,...,mk) is a primitive recursive function in k variables, and φ1(q1,1,...,q1,n1),...,
φk(qk,1,...,qk,nk) are k primitive recursive functions in n1,...,nk variables, respectively, then
so is the function in n1+...+nk variables ψ(φ1(q1,1,...,q1,n1),..., φk(qk,1,...,qk,nk))). (iii) A

function that comes from primitive recursive functions by primitive recursion is primitive
recursive. (iv) And the primitive recursive functions are only those things required to be so
by the preceding. Using the same sort of argument given in the case of the exponentiation
function, we can show that all primitive recursive functions are recursive. (That the recursive
functions are closed under primitive recursion is called the primitive recursion theorem.)

The converse, however, does not hold. Consider the sequence of functions

ψ1(x, y) = x + y
ψ2(x, y) = x.y
ψ3(x, y) = xy

This sequence can be extended in a natural way. Just as multiplication is iterated addition
and exponentiation is iterated multiplication, we can iterate exponentiation: let ψ4(x, 0) = x,
ψ4(x, 1) = xx, ψ4(x, 2) = xxx, etc. This function is called superexponentiation. We can also

iterate superexponentiation, giving us a super-superexponentiation function, and so on. In
general, for n > 2, we define

ψn+1(x, 0) = x
ψn+1(x, y+1) = ψn(x, ψn+1(x, y))

We can turn this sequence of 2-place functions into a single 3-place function by letting χ(n,
x, y) = ψn(x, y); χ is called the Ackermann function. Ackermann showed that this function

is not primitive recursive, though it is clearly computable. (This is the function that we

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

32

referred to earlier.) In fact, it can be shown that for any 1-place primitive recursive function
φ, φ(x) < χ(x, x, x) for all but finitely many x.

We shall next prove a theorem from which it follows that a wide range of functions,
including both the primitive recursive functions and the Ackermann function, are recursive.
This theorem will also be useful in showing that various interesting sets and relations are
r.e. The theorem will further provide a way of making rigorous the extremal clauses in our
earlier inductive definitions of term and formula of the different languages that we have
introduced.

The basic idea that motivates the theorem is best illustrated by means of a definition
formally similar to those of formula or term, that of a theorem of a formal system. In a
formal system, certain strings of formulae are called axioms, and from them the theorems of
the formal system are generated by means of certain rules of inference (for example, modus
ponens, according to which if formulae A and (A⊃ B) are theorems, then B is a theorem).

The notion of a theorem is defined inductively, specifying that all the axioms are theorems
(basis clauses), that if a formula A follows from theorems B1, ..., Bn by one of the inference
rules, then A is also a theorem (closure conditions, or generating clauses), and that the
theorems are only those things generated in this way (extremal clause).

In a formal system a formula is a theorem if it has a proof. And a proof is a finite
sequence of formulae each of which is either an axiom or a formula which comes from
previous formulae in the sequence via one of the generating clauses (the inference rules).
Sequences which are proofs are called proof sequences. We can generalize the notion of a
proof sequence so as to apply it to the case of terms or formulae. Something is a formula if
it occurs on a sequence each element of which is either an atomic formula or comes from
previous formulae in the sequence via one of the generating clauses (the rules for the
formation of complex formulae out of simpler ones). One such sequence can be seen as a
proof that a string of symbols is a formula, which justifies using the phrase ‘proof
sequence’ in this case as well. (Similar remarks could be made about the notion of a term).

Generalizing this, we introduce the following

Definition : A proof sequence for a set B, and relations R1, ..., Rk (n1+1-place,..., nk+1-
place, respectively) is a finite sequence <x1, ..., xp> such that, for all i = 1, ..., p, either xi ∈ B
or there exist j ≤ k and m1, ..., mnj < i such that Rj(xm1, ..., xmnj, xi).

Our extremal clauses will be understood as formulated with the help of the notion of a proof
sequence determined by the appropriate sets and relations. And our proofs by induction on
the complexity of terms or formulae would proceed rigorously speaking by induction on the
length of the appropriate proof sequences.

If we have a set B and some relations R1, ..., Rk, where each Ri is an ni+1-place relation,
the set generated by B and R1, ..., Rk is the set of those objects which occur in some proof
sequence for B and R1, ..., Rk. If S is the set generated by B and R1, ..., Rk, we call B the

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

33

basis set for S and R1, ..., Rk the generating relations for S.

Generated Sets Theorem: If B is an r.e. set and R1, ..., Rk are r.e. relations, then the set
generated by B and R1, ..., Rk is itself r.e.
Proof. Let C be a formula of RE that defines the set B, and let F1, ..., Fk be formulae of RE
that define R1, ..., Rk. We first define

PfSeq(s) =df. Seq(s) ∧ (m≤s)(x<s)([m,x]∈ s⊃ C(x) ∨
(clause 1) ∨ ... ∨ (clause k)),

where (clause j) is the formula

(∃ x1 ≤ s)...(∃ xnj ≤ s)(∃ i1 < i)...(∃ inj < i)([i1, x1] ∈ s ∧ ... ∧ [inj, xnj] ∈ s ∧ Fj(x1, ...,
xnj, y1).

PfSeq(s) thus defines the set {s: s codes a proof sequence for B and R1, ..., Rk}. We can
therefore define the set G generated by B and R1, ..., Rk by means of the formula of RE

(∃ s)(PfSeq(s) ∧ (∃ m ≤ s)([m, x] ∈ s).

This completes the proof.

The generated sets theorem applies in the first instance to sets of numbers; but it also
applies derivatively to things that can be coded up as sets of numbers, e.g. sets of formulae.
Suppose some set G of formulae is the set generated by a basis set B of formulae and
generating rules R1, ..., Rk among formulae. To show that the set G' of Gödel numbers of
elements of G is r.e., simply show that the set B' of Gödel numbers of elements of B is r.e.
and that the relations Ri' among Gödel numbers for formulae related by the relations Ri are
r.e. (Of course, whether G' is in fact r.e. will depend on what the relations B and R1, ..., Rk

are.) In this way, it is easy to show that the set of formulae of RE is itself r.e.
The Generated Sets Theorem is known to all logicians, although it is rarely stated

explicitly. It provides a simpler method of proving that some sets or relations are r.e. (and
hence that some total functions are recursive) than primitive recursion. Of course, it does not
provide a general method of proving recursiveness, but it is infrequent in mathematical
arguments to have the need to show that a set or relation is recursive besides being
recursively enumerable. It is usually emphasized as a basic requirement of logic that the set
of formulae of a given language must be decidable, but it is not clear what the theoretical
importance of such a requirement is. Chomsky’s approach to natural language, for example,
does not presuppose such a requirement. In Chomsky's view, a grammar for a language is
specified by some set of rules for generating the grammatically correct sentences of a

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

34

language, rather than by a decision procedure for grammatical correctness.
However, we will eventually state a theorem an application of which will be to show that

the set of codes of formulae or terms of a language is recursive.
We can use the generated sets theorem to show that a function is recursive. For

example, the function y = x! is recursive iff the set {[x, x!] : x ∈ N} is r.e., and this set can
be generated as follows: let the basis set be {[0, 1]}, and let the generating relation be {<[x,
y], [x+1, y.(x+1)]>: x, y ∈ N}. It is easy to see that the basis set and generating relation are
r.e (and indeed recursive), and that they generate the desired set. In fact, the result that all
primitive recursive functions are recursive follows directly from the generated sets theorem
in this way. Moreover, the generated sets theorem can be used to show that the Ackermann
function is recursive. This is the virtue of the generated sets theorem: it is more powerful
than the theorem about primitive recursiveness, and indeed it is easier to prove that theorem
via the generated sets theorem than directly.

We may sometimes want to know that a set G is recursive, or even limited, in addition to
being r.e. While the generated sets theorem only shows that G is r.e., in particular cases we
can sometimes sharpen the result. For one thing, if the basis set and generating relations are
recursive (or limited), then the formula PfSeq(s) defines a recursive (limited) relation. This
does not itself show that G is recursive (limited), since the formula used to define G in the
proof of the Generated Sets Theorem begins with the unbounded quantifier (∃ s). If we can

find some way of bounding this quantifier, then we can show that G is recursive (or
limited). However, it is not always possible to bound this quantifier, for not all sets
generated from a recursive basis set via recursive generating relations are recursive. For
example, the set of Gödel numbers of valid sentences of the first-order language of
arithmetic is r.e., but not recursive; and yet that set is clearly generated from a recursive
basis set (the axioms) and recursive generating relations (the inference rules).

Exercises

1. a) Prove that every k-place constant function is recursive. Prove that the successor

function is recursive.

b) Prove that if a function φ(m1,...,mk) in k variables is recursive (partial recursive), so is

any k-1 place function obtained from φ by identifying two variables.

2. a) Prove that the composition of two 1-place total (partial) recursive functions is total

(partial) recursive.
b) More generally, prove that if ψ(m1,...,mk) is a total (partial) recursive function in k
variables, and φ1(q1,1,...,q1,n1),..., φk(qk,1,...,qk,nk) are k total (partial) recursive functions in

n1,...,nk variables, respectively, then so is the function in n1+...+nk variables

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

35

ψ(φ1(q1,1,...,q1,n1),..., φk(qk,1,...,qk,nk)).

3. Show that if φ is a recursive pairing function whose range is recursive, then a binary
relation R is recursive iff the set {φ(m,n): R(m,n)} is recursive. Prove that a sufficient
condition for the range of a recursive pairing function φ to be recursive is that m,n≤φ(m,n).
(This condition is satisfied by the pairing function we have been using and by nearly all the
pairing functions used in practice). Where does the argument go wrong if we do not assume
that the range is recursive? (a counterexample will be given later.)

4. For arbitrary n > 1, define an n-tupling function, verifying that it is indeed an n-tupling
function. Generalize exercise 3 to arbitrary n-place relations accordingly.

