
Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

124

Lecture XVII

The Evidence for Church's Thesis.

In most courses on recursion theory, some mention is usually made of the evidence for
Church's thesis. The evidence that is usually cited includes Turing's original analysis of the
notion of computability which led to his definition of Turing machines, the now very
considerable experience of recursion theorists in showing that intuitively computable
functions can be shown to be recursive, and the fact that a large class of formal notions of
computability have been proved equivalent. Here we shall discuss a piece of evidence for
Church's thesis of a different kind.

Let Γ be any r.e. set of axioms in a language that includes the language of arithmetic but
which may contain extra predicates and function symbols. Then the set of theorems of Γ
will be r.e., and therefore any set or relation weakly representable in Γ will be r.e. (The
proof that Γ's theorems form an r.e. set is just as before, except that the possibility of extra
function letters makes matters a bit more complicated. In particular, the universal
instantiation axiom will have to be given a more complicated set of restrictions.) Therefore,
one way to show that a set or relation is r.e. is to find a suitable Γ in which it is weakly
representable.

For example, we may use this method to show that the factorial function is recursive, by
finding a Γ in which its graph is weakly representable. We form Γ by adding to the
language of arithmetic the new unary function letter f and adding to the axioms of Q the
following new axioms:

f(0) = 0;
(x)(f(x') = f(x).(x')).

(We could give similar axioms, and include an axiom of existence and uniqueness) for a
two-place predicate letter instead of a function letter). It is easy enough to see that Γ fi
f(0(n)) = 0(k) iff k = n!. (To see that k = n! implies Γ fi f(0(n)) = 0(k), argue by induction
on n. To see that Γ fi f(0(n)) = 0(k) implies k = n!, we need only show that Γ is consistent;
but the standard model for the language of arithmetic, expanded by interpreting f as the
factorial function, is a model of Γ.) Thus the formula f(x) = y weakly represents the graph
of the factorial function in Γ. We thus see how to show, in a wide range of cases, that a
function is recursive by defining it by a system of equations.

We can also use this idea to give an informal argument for Church's thesis. If we have a
set of discrete directions in classical mathematics, then it should be a corollary of our ability
to construct appropriate formalisms to codify mathematical practice that that set of

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

125

directions codifies a recursive procedure. A computation procedure is a set of instructions
which says what to do at any stage in the computation explicitly in terms of what went on at
the previous stage. Thus, given the state of a system at stage n of a computation, the state at
stage n+1 should follow as a matter of logic. Assuming that informal logical reasoning can
be carried out within a formal deductive system, it ought to be possible to give a set Γ of
axioms such that whenever A is a description of the state of the system at stage n of the
computation and B is a description of stage n+1, then Γ, A fi B. Thus, if I is a description
of the initial conditions, we should have Γ, I fi A whenever A is a description of the state of
the system at stage n, for any n. If A does indeed follow from Γ, I, we know that it will be
provable from them, by the completeness theorem. Moreover, since there are only finitely
many instructions, Γ ought to be finite, and therefore r.e. Thus, any relation weakly
representable in Γ will be r.e. If I(x) is a formula in the language of Γ that says that the
computation starts with input n, and O(x) says that the computation eventually halts with
output x, then we should have Γ fi I(0(n)) ⊃ O(0(k)) whenever input n yields output k; thus
the formula I(x) ⊃ O(y) will weakly represent the graph of the function that the procedure
computes, and that function will therefore be partial recursive.

Besides being an argument for Church's thesis, the foregoing can be tightened up in
particular cases to yield a proof that all functions computable by some particular sort of
computation procedure are in fact partial recursive. For example, we could prove that all
functions computable by a Turing machine are in fact partial recursive, by setting up a
formal system Γ containing, besides the language of arithmetic, predicates relating to
squares on the machine's tape and axioms relating the state of the system at one time to its
state at the next time. This could be done by adding only finitely many extra predicates and
only finitely many new axioms, so Γ would certainly be r.e. Then we could write out a
formula I(x) which says that in its initial state, the tape contains marks representing the
number x; and a formula O(x) which says that when the machine halts, the tape contains
marks representing the number x. Then the formula I(x) ⊃ O(y) will weakly represent the
graph of the function that the machine computes.

Note that Γ may contain, besides new predicates of numbers, names of new objects
besides the numbers; we may also give Γ an interpretation in which the domain contains
objects besides natural numbers. That domain may contain squares on a Turing machine's
tape, for example. We can still talk about the system Γ within the language RE, since Γ is
still a collection of formulae, which we can code up as numbers, even though we are
thinking of Γ as being about objects other than numbers.

Relative Recursiveness.

We have already seen, in our study of 1-1 and many-one reducibility, ways in which one
decision problem can be "reduced" to another. If a set A is many-one reducible to a set B,

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

126

then if you had an "oracle" which told you, for any given number y, whether y ∈ B, then
you could tell effectively whether x ∈ A for any given x: simply compute φ(x) (where φ is
the function that reduces A many-one to B) and ask the oracle whether φ(x) ∈ B.

In general, a set A is said to be reducible to a set B if we can find a computation
procedure for deciding membership in A which is allowed to use an oracle to B. In the case
of many-one reducibility, the way in which the oracle can be used is very limited: it can
only be consulted once in the course of the computation, for example. By allowing the
oracle to be used in different ways, we get broader reducibility notions; in this section, we
shall concentrate on the broadest such notion.

Let us say that a set S1 is semi-computable from a positive oracle for S2 (or, is semi-
computable from a semi-computation of S2) if there is a semi-computation procedure for S1

which is allowed to consult, at arbitrarily many times in the course of the computation, an
oracle that gives positive information about S2. That is, when the oracle is asked a question
of the form "is x ∈ S2?", it always answers "yes" if x ∈ S2, but remains silent when x ∉ S2.
The oracle reserves the right to take as long as it wants in answering any given question, so
if at any given time the oracle has not answered, the semi-computation procedure cannot
conclude that the answer is "no". The procedure can do other things while it is waiting for
the oracle to answer; it can also ask the oracle several questions at once (or ask it a question
before it has answered a previous question).

(Equivalently, rather than answering questions, the oracle could list the elements of S2,
not necessarily in order. Consulting the oracle about whether x ∈ S2 would then amount to
waiting for x to appear in the listing of S2. This is the approach used by Hartley Rogers.)

Similarly, let us say that S1 is computable in S2 if there is a computation procedure for
S1 which has an oracle to S2, i.e. an oracle which gives both positive and negative
information about S2, which it is allowed to consult at arbitrary points in the computation.
There is also a mixed notion: we say that S1 is semi-computable in S2 if there is a semi-
computation procedure for S1 which has an oracle that gives both positive and negative
information about S2.

For all of these notions, we can allow, not just one oracle, but several oracles to several
different sets. That is, we can say that S is semi-computable from semi-computations for
S1, ..., Sn if there is a semi-computation procedure for S with positive oracles to S1, ..., Sn;
and similarly for the other notions.

Given the notion of being semi-computable in a semi-computation of a set, we can
define the other notions. For example, S1 is semi-computable in S2 just in case S1 is semi-
computable from semi-computations of S2, -S2, and S1 is computable in S2 if both S1 and
-S1 are semi-computable in S2. Equivalently, S1 is semi-computable in S2 if S1 is semi-
computable from a semi-computation of the characteristic function of S2. (Here we identify
the function φ with the set {[n, φ(n)]: n ∈ N}.)

Now let us give formal counterparts for these intuitive notions. Alongside the notion of
semi-computability in a semi-computation, we have the notion of enumeration reducibility:

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

127

we say that S1 is enumeration reducible to S2 and write S1 ≤e S2 if S1 is definable in the
language RE[P], the result of adding to RE the unary predicate P and interpreting it as
applying to the elements of S2. More generally, S is enumeration reducible to the sets S1,
..., Sn if S is definable in RE[P1, ..., Pn], the result of adding to RE the new unary predicates
P1, ..., Pn and interpreting each Pi (i = 1, ..., n) as applying to the elements of Si. More
generally still, we could add new k-place predicates (for k > 1) and new function symbols to
RE and define a notion of enumeration reducibility to a collection of sets, relations, and/or
functions. We shall see that all of this reduces to the case of enumeration reducibility to a
single set.

We say that S1 is r.e. in S2 if S1 ≤e S2, -S2 (equivalently, iff S1 ≤e the characteristic
function of S2), and that S1 is recursive in or Turing reducible to S2 (S1 ≤T S2) iff both S1

and -S1 are r.e. in S2. So S1 ≤T S2 iff both S1 ≤e S2, -S2 and -S1 ≤e S2, -S2. We do not
use a notation for "r.e. in" involving "≤", for it will turn out that the relation S1 is r.e. in S2 is
not transitive.

There is a relativized form of Church's thesis: a set S1 is recursive in S2 iff S1 is
computable in S2 (or in terms of semi-computability, S1 is enumeration reducible to S2 iff
S1 is semi-computable from a semi-computation for S2). As in the unrelativized form, there
is an easy direction which we can prove (i.e. that anything satisfying the formal notion
satisfies the informal notion) and a harder, converse direction which has not been proved.

Let us now check that the relations we have written with a "≤" are transitive. We have
already checked this for ≤1 and ≤m, so we only have to check it for ≤e and ≤T. Suppose S1
≤e S2 and S2 ≤e S3. Then S1 is defined by some formula A(x) in the language RE[P2] and
S2 is defined by some formula B(x) in the language RE[P3], where P2 has as its extension
the set S2 and P3 has as its extension the set S3. Let C(x) be the formula obtained from
A(x) by replacing each occurrence of P2(y) by B(y), for any variable y. P2 and B define the
same set, so A(x) and C(x) define the same set, namely S1; but C(x) is a formula of RE[P3],
so S1 is definable in RE[P3], i.e. S1 ≤e S3.

Now suppose that S1 ≤T S2 and S2 ≤T S3. Both S1 and -S1 are ≤e S2, -S2, and both S2
and -S2 are ≤e S3, -S3, so S1 and -S1 are ≤e S3, -S3, i.e. S1 ≤T S3. (Actually, for this to
work, we need to use something slightly stronger than the transitivity of ≤e for single sets:
we need that if X ≤e Y, Z and both Y and Z are ≤e U, V, then X ≤e U, V.)

However, this proof will not show that the relation r.e. in is transitive. Suppose we tried
to show that this relation is transitive in this way. Given that S1 is r.e. in S2 and that S2 is
r.e. in S3, we can conclude that S1 ≤e S2, -S2 and that S2 ≤e S3, -S3. But to show that S1 is
r.e. in S3, we must show that S1 ≤e S3, -S3, and we can't conclude this from the transitivity
of ≤e, since we don't know that -S2 ≤e S3, -S3. In other words, given both positive and
negative information about S3, we only get positive information about S2, and we need
positive and negative information about S2 to get positive information about S1.

If a set S is r.e., then for all S1, S1 ≤e S iff S1 is r.e. This is simply because RE[P] has
the same expressive power as RE in this case, since the set P defines is already r.e.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

128

Similarly, if S is recursive, then S1 ≤T S iff S1 is recursive. Thus, all r.e. sets bear ≤e to each
other and collectively form a bottom element in the ≤e ordering; similarly, the recursive sets
form a bottom element in the ≤T ordering. Observe that -K is not enumeration reducible to
K, since K is r.e. but -K is not r.e.; however, -K ≤T K, since -S ≤T S for any set S (S ≤T S
by reflexivity, and whenever S1 ≤T S2, -S1 ≤T S2 by the definition of ≤T). Notice also that
-K is r.e. in K, since every set is r.e. in its complement, and that K is r.e. in Ø, since any r.e.
set is r.e. in any other set. But -K is not r.e. in Ø, since -K is r.e. in Ø iff -K ≤e Ø, N iff -K
is r.e. So transitivity fails for the relation r.e. in.

While the relation r.e. in is not transitive, it has the following "weak transitivity"
property: if A is r.e. in B and B is recursive in C, then A is r.e. in C. To see this, suppose A
is r.e. in B and B ≤T C. Then A ≤e B, -B and both B and -B are ≤e C, -C; so by the
transitivity of ≤e, A ≤e C, -C, i.e. A is r.e. in C. If A ≤T B and B is r.e. in C, however, it does
not follow that A is r.e. in C. (e.g. -K ≤T K and K is r.e. in Ø, but -K is not r.e. in Ø.)
Nonetheless, if A ≤e B and B is r.e. in C, it does follow that A is r.e. in C, again by the
transitivity of ≤e.

The relations ≤e and ≤T are also reflexive, as is easily seen.
Let us now prove some elementary facts about our reducibility notions. First of all, both

S1 ≤e S2 and S1 ≤T S2 imply that S1 is r.e. in S2, as is easily seen from the definitions. The
converses fail, however. We also have that S1 ≤1 S2 ⇒ S1 ≤m S2 ⇒ S1 ≤T S2, so the
relations ≤T, ≤m, and ≤1 are progressively stronger reducibility notions. (It is clear that S1

≤1 S2 implies S1 ≤m S2; we shall see shortly that the other implication holds.)
S1 ≤m S2 ⇒ S1 ≤e S2: suppose S1 ≤m S2, and let φ be a recursive function such that x

∈ S1 iff φ(x) ∈ S2. Let F(x, y) define φ's graph in RE. Then (∃ y)(F(x, y) ∧ P(y)) defines
S1 in RE[P] (where P is given S2 as its extension in RE[P]). Also, we have S1 ≤m S2 ⇒
-S1 ≤m -S2 ⇒ -S1 ≤e -S2. So if S1 ≤m S2, then S1 ≤e S2, -S2 (since S1 ≤e S2), and -S1 ≤e

S2, -S2 (since -S1 ≤e -S2), so S1 ≤T S2. We therefore have S1 ≤m S2 ⇒ S1 ≤T S2. Let us
summarize what we have now proved:

S1 ≤1 S2 ⇒ S1 ≤m S2 ⇒ S1 ≤T S2

⇓ ⇓
S1 ≤e S2 ⇒ S1 r.e. in S2

In each case, the converse fails (though so far we have only proved this for the case S1 ≤1

S2 ⇒ S1 ≤m S2). Also,

S1 ≤1 S2 ⇔ -S1 ≤1 -S2

⇓ ⇓
S1 ≤m S2 ⇔ -S1 ≤m -S2

⇓ ⇓
S1 ≤T S2 ⇔ -S1 ≤T -S2

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

129

The only part of this we haven't explicitly proved is the final equivalence S1 ≤T S2 ⇔ -S1 ≤T

-S2. However, this follows trivially from the definition of ≤T.
Notice that in proving that S1 ≤m S2 ⇒ S1 ≤T S2, we actually showed that S1 ≤1 S2

implies that S1 ≤e S2 and -S1 ≤e -S2. When this relation obtains between S1 and S2, let us
say that S1 is enumeration bireducible to S2 and write S1 ≤ee S2. (Neither the term nor the
notation is standard, as the notion has not been explored in the literature.) It is easy to see
that S1 ≤ee S2 implies both S1 ≤e S2 and S1 ≤T S2, but the converses do not obviously hold
(and in fact are false). We can thus extend our diagram:

S1 ≤1 S2 ⇒ S1 ≤m S2 ⇒ S1 ≤ee S2 ⇒ S1 ≤T S2

⇓ ⇓
S1 ≤e S2 ⇒ S1 r.e. in S2

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

130

Lecture XVIII

Recursive Union.

We will now show how the notion of enumeration reducibility to a relation, or to a function,
can be reduced to the notion of enumeration reducibility to a set. In fact, the most obvious
thing works here: if R is an n-place relation and S is a set, let R' = {[x1, ..., xn]: R(x1, ...,
xn)}; then S ≤e R iff S ≤e R'. Similarly, if φ is a total n-place function and F = {[x1, ..., xn,
y]: φ(x1, ..., xn) = y}, then S ≤e φ iff S ≤e F. To show this is simply to show that the
languages RE[P11] and RE[Pn1] (resp. RE[fn1]) have the same expressive power, where Pn

1 is
interpreted as the relation R (resp. fn

1 is interpreted as the function φ), and P11 is interpreted
as the set R' (resp. as the set F). To show this, we simply show how a formula in either
language can be translated into the other language. For simplicity, we concentrate on the
case of the 2-place relation R. If A is a formula of RE[P2

1], let A* be the formula of RE[P11]
that comes from A by replacing all occurrences of P2

1(x, y) by P1
1([x, y]); and if B is a

formula of RE[P11], let B† be the formula of RE[P21] that comes from B by replacing all
occurrences of P11(x) by (∃ y)(∃ z)(x = [y, z] ∧ P1

1(y, z)). It then suffices to check that A is
equivalent to A* and that B is equivalent to B†.

We can use this result to show that being r.e. in a relation or function (resp. Turing
reducibility to a relation or function) reduces to being r.e. in (resp. Turing reducibility to) a
set. Again, we focus on binary relations for simplicity. Suppose S is r.e. in R; then S ≤e R,
-R, and the above proof will show that S ≤e R', -R', so S is r.e. in R'; the converse is proved
similarly. (Matters are a bit delicate here, since -(R') is not the same set as (-R)'; so we
really have to show that S ≤e R', (-R)' iff S ≤e R', -R'.) Now suppose S ≤T R. Then both S
and -S are r.e. in R, and so, as we have just seen, both S and -S are r.e. in R', so S ≤T R'.
Again, the converse is proved similarly.

We can also show that reducibility to several sets is nothing over and above reducibility
to a single set. What we really want is a pairing function on sets; if π is such a function,
then we want to show that S ≤e S1, S2 iff S ≤e π(S1, S2). (This is analogous to our use of a
recursive pairing function on numbers to reduce relations and functions to sets.) In fact, we
do have a suitable pairing function. For any sets S1 and S2, we define the recursive union
of S1 and S2 (written S1 U S2) to be the set {2n: n ∈ S1} ∪ {2n + 1: n ∈ S2}. It is easy to
verify that the function U is indeed a pairing function on sets of natural numbers. In fact, it
is an onto pairing function, i.e. every set S is S1 U S2 for some S1 and S2. S1 and S2 are
called the even and odd parts of S, respectively.

The idea behind recursive union is one that is familiar from other branches of
mathematics: S1 U S2 is the union of disjoint copies of S1 and S2. It is different from
ordinary unions in the following striking way: whereas -(S1 ∪ S2) = -S1 ∩ -S2, -(S1 U S2)
= -S1 U -S2. (Proof: the even part of -(S1 U S2) is {n: 2n ∈ -(S1 U S2)} = {n: 2n ∉ (S1 U

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

131

S2)} = -S1, and similarly for the odd part.)
It can then be shown that S ≤e S1, S2 iff S ≤e S1 U S2, and similarly that S is r.e. in S1,

S2 iff S is r.e. in S1 U S2, and that S ≤T S1, S2 iff S ≤T S1 U S2. Using this it is easy to
show how to reduce the case of several sets to the case of one set by iterating the recursive
union function.

Observe that S1 and S2 are both 1-1 reducible to S1 U S2: in the case of S1 by the map
x → 2x, and in the case of S2 by the map x → 2x + 1. It follows that S1 and S2 ≤m S1 U
S2, that S1 and S2 ≤e S1 U S2, that S1 and S2 are r.e. in S1 U S2, and that S1 and S2 ≤T S1 U
S2. Thus, the set S1 U S2 is an upper bound of S1 and S2 with respect to all of these
reducibility notions.

In fact, something more is true: for any set S*, if S1, S2 ≤e S*, then S1 U S2 ≤e S*; and
the same holds for ≤T. For suppose S1, S2 ≤e S*; then we have a formula A(x) and a
formula B(x) of RE[P] that define S1 and S2, respectively; then the formula (∃ x)((A(x) ∧ y
= 2x) ∨ (B(x) ∧ y = 2x + 1)) defines S1 U S2 in RE[P]. Similarly, if S1 and S2 are r.e. in
S*, then S1 and S2 are ≤e S*, -S*, so S1 U S2 ≤e S*, -S*, i.e. S1 U S2 is r.e. in S*. Now
suppose S1 and S2 are Turing reducible to S*. They are r.e. in S*, so S1 U S2 is r.e. in S*.
Also, -S1 and -S2 are both r.e. in S*, so -(S1 U S2) = -S1 U -S2 is r.e. in S*. So S1 U S2

≤T S*.
Thus, besides being an upper bound of S1 and S2, the set S1 U S2 is a least upper

bound of S1 and S2 with respect to ≤e and ≤T, in the sense that whenever S1 and S2 are both
reducible to a given set, S1 U S2 is also reducible to it.

Enumeration Operators.

Let us concentrate on the relation ≤e. S1 ≤e S2 iff S1 is defined by some formula of RE[P];
let A(x) be such a formula. What set A(x) defines will depend on the extension of the new
predicate P; in fact, the set A(x) defines is a function of P's extension. Given any formula of
RE[P], we can therefore associate with it an operator ψ from sets to sets, such that ψ(S) =
the set defined by A(x) when P is given S as its extension. Such an operator is called an
enumeration operator. We see that S1 ≤e S2 just in case S1 = ψ(S2) for some enumeration
operator ψ. Note also that ψ(S) ≤e S for all ψ and S.

We can also allow ψ to have several arguments (by letting the corresponding formula
have several extra predicates), and we can allow its values to be relations (by letting the
corresponding formula have several free variables). So in general, for any n and k, each
formula A(x1, ..., xk) of RE[P1, ..., Pn] corresponds to an n-place enumeration operator from
sets to k-place relations. (Or we could allow the arguments themselves to be relations, by
considering formulae with extra non-unary predicates.) In general, we will be concerned
with the cases in which n = 1. We do not require that k > 0; when k = 0, the values of the
enumeration operator are truth values.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

132

Let us now verify two important properties of enumeration operators. The first is
monotonicity. An operator ψ is said to be monotonic if whenever S1 ⊆ S2, ψ(S1) ⊆ ψ(S2).
(When ψ takes as its values the truth values T and F, then we say that ψ is monotonic if
whenever S1 ⊆ S2 and ψ(S1) = T, then ψ(S2) = T.) The second is finiteness. An operator is
said to be finite if for all x and S, x ∈ ψ(S) iff there is some finite S0 ⊆ S such that x ∈
ψ(S0).

Once we have proved monotonicity and finiteness for the case k = 0, the result will
follow for all k > 0. To see this, suppose ψ is an enumeration operator corresponding to a
formula A(x1, ..., xn) of RE[P], and suppose S1 ⊆ S2. Suppose <a1, ..., an> ∈ ψ(S1). Then
<a1, ..., an> satisfies A(x1, ..., xn) when P is interpreted as S1, so the sentence A(0(a1), ...,
0(an)) of RE[P] is true. By monotonicity for k = 0, A(0(a1), ..., 0(an)) remains true when P
is interpreted as S2, and so <a1, ..., an> still satisfies A(x1, ..., xn), i.e. <a1, ..., an> ∈ ψ(S2).
Since the n-tuple <a1, ..., an> was arbitrary, it follows that ψ(S1) ⊆ ψ(S2). Similarly,
suppose finiteness holds for the case k = 0, and suppose <a1, ..., an> ∈ ψ (S). Then <a1, ...,
an> satisfies A(x1, ..., xn) when P is interpreted as S, so A(0(a1), ..., 0(an)) is true; by
finiteness, A(0(a1), ..., 0(an)) is true when P is interpreted as S0 for some finite S0 ⊆ S, so
<a1, ..., an> ∈ ψ (S0).

Theorem: Monotonicity holds for enumeration operators.
Proof: By the foregoing discussion, we need only show that if A is a sentence of RE[P]
and A is true when P is interpreted as S1, then A remains true when P is interpreted as S2

whenever S1 ⊆ S2. (To save words, let us say that A is true in S to mean that A is true when
P is interpreted as S.) We show this by induction on the complexity of RE[P] sentences.
Atomic sentences are either sentences of RE or sentences of the form P(0(n)). The former
are true or false independently of how P is interpreted, and P(0(n)) is true in S iff n ∈ S, so
obviously the theorem holds for P(0(n)). If the theorem holds for A and B, and A ∧ B is
true in S1, then both A and B are true in S1 and by the inductive hypothesis remain true in
S2; therefore, A ∧ B is true in S2. The remaining cases offer no difficulty and are left to the
reader.

Theorem: Finiteness holds for enumeration operators.
Proof: Again, we only have to show that a sentence A of RE[P] is true when P is
interpreted as some set S iff A is true when P is interpreted as S0 for some finite S0 ⊆ S.
The "if" part is trivial, by monotonicity. We prove the "only if" part by induction on the
complexity of sentences. If a sentence is atomic, it is either a sentence of RE or of the form
P(0(n)). In the former case, the interpretation of P is irrelevant to its truth, so we can take S0

= Ø. In the latter case, if P(0(n)) is true in S, then n ∈ S, so we can take S0 = {n}.
If A ∨ B is true in S, then either A or B is true in S; suppose A is. Then by the inductive

hypothesis, A is true in S0 for some finite S0 ⊆ S, so the sentence A ∨ B is also true in S0.
If A ∧ B is true in S, then both A and B are true in S, so by the inductive hypothesis

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

133

there are finite sets S1, S2 ⊆ S such that A and B are true in S1 and S2, respectively. So by
monotonicity, both A and B are true in the finite set S0 = S1 ∪ S2, and so A ∧ B is true in
S0.

If (∃ x)A(x) is true in S, then the case is like disjunction. A(0(n)) is true for some n, so
by the inductive hypothesis A(0(n)) is true in S0 for some finite S0 ⊆ S; so (∃ x)A(x) is true
in S0.

If (x < 0(n))A(x) is true in S, then the case is like conjunction. A(0), ..., A(0(n-1)) are all
true in S, so by the inductive hypothesis they are true in finite sets S1, ..., Sn, respectively.
So by monotonicity, they are all true in the finite set S0 = S1 ∪ ... ∪ Sn. So the sentence (x
< 0(n))A(x) is itself true in S0.

The set S0 is sometimes called a finite support for the sentence.
We can use the last theorem to prove a normal form theorem for sentences or RE[P].

Let A be such a sentence. A is true in S iff for some finite S0 ⊆ S, A is true in S0. (And by
the discussion above, this also holds if A has free variables.) We can write out the right side
of the "iff" in RE[P]. Let s be some variable that does not occur in A, and let A* be the
result of replacing all occurrences of P(t) by t ∈ s, for t a term. A* is thus a formula of RE.
Let s ⊆ P abbreviate the RE[P] formula (x < s)(x ∉ s ∨ P(x)). Then A is equivalent to the
formula (∃ s)(s ⊆ P ∧ A*). Thus, the extra predicate P can be segregated off, as it were, so
that it only occurs in the conjunct s ⊆ P.

The normal form theorem gives us an enumeration theorem: to get an enumeration of
the n-place relations definable in RE[P], we simply replace A* by the formula W(e, s, x1, ...,
xn). If an n-place relation R is definable in RE[P], then it is definable by a normal form
formula (∃ s)(s ⊆ P ∧ A*(x 1, ..., xn)), and A*(x1, ..., xn) is equivalent to W(0(e), s, x1, ..., xn)
for some e, so R is defined by the formula (∃ s)(s ⊆ P ∧ W(0(e), s, x1, ..., xn)); so (∃ s)(s ⊆
P ∧ W(e, s, x1, ..., xn)) (in which e is now a variable) defines an n+1-place relation that
enumerates the n-place relations definable in RE[P], since R was arbitrary. (e is an index of
the relation R here.) In fact, this also gives us an enumeration of the enumeration operators;
we will sometimes write ψe to denote the eth operator in this enumeration. (We could have
also proved an enumeration theorem by imitating the proof of the enumeration theorem for
RE.)

The Enumeration Operator Fixed-Point Theorem.

We shall now prove that every enumeration operator has a least fixed point, and that this
fixed point is r.e. This theorem is closely related to Kleene's first recursion
theorem.Kleene stated his first recursion theorem in terms of partial recursive functions, but,
just as in the case of the second recursion theorem, we first give the version for r.e. sets and
relations. We will consider Kleene's form of the theorem at the end of the section.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

134

A fixed point of a function φ is an x such that φ(x) = x, so in particular a fixed point of
an enumeration operator ψ is a set S such that ψ(S) = S. A set S is said to be closed (under
ψ) if ψ(S) ⊆ S. S is said to be sound if S ⊆ ψ(S). So S is fixed iff S is both sound and
closed. If S is a fixed point of ψ, we say that S is the least fixed point of ψ if S ⊆ S' for all
fixed points S' of ψ.

Theorem: Every monotonic operator has a least fixed point.
Proof: We shall give two proofs of this theorem; the first is shorter, but the second gives us
more information about the least fixed point, and this information will be useful later.

Let G = ∩{S: S is closed}. ({S: S is closed} is not empty, since we know that there is
at least one closed point, namely N.) First, we show that G is closed. If S is closed, then G
⊆ S by the definition of G, so ψ(G) ⊆ ψ (S) ⊆ S by ψ's monotonicity and S's closedness.
So ψ(G) ⊆ S for all closed S, and therefore ψ(G) ⊆ G by the definition of G, and G is
closed. Next, we show that G is sound. Note that ψ(G) is closed: ψ(G) ⊆ G as we have
seen, so ψ(ψ(G)) ⊆ ψ (G) by monotonicity. Since ψ(G) is closed, G ⊆ ψ (G), so G is
sound. So G is a fixed point. Finally, G is the least fixed point: if S is a fixed point, then S
is closed, so G ⊆ S by the definition of G.

In the second proof, we construct a fixed point by transfinite induction. Let S0 = Ø, and
for all n, let Sn+1 = ψ(Sn). After we have constructed Sn for all n ∈ N, we let Sω = ∪ {Sn: n
∈ N}. In general, if Sα has been defined, we set Sα+1 = ψ(Sα), and if α is a limit ordinal
(i.e. an ordinal which is not β+1 for any β), we set Sα = ∪ {Sβ: β < α}. We show by
induction on α that Sα is sound for all α; given the definition of Sα, this means that Sα ⊆
Sα+1. Clearly, S0 is sound. If Sα is sound, i.e. Sα ⊆ Sα+1, then ψ(Sα) ⊆ ψ(Sα+1) by
monotonicity, i.e. Sα+1 ⊆ Sα+2. Now let α be a limit ordinal, and suppose Sβ is sound for
all β < α. Let x ∈ Sα. By the definition of Sα, x ∈ Sβ for some β < α, and Sβ ⊆ Sα. By
monotonicity, ψ(Sβ) ⊆ ψ (Sα) = Sα+1, and by the inductive hypothesis Sβ ⊆ ψ (Sβ), so x ∈
Sα+1. Since x was arbitrary, Sα ⊆ Sα+1.

So the sequence <Sα: α an ordinal> is increasing. It can't be strictly increasing, since if
it were, a new natural number would be added to Sα at each stage; so at an uncountable
stage, uncountably many natural numbers would have been added, which is impossible.
(We can make this precise, as follows. If Sα ≠ Sα+1 for each α, then Sα+1 - Sα must be
nonempty for each α, so let φ(α) be the least element of Sα+1 - Sα. Then φ is a 1-1 function
from the ordinals into N. So if α is an uncountable ordinal, then φ maps {β: β < α} 1-1
into N, which is impossible.) So the sequence must stop increasing eventually, that is there
must be a λ such that Sλ = Sλ+1; indeed there must be a countable such λ. But this means
that ψ(Sλ) = Sλ, i.e. Sλ is a fixed point of ψ.

Finally, we can show that Sλ is the least fixed point by showing, by ordinal induction on
α, that if S' is any fixed point, then Sα ⊆ S'; it follows that Sλ ⊆ S'.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

135

Exercises

1. Show that for all sets S, S1, and S2, S ≤e S1, S2 iff S ≤e S1 U S2.

2. Suppose S is a completely creative set, and let ψ be a completely creative function for S
(i.e. for all x, ψ(x) ∈ S iff ψ(x) ∈ Wx). First, show that there is a recursive function χ1

such that Wχ1(x, s) = Wx - {a1, ..., an}, where s codes {a1, ..., an}, and a recursive function χ
such that Wχ(x, y) = Wx ∪ {y}. Next, define α and ψ* simultaneously, as follows. α(n, 0)
= χ1(n, s), where s is the smallest code of {ψ*(0), ..., ψ*(n-1)}; α(n, m+1) = χ(α(n, m),
ψ(α(n, m))); ψ*(0) = ψ(0); and ψ*(n+1) = ψ(α(n+1, q0)), where q0 is the least q such that
ψ(α(n+1, q)) is distinct from all of ψ*(0), ..., ψ*(n). Prove that ψ* is total recursive, 1-1,
and a completely creative function for S.

Use this and previous exercises to show that the notions 1-complete, m-complete,
creative, 1-1 creative, completely creative, 1-1 completely creative and being an r.e.
nonrecursive set satisfying the effective form of Gödel’s theorem are all equivalent.

Remark: remember that I said that r.e. sets that arise naturally, as opposed to being
cooked up by recursion theorists, are all either recursive or 1-1 complete. The latter case can
be characterized in all the ways on the list above.

3. Use the method of axiomatizing in first-order logic, as given in class, to show that all
Turing-computable functions are recursive.

4. Recall the self-reference lemma with parameters from class: if A(x) is any formula, there
is a recursive function ψ and a formula PS(x, y) that represents ψ in Q, such that for all m,
ψ(m) is the Gödel number of the formula (∃ z)(PS(0(m), z) ∧ A(z)), which is provably
equivalent in Q to A(0(ψ(m))). Use this to prove that every r.e. set is nicely weakly
representable in every consistent r.e. extension of Q, as follows. Let Γ be any consistent r.e.
extension of Q and let S be any r.e. set. Let R(x, y) be a formula of Lim such that the
formula (∃ y)R(x, y) defines S. Let Pr(x, y) be a formula of Lim such that (∃ y)Pr(x, y)
defines the set of theorems of Γ. Let A(x) be the formula (∃ z)(PS(x, z) ∧ (∃ y)(R(x, y) ∧ (w
< y)~Pr(z, w))), where PS represents the function ψ such that ψ(m) is the Gödel number of
the formula A(0(m)). Show that A(x) weakly represents S in Γ, and moreover that A(x)
defines S.

Remark: a previous exercise proved that every r.e. set is weakly representable in every
consistent extension of Q, but not that the weak representation was nice. Shepherdson gave
this as an alternative way of getting the earlier result, and then Kreisel pointed out that this
method gives a nice weak representation.

5. Consider the language that is like RE except that the bounded universal quantifier is
replaced by the ordinary unbounded universal quantifier. This can be called the positive

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

136

language of arithmetic, PL.
(a) Prove that the same sets and relations are definable in the (ordinary) language of

arithmetic, L, as are definable in PL.
Now consider the language PL[P1

1] obtained by adding to PL a single monadic predicate
P1

1, just as in the case of RE. Analogously to enumeration operators, we can define positive
arithmetical operators. Also, let φ(S) be the set of all (Gödel numbers of) true sentences of
PL[P1

1], where the extra predicate P1
1 is interpreted as S.

(b) Show that in contrast to the case of RE[P1
1], φ(S) is not a positive arithmetical

operator. Also show that every enumeration operator is a positive arithmetical operator.
Show as well that positive arithmetical operators need not in general be finite.

(c) Prove that φ(S) is monotonic, and show how to deduce that every positive
arithmetical operator is monotonic.

(d) In class it was proved that every monotonic operator has a least fixed point. Prove
the following statements by similar methods: every monotonic operator has a unique largest
fixed point. Also, for every monotonic operator, every sound point S has a least fixed point
above S, and every closed point S has a largest fixed point below S.

Notice that by (c) the conclusions of (d) apply to φ and to every positive arithmetical
operator. In particular, they all have least fixed points and largest fixed points.

(e) If P1
1 is interpreted by any fixed point of φ, show that the language PL[P1

1] contains
its own truth predicate and its own satisfaction predicates Satk(x, m1,...,mk), for each k.

(f) The self-reference lemma for the language PL[P1
1] (for the case of formulae with one

free variable) says that for any formula of this language A(x1), with only x1 free and x1
never bound, there is a formula G with Gödel number m such that, independently of the
interpretation of the extra predicate P1

1, G≡A(0(m)) is always provable from the axioms of
Q, if we consider the theorems of Q derivable in the broad language of arithmetic
supplemented by the predicate P1

1. A corollary is that G≡A(0(m)), where m is the Gödel
number of G, is always true, regardless of how the extra predicate is interpreted. Prove the
self-reference lemma for PL[P1

1]. (In fact, all the forms of the self-reference lemma proved
in class for the language of arithmetic generalize over to this case in a similar manner.
However, here we only consider the form of the lemma we need for part (g).)

(g) Consider a sentence G such that G≡P1
1(0(m)) (where m is the Gödel number of G)

is true, regardless of the interpretation of P1
1. Such a sentence exists by (f). Prove that there

is at least one fixed point S1 of φ such that if P11 is interpreted by S1, G is true, and another
fixed point S2 such that if P11 is interpreted by S2, G is false. Prove that G is true if P1

1 is
interpreted by the largest fixed point of φ and false if P11 is interpreted by the least fixed
point of φ. (This shows that there are at least two distinct fixed points and that in fact the
largest and the least fixed points are distinct. In fact, the number of fixed points is the
cardinality of the continuum.)

Remark: this finally shows that a language even with unbounded quantifiers of both

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

137

kinds, and with an expressive power greater than or equal to the language of arithmetic, can
express its own truth and satisfaction predicates, as long as it lacks negation. Any
interpretation of P11 in PL by a fixed point has these properties. We have seen that there is
more than one such interpretation of P1

1. The same argument could be used for RE[P1
1], but

it is less interesting there, because all the languages RE[P1
1], and RE itself, contain their own

truth and satisfaction predicates.
The construction is related to one I have discussed elsewhere, but differs in that it is for

classical languages without negation.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

138

Lecture XIX

The Enumeration Operator Fixed-Point Theorem (Continued)

We could adapt either proof that every monotonic operator has a least fixed point to give us
additional information. For example, for any sound point S, there is a least fixed point S'
such that S ⊆ S'. We can show this either by letting G = ∪ {S': S' is closed and S ⊆ S'} in
the first proof, or by letting S0 = S in the second proof. Also, for any closed point S', there
is a greatest fixed point S ⊆ S'. Again, we can imitate the first proof (switching "closed"
and "sound" and making similar changes throughout) or fiddle with the second proof
(letting <Sα> be a decreasing sequence with S0 = S).

In the second proof, we know that a fixed point is reached at some countable stage. If
the operator ψ is finite, then it is reached at stage ω.

Theorem: If ψ is a monotonic and finite operator, then the set Sω from the proof of the last
theorem is ψ's least fixed point.
Proof: We only have to show that Sω = Sω+1; since Sω ⊆ Sω+1, we just have to show that
Sω+1 ⊆ Sω. Let x ∈ Sω+1 = ψ(Sω). By finiteness, we can find a finite X ⊆ Sω such that x
∈ ψ (X). Since X is finite, X ⊆ Sn for some n < ω. By monotonicity, x ∈ ψ(Sn). But Sn+1

= ψ(Sn), so x ∈ Sn+1 ⊆ Sω.

Since enumeration operators are finite and monotonic, we know already that each
enumeration operator has a least fixed point, and that it is constructed by stage ω. To show
that this fixed point is r.e., we need to generalize the generated sets theorem slightly.

When a set is generated from a basis set and a collection of rules in the sense of the
usual generated sets theorem, the rules are finite in number and each has a fixed finite
number of premises. However, since we can code up finite sets of numbers as individual
numbers, we can make sense of an r.e. generating rule having a variable finite number of
premises. Specifically, we can identify such a rule with a binary relation R(s, x), where s
codes a finite set of premises and x is the conclusion. We can formulate an appropriate
notion of proof sequence for such a relation; specifically, we may say that <x1, ..., xn> is a
proof sequence for R if for every i≤n there is a finite set s such that all elements of s are in
<x1, ..., xn> before xi and R(s, xi). Then naturally we define the set generated by R to be the
set of all numbers that have proof sequences. As long as R is r.e., the notion of proof
sequence will be r.e., and therefore the set generated by R will also be r.e. We leave the
details to the reader.

Enumeration Operator Fixed Point Theorem: Every enumeration operator has a least

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

139

fixed point (namely Sω), and that fixed point is r.e.
Proof: Let ψ be an enumeration operator, and let Sω be as above. Let R be the relation {<s,
x>: s codes a set S such that x ∈ ψ (S)}. R is r.e., as is easily seen (if A is the RE[P]
formula corresponding to ψ, then R is defined by the formula A' obtained from A by
replacing P(t) by t ∈ s throughout). Let G be the set generated by R, which is therefore r.e.
We show that G = Sω.

First, G ⊆ Sω. We show by induction on the length of proof sequences that if x occurs
on a proof sequence, then x ∈ Sω. Let <x1, ..., xn> be a proof sequence for R. Then R(s,
xn), where s codes a finite set of xi's, i < n. By the inductive hypothesis, s codes a subset S
of Sω, so by monotonicity ψ(S) ⊆ ψ (Sω) = Sω. Since xn ∈ ψ (S), xn ∈ Sω.

Next, Sω ⊆ G. We show by induction on n that Sn ⊆ G. S0 = Ø ⊆ G. Suppose Sn ⊆
G, and let x ∈ Sn+1 = ψ(Sn). By finiteness, x ∈ ψ (S) for some finite S ⊆ Sn. Since Sn+1

⊆ G, we can find proof sequences for all the elements of S; by stringing them together, we
can find a proof sequence for x. So x ∈ G.

Kleene's first recursion theorem is stated in terms of partial recursive functions. An
enumeration operator that maps partial functions into partial functions is called a partial
recursive operator; Kleene showed that every partial recursive operator has a least fixed
point, and that this fixed point is a partial recursive function. We can prove this using the
enumeration operator fixed point theorem as follows. By identifying partial functions with
their graphs, and identifying relations with sets of coded pairs, we can see that any partial
recursive operator ψ has a least fixed point R, where R is an r.e. relation. To see that R is
single valued, we use the fact that R is Rω. R0 = Ø is single valued; if Rn is single valued,
then since y is a partial recursive operator, Rn+1 = ψ(Rn) is single valued; so each Rn is
single valued. Suppose [x, y] and [x, z] ∈ Rω. Then for some m, n, [x, y] ∈ Rm and [x, z]
∈ Rn. Let p = max(m, n); then [x, y], [x, z] ∈ Rp. Since Rp is single valued, y = z. So Rω
is single valued.

The First and Second Recursion Theorems.

Here are the two recursion theorems:

(1) For all enumeration operators ψ, there is a least set S such that ψ(S) = S, and moreover
S is r.e.
(2) For all recursive functions φ, there is an e such that We = Wφ(e).

Neither of these theorems implies the other. On the one hand, the second recursion theorem
implies that every enumeration operator has an r.e. fixed point, but not that it has a least
fixed point. To see this, let ψ be any enumeration operator, and let A be a formula of RE[P]

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

140

corresponding to it. Let A*(e, x) be the formula of RE obtained from A by replacing P(x)
by W(e, x) throughout. Then A*(e, x) defines the relation {<e, n>: n ∈ ψ(We)}, so that
relation is r.e. Using the Sm

n theorem, we can find a recursive function φ such that Wφ(e) =
ψ(We) for all e. To find an r.e. fixed point for ψ, apply (2) to find an e such that We =
Wφ(e) = ψ(We). We need not be the least fixed point, however.

On the other hand, we can use (1) to prove (2) only in a special case. Since the φ in (2)
is a function on numbers rather than sets, it is quite possible that We = Wf and Wφ(e) ≠
Wφ(f) for some e and f; in that case, the "operator" F(We) = Wφ(e) will not even be well-
defined, let alone an enumeration operator. However, let us say that a function φ is
extensional if for all e and f, if We = Wf then Wφ(e) = Wφ(f). Then the operator F(We) =
Wφ(e) is well-defined. It turns out that whenever φ is extensional, there is an enumeration
operator ψ such that ψ(We) = Wφ(e) for all e. We can thus apply (1) to ψ to obtain an e
such that We = ψ(We) = Wφ(e).

If we only applied (2) with extensional φ in practice, then this would not be much of a
limitation. However, there are important applications of (2) in which φ is nonextensional, or
at least in which there is no good reason to think that φ is extensional; the study of recursive
ordinals is an example of this.

(1) and (2) have many applications in common. For example, we can use (1), as we
used (2), to prove that certain functions defined in terms of themselves are recursive. Take
the factorial function, for example. We can define a partial recursive operator as follows:
Ψ(φ) = χ, where χ(0) = 0 and χ(n+1) = φ(n).(n+1). It is easy to check that Φ is a partial
recursive operator; applying the version of (1) for such operators, we see that there is a
partial recursive φ such that Ψ(φ) = φ, so that φ(0) = 0 and φ(n+1) = φ(n).(n+1), i.e. φ(n) =
n! for all n. (In fact, this proof that the factorial function is recursive boils down to the
proof we gave earlier in terms of the generated sets theorem; the operator Ψ is really a kind
of generating rule.) (1) and (2) are called recursion theorems because of these common
applications.

The Intuitive Reasons for Monotonicity and Finiteness.

We have shown, in terms of our formalism, that enumeration operators are monotone and
finite; we can also give intuitive proofs of the corresponding claims about the intuitive
notion of semi-computability. Let P be a semi-computation procedure which consults an
oracle; let us say that P semi-computes a set S1 from S2 if, whenever P is given an oracle to
S2, it answers "yes" to input n iff n ∈ S1. In this case, let us write S1 = P(S2). We want to
show that if S1 ⊆ S2 then P(S1) ⊆ P(S2), and that if n ∈ P(S), then n ∈ P(S0) for some
finite S0 ⊆ S.

Suppose n ∈ P(S1). Then whenever P is given an oracle to S1 and gets input n, P halts
after a finite amount of time with answer "yes". Since P halts after a finite amount of time,

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

141

P only asks the oracle finitely many questions, so a finite amount of information about S1
suffices for P to decide that n ∈ P(S1). Moreover, this information is positive information,
since the oracle only gives "yes" answers to P's questions. Let S0 = {x ∈ S1: the oracle
gives an answer "yes" to the question "x ∈ S1?"}; then S0 is finite, S0 ⊆ S1, and the
information in S0 suffices for P to decide that n ∈ P(S1). It follows that n ∈ P(S0) and that
n ∈ P(S2) when S1 ⊆ S2: if P is given an oracle to the set S0 (or S2) and given input n,
then it will proceed as it did when given an oracle to S1, asking it exactly the same questions,
and it will get the same "yes" answers, which suffice to make P halt and give an answer
"yes".

We can use this fact to prove a normal form theorem for semi-computability. If S1 is
semi-computable in a semi-computation of S2, then S1 = P(S2) for some P, and by our
monotonicity and finiteness result, n ∈ P(S2) iff n ∈ P(S0) for some finite S0 ⊆ S2. Now,
the relation n ∈ P(S0) (holding between n and S0) is clearly a semi-computable relation,
since we can transform P into a procedure P* that semi-computes it: whenever P consults
the oracle about whether n is an element of the set in question, let P* invoke a semi-
computation procedure for the relation n ∈ S0. Note that P* is a semi-computation
procedure without oracles. We have thus shown that whenever a set S1 is semi-computable
in a semi-computation of S2, there is a semi-computable relation R such that S1 = {n: (∃
finite S0)(S0 ⊆ S2 ∧ R(n, S0))}. If the unrelativized version of Church's thesis is true, then
R must be r.e., and therefore there is an r.e. relation such that S1 = {n: (∃ finite S0)(S0 ⊆ S2

∧ R(n, S0))}. But this holds precisely when S1 ≤e S2. So the unrelativized version of
Church's thesis implies the relativized version.

Degrees of Unsolvability.

Suppose a binary relation ≤ is reflexive and transitive; then the relation ≡, defined by a ≡ b
iff a ≤ b and b ≤ a, is an equivalence relation. To verify this, we must show that ≡ is
reflexive, symmetric, and transitive. That ≡ is symmetric is immediate from the definition
and does not depend on any properties of ≤. ≡'s reflexivity follows from that of ≤. Finally,
if a ≡ b and b ≡ c, then a ≤ b and b ≤ c by the definition of ≡, so a ≤ c by ≤'s transitivity, and
similarly c ≤ a, so a ≡ c. We have shown that all of our reducibility notions are reflexive
and transitive, so in each case the relation of interreducibility is an equivalence relation. We
write A ≡e B for A ≤e B & A ≤e B, and similarly for ≡1, ≡m, and ≡T. The equivalence
classes are called degrees of unsolvability, or simply degrees. In particular, the ≡e-, ≡1-, ≡m-
and ≡T- equivalence classes are called enumeration degrees, 1-degrees, m-degrees, and
Turing degrees, respectively. (We use lowercase letters to denote degrees.) The idea
behind this terminology is that when a set A is reducible to a set B, B is harder to compute
than A, i.e. the decision problem for B has a higher degree of difficulty than that of A. (Or
the semi-decision problem, in the case of enumeration degrees.) Degrees, especially Turing

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

142

degrees, have been studied extensively.
Let us write dege(A) (degT(A), etc.) for the enumeration degree (Turing degree, etc.) of a

set A, i.e. the degree of which A is a member. We can place an ordering on degrees
corresponding to the reducibility relation between sets: we say that degT(A) ≤ degT(B) iff A
≤T B (and similarly for other kinds of degrees). It is easy to check that ≤ is well-defined,
and that it partially orders the degrees. When "≤" denotes this relation between degrees, we
do not write a subscript: if a and b are both degrees of the same sort, then there is only one
less-than relation which is defined between them, so if we know what sort of degrees a and
b are, "a ≤ b" is unambiguous. There is a least enumeration degree (under this ordering),
namely the degree consisting of the r.e. sets. There is also a least Turing degree, namely the
one consisting of the recursive sets.

If ≤ is one of our reducibility relations, we define A < B to mean A ≤ B and not B ≤ A.
Equivalently, A < B iff A ≤ B and not A ≡ B. Similarly, if a and b are degrees, we say that a
< b if a ≤ b and not b ≤ a, or equivalently if a ≤ b and a ≠ b; note that Deg(A) < Deg(B) iff
A < B.

The Jump Operator.

Recall that A ≤e B, C iff A ≤e B U C, so in particular, A is r.e. in B iff A ≤e B, -B iff A ≤e B
U -B. Recall also that A U B ≤e C iff A ≤e C and B ≤e C. It follows that A ≤T B iff A U -A
≤e B U -B.

Recall our enumeration of the sets enumeration reducible to a set S, namely the relation
given by (∃ s)(s ⊆ S ∧ W(e, x, s)). Given a set S, we define S* to be the set {[e, m]: (∃ s)(s
⊆ S ∧ W(e, m, s))}. S* captures all the sets enumeration reducible to S, and is itself
enumeration reducible to S, since we have in effect just defined S* in RE[P], with P
interpreted as S.

Let us prove some basic properties of the * operator. First of all, for all A, if A ≤e S,
then A ≤1 S*. For suppose A ≤e S; then A has some index e in the enumeration of the sets
≤e S, so for all m, m ∈ A iff (∃ s)(s ⊆ S ∧ W(e, m, s)) iff [e, m] ∈ S*, so A ≤1 S* by the
map m → [e, m]. It follows, by taking A = S, that S ≤1 S* for all S. Since S ≤1 S* implies
S ≤e S*, we have S ≤e S* and S* ≤e S, i.e. S ≡e S*. We also have the following
equivalences:

A ≤1 S* ⇔ A ≤m S* ⇔ A ≤e S* ⇔ A ≤e S.

We have A ≤1 S* ⇒ A ≤m S* ⇒ A ≤e S* immediately. A ≤e S* ⇒ A ≤e S because S* ≡e

S. Finally, A ≤e S ⇒ A ≤1 S*, as we saw earlier.
In practice, we will forget about the exact definition of * and apply these equivalences

directly. There are alternative definitions of * which would also yield these facts. The idea

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

143

behind our definition of * is that S* encodes an enumeration of all the sets ≤e S; to get this
effect, we could have taken S* to be {[e, m]: m satisfies the formula of RE[P] whose Gödel
number is e}. Or, since we can reduce satisfaction to truth, we could have taken S* to be
the set of Gödel numbers of true sentences of RE[P]. Both of these sets are recursively
isomorphic to S* as we actually defined it.

Another important equivalence involving * is the following:

A ≤e B ⇔ A* ≤1 B*.

For suppose A ≤e B. Then since A ≡e A* and B ≡e B*, A* ≤e B*; but then A* ≤1 B*. On
the other hand, suppose A* ≤1 B*. Then A* ≤e B by the equivalences for *, and so A ≤e B
since A ≡e A*.

While S* is always ≤e S, -S* is never ≤e S. The proof is analogous to the proof that K
is not recursive. Suppose -S* ≤e S, and let A = {m: [m, m] ∉ S*}; A ≤e -S*, so by the
transitivity of ≤e, A ≤e S. A has some index e; so for all m, m ∈ A iff [e, m] ∈ S*, and in
particular, e ∈ A iff [e, e] ∈ S*; but e ∈ A iff [e, e] ∉ S* by the definition of A,
contradiction.

We now define S' to be the set (S U -S)*. S' is called the jump of S. (While the
operation * is not a standard part of recursion theory, the jump operation is very standard.)
Just as S* ≤e S, S' is r.e. in S: (S U -S)* ≤e S U -S by the properties of *, i.e. (S U -S)* is
r.e. in S, i.e. S' is r.e. in S. However, -S' is never r.e. in S: if -S' is r.e. in S, then -(S U -S)*
≤e S U -S, which we have just seen to be impossible. So S' is never recursive in S.
However, S ≤T S': by the basic properties of *, (S U -S) ≤e (S U -S)*, so S ≤e S' and -S ≤e

S'. So S' is always of a higher Turing degree than S.
As in the case of *, the exact definition of ' is less important than its basic properties.

We could have defined S' to be {[e, m]: m satisfies the formula of RE[P1, P2] with Gödel
number e}, where P1 and P2 are interpreted as S and -S, respectively. We could also have
defined S' to be the diagonal set {e: e satisfies the formula of RE[P1, P2] with Gödel
number e}. In this way, we see that S' can be viewed as a relativization of K to the set S.

As with *, we have the following equivalences involving ':

A ≤1 S' ⇔ A ≤m S' ⇔ A ≤e S' ⇔ A is r.e. in S.

In general, we will forget about the definition of ' and work directly from these equivalences.
Since A is r.e. in S iff A ≤e S U -S, this follows directly from our equivalences for * by
replacing S by S U -S.

We also have the following:

A ≤T B ⇔ A' ≤1 B' ⇔ A' ≤m B' ⇔ A' ≤e B'.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

144

A' ≤1 B' ⇔ A' ≤m B' ⇔ A' ≤e B' is immediate from the above. A ≤T B ⇔ A' ≤1 B' is a
special case of A ≤e B ⇔ A* ≤1 B*, replacing A and B by A U -A and B U -B,
respectively. Notice also that A ≤T B implies that A' ≤T B' (A ≤T B ⇒ A' ≤1 B' ⇒ A' ≤T B').
However, the converse is false.

It follows immediately from this that A ≡r B ⇒ A' ≡r B', whether ≡r is ≡1, ≡m, or ≡T. Let
us write this as A ≡1, m, T B ⇒ A' ≡1, m, T B'. If a is the degree of A (under one of these
three reducibilities), then we define a' to be the degree of A'. We see that a' is well defined,
because if B ∈ deg(A), then B ≡r A (r = 1, m, or T), so B' ≡r A', i.e. Deg(B') = Deg(A'). It
also follows from the above that whenever a ≤ b, a' ≤ b'.

Thus, we see that the jump operator is an order-preserving map on the degrees. It can
also be regarded as an embedding of the T-degrees into the 1-degrees, i.e. an isomorphism
of the structure <{T-degrees}, ≤> onto a subset of the structure <{1-degrees}, ≤>. More
precisely, the map DegT(A) → Deg1(A') is such an embedding. This is simply because
DegT(A) ≤ DegT(B) iff A ≤T B iff A' ≤T B' iff Deg1(A') ≤ Deg1(B'). In fact, the same
argument shows that the map Dege(A) → Deg1(A*) is an embedding of the enumeration
degrees into the 1-degrees.

There is also an embedding of the Turing degrees into the enumeration degrees. We
have already seen that A ≤T B iff A U -A ≤e B U -B; it follows that the map DegT(A) →
Dege(A U -A) is well-defined and is also an embedding. An enumeration degree in the
range of this embedding is called total. Clearly, an enumeration degree is total just in case it
contains a set of the form A U -A. An enumeration degree is also total iff it contains the
graph of a total function (hence the name).

Let f be the embedding DegT(A) → Dege(A U -A), and let g be the embedding Dege(A)
→ Deg1(A*). If we compose f and g, the result is an embedding h of the Turing degrees
into the 1-degrees. Moreover, h is precisely the map DegT(A) → Deg1(A') which we have
already seen to be an embedding.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

145

Lecture XX

More on the Jump Operator.

As we have seen, there is a least T-degree, namely 0, the set of all recursive sets. Using the
jump operator, we can form an increasing sequence of degrees: 0, 0', 0'', In general, we
write 0(n) (the nth jump of 0) for the result of applying ' to 0 n times. We know that this
sequence is strictly increasing, i.e. 0 < 0' < 0'' ..., since A' is never recursive in A.

If a and b are degrees, where a = deg(A) and b = deg(B), we define a ∪ b to be deg(A U
B). For any of the four kinds of degrees we have been considering, a ∪ b is well-defined
and is an upper bound of a and b (i.e. a, b ≤ a ∪ b). Moreover, if a and b are either Turing
or enumeration degrees, a ∪ b is the least upper bound of a and b, i.e. for all degrees c, if a,
b ≤ c, then a ∪ b ≤ c.

First, let us verify that a ∪ b is well defined, i.e. that the degree of A U B does not
depend on which sets A and B we pick from the degrees a and b. That is, we must show
that if A ≡r A1 and B ≡r B1, then A U B ≡r A1 U B1 (for r = 1, m, T, e). We assume that A
≡r A1 and B ≡r B1, and show that A U B ≤r A1 U B1 (as the proof that A1 U B1 ≤r A U B
will be exactly the same). We know already from our previous work that A U B ≤T A1 U B1

iff both A and B are ≤T A1 U B1, iff both A and B are ≤T A1, B1. But A ≤T A1, B1 since A
≤T A1 by hypothesis, and similarly B ≤T A1, B1. The same holds for ≤e. So consider the
case r = m. A ≤m A1 and B ≤m B1, so let φ and ψ be recursive functions such that φ: A ≤m

A1 and ψ: B ≤m B1. Let χ be the recursive function such that χ(2n) = 2φ(n) and χ(2n+1) =
2ψ(n)+1; χ: A U B ≤m A1 U B1. Finally, if φ and ψ are 1-1, then χ is also 1-1, so A U B ≤1

A1 U B1.
Next, since A U B is an upper bound of A and B in all of our reducibility notions,

Degr(A) and Degr(B) are ≤ Degr(A U B) for all A and B, i.e. a, b ≤ a ∪ b. Finally, as we
saw, A, B ≤T, e C implies A U B ≤T, e C, so a, b ≤ c implies a ∪ b ≤ c if a, b, and c are
enumeration degrees or Turing degrees.

We say that a partially ordered set is an upper semilattice if any two elements of it have
a least upper bound, and a lower semilattice if any two elements have a greatest lower
bound. A partially ordered set which is both an upper and a lower semilattice is called a
lattice. Thus, we see that the degrees form an upper semilattice; however, it turns out that
they do not form a lower semilattice, and hence do not form a lattice.

It is easy to check that the operator ∪ is associative and commutative, and that for all a1,
..., an, a1 ∪ ... ∪ an is the least upper bound of a1, ..., an. (These facts depend only on the
fact that a ∪ b is the least upper bound of a and b.) Thus, any finite set of degrees has a
least upper bound. It does not follow, however, that every set of degrees has a least upper
bound. In fact, this is not the case: if F is a family of degrees, then for F to have a least
upper bound, it is necessary and sufficient that there be a finite E ⊆ F such that for all a ∈ F

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

146

there is a b ∈ E with a ≤ b. Thus, in particular, the sequence 0, 0', 0'', ... has no least upper
bound, since no such E exists.

Notice that 0' is the degree of Ø' (since 0 is the degree of Ø), and that Ø' is a 1-1
complete set. To see this, note that Ø' = (Ø U N)* = {odds}* = {[e, m]: (∃ s)(s ⊆ {odds}
∧ W(e, m, s))}; so if A is any r.e. set, the relation R given by R(x, y) iff x ∈ A ∧ y ∈ N is
r.e., and therefore has an index e: so for all m, m ∈ A iff for some (or any) s, R(m, s), iff
W(e, m, s) for some such s, iff [e, m] ∈ Ø'. So A ≤1 Ø' by the map m → [e, m]. Thus, we
see that 0' is the degree of a 1-1 complete set.

Any set S ∈ 0' is called T-complete, or simply complete. 0' contains sets which are not
1-complete; for example, Post's simple set is an element of 0'. In fact, Post invented this set
in an attempt to solve what is known as Post's problem: the problem of finding an r.e. set
which is neither recursive nor complete (or showing that there is no such set). A Turing
degree is said to be an r.e. degree if it contains an r.e. set; so Post's problem is equivalently
stated as the problem of whether there are any r.e. degrees other than 0 and 0'. Post failed
in his search for such degrees, and it was conjectured by some that 0 and 0' are the only r.e.
degrees there are. However, the problem was solved in 1956 by Friedberg and Mucnik
(working independently). They proved this by finding two incomparable r.e. sets, i.e. sets A
and B such that neither A ≤T B nor B ≤T A. It follows that their degrees a and b are
incomparable in the ordering ≤; since 0 and 0' are comparable, it follows that a can be
neither 0 nor 0', since then it would be comparable with b.

Clearly, 0 ≤ a ≤ 0' for any r.e. degree a (since Ø ≤T A ≤T Ø' for any r.e. set A); however,
there are degrees between 0 and 0' which are not r.e. (It is easy to see that not all sets
recursive in Ø' are r.e.: -K ≤T Ø' for example; it turns out that there are sets ≤T Ø' which are
not even ≡T any r.e. sets.) It is relatively easy to produce incomparable degrees between 0
and 0', but harder to produce r.e. degrees with this property.

It turns out (though we shall not prove this) that the jump operator is first-order
definable from the relation ≤. That is, the graph of the jump operator is definable in the
interpreted first order language whose domain consists of all the Turing degrees, and in
which there is only a single binary relation which is interpreted as the ≤ relation between
degrees.

The Arithmetical Hierarchy.

A Σn formula (for n ≥ 1) is a formula consisting of a block of unbounded quantifiers,
followed by a block of bounded quantifiers, followed by a quantifier-free formula, where the
block of unbounded quantifiers begins with an existential quantifier, is of length n, and
alternates between existential and universal quantifiers. (Thus, for example, (∃ x)(y)(∃ z) x +
y = z is a Σ3 formula.) We also write "Σ0

n" for "Σn". Since any formula of Lim is
equivalent to a formula which consists of a string of bounded quantifiers followed by a

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

147

quantifier-free formula, every Σn formula is equivalent to a formula consisting of a string of
n alternating quantifiers (of which the first is existential) followed by a formula of Lim. A
Πn formula (or Π0

n) begins with a universal quantifier; otherwise the definition is the same.
We sometimes call a formula Σn (or Πn) if it is equivalent to a Σn (Πn) formula.

A set or relation is said to be Σn (Πn) if it is defined by a Σn (Πn) formula. A set or
relation is said to be ∆n if it is both Σn and Πn. Sometimes we use Σn (Πn, ∆n) to denote the
set of all Σn (Πn, ∆n) sets; thus we write ∆n = Σn ∩ Πn, for example. As we have already
seen, then, Σ1, Π1 and ∆1 are the sets of r.e., co-r.e., and recursive sets, respectively.

There are two basic facts about the Σ-Π hierarchy that we shall prove in this section.
The first is that every arithmetical set (i.e. every set definable in the language of arithmetic)
belongs to this hierarchy (which is why it is called the "arithmetical hierarchy"); the second
is that Σn and Πn get more inclusive as n increases. Before doing this, we shall prove an
enumeration theorem for this hierarchy.

Note that S ∈ Σ n iff -S ∈ Π n, and S ∈ Π n iff -S ∈ Σ n. To see this, suppose S ∈ Σ n,
and let A be a Σn formula that defines it. Then ~A defines -S; but ~A is equivalent to a Πn

formula, since we can push the negation sign through the initial string of quantifiers,
changing universals to existentials and vice versa, and then through the bounded quantifiers.
So -S is defined by a Πn formula, i.e. -S ∈ Π n. Similarly, we can show that if S ∈ Π n then
-S ∈ Σ n. It follows from this that ∆n = {S: S, -S ∈ Σ n} = {S: S, -S ∈ Π n}.

Note also that if S is Σn, then S is also Πn+1: if A is a Σn formula defining S, and z is a
variable not occurring in A, then (z)A is a Πn+1 formula which also defines S. ((z) is a
vacuous quantifier here.) Similarly, if S is Σn then S is Σn+1: if A is a Σn formula that
defines S, then let A' come from A by adding a vacuous quantifier onto the end of A's string
of unbounded quantifiers; then A' is a Σn+1 formula that defines S. Thus, Σn ⊆ ∆n+1, and
by similar reasoning, Πn ⊆ ∆n+1.

Suppose Σn = Σn+1 and Πn = Πn+1 for some n. Then as Σn ⊆ Πn+1 and Πn ⊆ Σn+1, it
follows that Σn ⊆ Πn and Πn ⊆ Σn, i.e. Σn = Πn. Thus, if we can show that Σn ≠ Πn, it will
follow that Σn ⊂ Σn+1 or Πn ⊂ Πn+1 (here we use A ⊂ B to mean A ⊆ B & A ≠ B). In fact,
both will follow: if S ∈ Σn+1 - Σn, then -S ∈ Πn+1 - Πn, so Σn ⊂ Σn+1 implies Πn ⊂ Πn+1,
and by the same reasoning the converse holds. We know that Σ1 ≠ Π1; we only have to
show that Σn ≠ Πn for n > 1.

Now let us prove the enumeration theorem we mentioned above.

Theorem: For all n, the Σn (Πn) sets can be enumerated by a Σn (Πn) relation.
Proof: Suppose A is a Σn formula and that n is odd, so that A's string of unbounded
quantifiers ends in an ∃ . Then A is (∃ x1)...(∃ xn)R(x1, ..., xn, y) for some formula R of Lim.
Consider the Σ1 formula (∃ xn)R(x1, ..., xn, y). This formula is equivalent to W(0(e), x1, ...,
xn-1, y) for some e, and the formula W(e, x1, ..., xn-1, y) (where e is now a variable) is itself
equivalent to (∃ xn)T(e, x1, ..., xn, y) for some formula T of Lim. It follows that A is
equivalent to the Σn formula (∃ xn)...(∃ xn)T(0(e), x1, ..., xn, y). Since A was arbitrary, we see

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

148

that every Σn formula is equivalent to a Σn formula of the form (∃ x1)...(∃ xn)T(0(e), x1, ...,
xn, y). Thus, the formula (∃ x1)...(∃ xn)T(e, x1, ..., xn, y) (where e is now a variable) defines
an enumeration of the Σn sets. Thus, for all odd n, there is a binary Σn relation that
enumerates the Σn sets. The same proof shows that if n is even, then there is a binary Πn

relation that enumerates the Πn sets. We can cover the remaining cases as follows. If n is
even and R is a Πn enumeration of the Πn sets, then the relation -R is Σn, and moreover -R
enumerates the Σn sets: if S ∈ Σn, then -S ∈ Πn, so -S = {x: R(e, x)} (for some e) and S =
-{x: R(e, x)} = {x: -R(e, x)}; similarly, if n is odd and R is a Σn enumeration of the Σn sets,
then -R is a Πn enumeration of the Πn sets. We can therefore conclude that for all n, there
is a Σn relation that enumerates the Σn sets and a Πn relation that enumerates the Πn sets.

(There is also a Σn (Πn) enumeration of the Σn (Πn) k-place relations, for all k; we could
either generalize the proof in the case k = 1, or use the pairing function.)

We are now ready to prove the desired

Hierarchy Theorem: Σn ≠ Πn for all n.
Proof: Let n be given, and let D = {x: R(x, x)}, where R is an enumeration of Σn. D ∈ Σn,
so -D ∈ Πn. However, -D ∉ Σn: if -D ∈ Σn, then -D = {x: R(e, x)} for some e, so e ∈ -D
iff R(e, e) iff e ∈ D, contradiction.

Thus, the arithmetical hierarchy goes up without end. Note that this is a direct
generalization of the proof that Σ1 ≠ Π1, i.e. the proof that there is a nonrecursive r.e. set.

The arithmetical hierarchy gives us a way to classify the sets that occur in it. By the
level of a set in the hierarchy, we mean the least inclusive of the various sets Σn, Πn, and ∆n

of which it is an element. That is, if S is any set in the hierarchy and n is the least n such
that S ∈ Σn ∪ Πn, then we call S properly Σn, properly Πn, or ∆n, as S is an element of Σn -
Πn, Πn - Σn, or ∆n.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

149

∆
1

∆
2

∆
3

Π
1

Π
2

Π
3

Σ
1

Σ
3

•
•
•
•

Σ
2

The Arithmetical Hierarchy

Next, we prove a theorem which implies that every arithmetical set belongs to the
hierarchy, and which allows us to make good estimates of the level of a given set.

Theorem: If a set or relation is definable in RE[P1, ..., Pm], where P1, ..., Pm are interpreted
as Σn sets, then it is itself Σn.
Proof: We prove this by showing that every formula of RE[P1, ..., Pm] is equivalent to
some Σn formula. The proof is a double induction: we prove the theorem by an induction
on n, and for each particular n, we prove that it holds for n by induction on the complexity
of RE[P1, ..., Pm] formulae.

Note that if the theorem holds for n, then a conjunction, disjunction, universal
quantification, or bounded existential quantification of a Πn formula is Πn. To see this,
suppose that A and B are Πn. Then ~(A ∧ B) is equivalent to ~A ∨ ~B, where ~A and ~B
are Σn; so by the theorem, ~A ∨ ~B, and hence ~(A ∧ B), is Σn, and therefore A ∧ B is Πn.
Similarly, if A is Πn, then ~(x)A is equivalent to (∃ x)~A, and ~A is Σn, so by the theorem
(∃ x)~A is Σn, so (x)A is Πn. The other cases are similar.

n = 1: A is a formula of RE[P1, ..., Pm], where P1, ..., Pm are interpreted as Σ1 sets; so A
is equivalent to the formula A' obtained from A by replacing each Pi by a Σ1 formula that
defines its extension. By the normal form theorem for RE, A', and hence also A, is
equivalent to a Σn formula.

n > 1: we now prove the induction step by an induction on the complexity of RE[P1, ...,
Pm] formulae. Let A be such a formula.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

150

A is atomic: then either A is an atomic formula of RE or a formula Pi(x); in either case,
A is equivalent to a Σn formula.

A = B ∧ C: then B and C are equivalent to Σn formulae (∃ y1)B' and (∃ y2)C', so A is
equivalent to (∃ y1)(∃ y2)(B' ∧ C'). This in turn is equivalent to (∃ y)(∃ y1 < y)(∃ y2 < y)(B' ∧
C'). Now since B' and C' are Πn-1, it follows (by the inductive hypothesis on n and the
remarks at the beginning of the proof) that (∃ y1 < y)(∃ y2 < y)(B' ∧ C') is also Πn-1. That is,
(∃ y1 < y)(∃ y2 < y)(B' ∧ C') is equivalent to some Πn-1 formula D, so (∃ y)(∃ y1 < y)(∃ y2 <
y)(B' ∧ C'), and hence A, is equivalent to the Σn formula (∃ y)D.

A = B ∨ C: B and C are equivalent to Σn formulae (∃ y)B' and (∃ y)C', where B' and C'
are Πn-1; so A is equivalent to (∃ y)(B' ∨ C'), and again B' ∨ C' is Πn-1, so A is Σn.

A = (∃ y)B. Then B is equivalent to a Σn formula (∃ z)B', so A is equivalent to
(∃ y)(∃ z)B', where B' is a Πn-1 formula; this in turn is equivalent to (∃ w)(∃ y < w)(∃ z < w)B',
and again (∃ y < w)(∃ z < w)B' is Πn-1, so the whole formula is Σn.

A = (x < t)B: then A is equivalent to (x < t)(∃ y)B' for some Πn-1 formula B', which is in
turn equivalent to (∃ w)(x < t)(∃ y < w)B'; again, (x < t)(∃ y < w)B' is Πn-1, so the whole
formula is Σn.

Notice that the proof is really just an elaboration of the proof of the normal form theorem
for RE.

We now have:

Theorem: All arithmetical sets and relations are Σn for some n.
Proof: We show, by induction on the complexity of formulae of the language of arithmetic,
that those formulae define relations that are Σn for some n. Atomic formulae define Σ1 sets.
Suppose A defines a Σm relation and B defines a Σp relation. Letting n = max(m, p), A and
B both define Σn relations. A ∧ B, A ∨ B, and (∃ y)A define Σn relations, as we have seen.
~A defines a Πn relation, which is also a Σn+1 relation. Finally, (y)A defines a Πn+1

relation, which is also a Σn+2 relation.

We could have proved this more quickly. We could, for example, have used Kleene's
proof: to show that a formula A of the language of arithmetic is equivalent to a Σn formula,
put A into prenex normal form, and then contract blocks of like quantifiers (i.e. all
existential or all universal) into a single quantifier. (The contraction could use the pairing
function, or it could imitate the above proof.) More quickly still, to obtain a Σn formula
equivalent to A, put A into prenex normal form and then add enough vacuous quantifiers to
make the unbounded quantifiers alternate.

The virtue of the above theorem is that it gives us a way of calculating a good estimate of
the level of arithmetical sets and relations. If A is a formula of the language of arithmetic,
first move all negation signs in (either all the way in, or far enough in that they only occur
before formulae whose levels are known). The resulting formula will be built up via

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

151

conjunction, disjunction, and existential and universal quantification from formulae whose
levels are known. We can then use the theorem to get an estimate of the level of the
formula, using e.g. the facts that (∃ x)B is Σn if B is and that if B and C are Σm and Σp,
respectively, then A ∧ B and A ∨ B are Σn, where n = max(m, p). Alternatively, if all of the
unbounded quantifiers occur at the beginning of the formula, we can use the theorem to
contract blocks of like quantifiers and read an estimate of the formula's level directly off the
result.

Suppose the predicates P1, ..., Pm in the theorem all define Πn sets. In that case, they
define Σn+1 sets, so every set or relation definable in RE[P1, ..., Pm] is Σn+1. Since being
definable in RE[P1, ..., Pm] is the same as being enumeration reducible to S1, ..., Sm, it
follows that any set or relation enumeration reducible to a Πn set is Σn+1. In fact, the
converse is true: any Σn+1 set is ≤e some Πn set. To see this, let S be any Σn+1 set, and let
(∃ z)A(x, z) be a Σn+1 formula that defines it. Then A(x, z) defines a Πn relation R, so S ≤e

R (since S is defined by the formula (∃ z)P2
1(x, z) of RE[P2

1]), and therefore S ≤e {[x, y]:
R(x, y)}, which is easily seen to be Πn. So a set or relation is Σn+1 iff it is ≤e some Πn set.

Thus, we begin to see a relation between the arithmetical hierarchy and the various
reducibility notions. We shall examine this relation further, and prove a famous theorem of
Post relating the arithmetical hierarchy to the jump hierarchy (i.e. the hierarchy 0, 0', 0'',...).

Exercises

1. Calculate upper bounds as good as you can find for the levels in the arithmetical
hierarchy of the following sets:

{e: We is infinite};
{e: We is recursive};
{e: We is nonempty};
{e: Φe is a total function}.

2. (a) In the class we defined a set S as total (with respect to enumeration reducibility) iff
-S≤eS. (i) Prove that if S is any set, S U -S is always total. (ii) Prove also that a set S
consisting of ordered pairs [m,n] that codes the graph of a total function (not necessarily
recursive) is total. (iii) Which r.e. sets are total? (iv) If S is any set, and S+ is the set of pairs
coding the graph of the characteristic function of S, prove that S+≡eS U -S. (v) Prove the
following normal form theorem, whenever the predicate P1

1 is interpreted by a set S coding
the graph of a total function: every enumeration operator when confined to such sets can be
written in the form (∃ s)(R(x,s) ∧ s⊆ P1

1 ∧ (j≤s)(n≤s)([j,n]∈ s ⊃ (i<j)(∃ m≤s)([i,m]∈ s)))
where R is an r.e. relation. (Given that S codes the graph of a total function, the clauses at
the end mean that s codes a partial function whose domain is a finite initial segment of the

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

152

natural numbers.)
(b) An enumeration degree is called total if it contains at least one total set. (i) Prove that

an enumeration degree is total iff it contains a set of pairs that codes the graph of some total
function. (ii) Prove that the Turing degrees, as a partially ordered structure, are isomorphic
to the total enumeration degrees. (iii) Prove that every enumeration degree contains a set
coding the graph of a partial function. (For this reason, enumeration degrees are sometimes
called partial degrees.) (iv) Give an example of a set that is not total but whose enumeration
degree is nevertheless total. (v) Show that if S is any fixed-point of the function φ defined in
exercise 5 of Lecture XVIII, then the enumeration degree of S is not total.

3. Here is yet another variation on the notion of a 1-complete set. A set S is said to be
"weakly creative" iff S is r.e. and there is a partial recursive function φ such that whenever
Wx ∩ S = Ø, φ(x) is defined and φ(x) ∉ S ∪ Wx. The difference between the notions
"weakly creative" and creative is that here φ need not be total. (We can call φ a "weakly
creative" function for S.) Actually, this definition was the original definition of "creative".
Prove that all weakly creative sets are creative. (Hint: show that for every partial recursive
function φ there is a total recursive χ such that Wχ(x) = Wx if φ(x) is defined, Wχ(x) = Ø
otherwise. Define ψ(x) = φ(χ(x)). Show that ψ is total recursive and is a creative function
for S if φ is a weakly creative function for S.)

This will complete our list of equivalent notions: weakly creative, creative, 1-1 creative,
completely creative, 1-1 completely creative, many-one complete, 1-1 complete, and satisfies
the effective form of Gödel's theorem. There are a few others, but we'll stop here.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

153

Lecture XXI

The Arithmetical Hierarchy and the Jump Hierarchy.

Let us now look at some of the interrelations between the notions Σn and Πn on the one
hand, and the notions connected with relative recursiveness on the other. We proved that a
set is Σn+1 iff it is enumeration reducible to some Πn set. If S is enumeration reducible to a
Πn set, then a fortiori it is r.e. in a Πn set, or equivalently, in a Σn set. (S1 is r.e. in S2 iff S1

is r.e. in -S2, by the definition of "r.e. in".) Now suppose S1 is r.e. in a Πn set S2. Then S1
is definable in RE[P1, P2], with P1 and P2 interpreted as S2 and -S2, respectively. Both S2
and -S2 are Σn+1, so S1 is itself Σn+1. Thus we have the following result.

Theorem: A set S is Σn+1 iff S is enumeration reducible to a Πn set, iff S is r.e. in a Πn set,
iff S is r.e. in a Σn set.

Let us now relate this to the hierarchy 0, 0', 0'', ... of degrees. We first prove the following

Lemma: For all n, a set is r.e. in Ø(n) iff it is Σn+1.
Proof: We prove this by induction on n. For n = 0, the theorem states that a set is Σ1 iff it
is r.e. in Ø. But a set is r.e. in Ø iff it is r.e., so the theorem states that a set is r.e. iff it is Σ1,
which we already know to be the case.

Now let n > 0, and suppose the theorem holds for everything less than n.
⇒ : Suppose S is r.e. in Ø(n). By the properties of the jump operator, Ø(n) = Ø(n-1)' is

r.e. in Ø(n-1). By the inductive hypothesis, then, Ø(n) is Σn. So S is r.e. in a Σn set and is
therefore Σn+1.

⇐ : Suppose S is Σn+1. Then S is r.e. in some Σn set S1. By the inductive hypothesis,
S1 is r.e. in Ø(n-1). By the jump properties, S1 ≤1 Ø(n-1)' = Ø(n), so a fortiori S1 ≤T Ø(n).
By the weak transitivity property of r.e. in, S is r.e. in Ø(n).

If d is a Turing degree, we can say that a set S is r.e. in d iff S is r.e. in some set in d. If
S is r.e. in a given set in d, then S is r.e. in every set in d: suppose S is r.e. in S1 ∈ d, and
S2 ∈ d; then S1 ≤T S2, so by the weak transitivity property, S is r.e. in S2. By the same
reasoning (this time using the transitivity of ≤T), we can say that a set is recursive in d iff it
is recursive in some, or equivalently every, set in d. Thus we can restate the above result as
follows:

Corollary : A set is Σn+1 iff it is r.e. in 0(n).
Proof: 0(n) is the degree of Ø(n).

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

154

We also have the following:

Corollary (Post's Theorem): A set is recursive in 0(n) iff it is ∆n+1.
Proof: S is recursive in 0(n) iff both S and -S are r.e. in 0(n), iff both S and -S are Σn+1, iff
S is ∆n+1.

This theorem was proved in a paper by Post in the early 40's; he also introduced the notions
of simple and creative sets in that paper. The paper, by the way, was very important
methodologically, as it was the first to rely heavily on the intuitive notion of a computation:
previous work in recursion theory was all written out in a very formal way.

Post's theorem might be more of a surprise given other formalisms than our own (e.g.
the Turing machine formalism), as it displays an intimate connection between the recursion-
theoretic jump hierarchy on the one hand and on the other the arithmetical hierarchy, which
was defined in terms of definability in a certain language.
* Given our own formalism this should be less surprising, since on our approach recursion-
theoretic notions are themselves given in terms of definability, and Post's theorem simply
shows that two different notions given in terms of definability match up in a certain way.

A set is said to be 1-complete Σn (or simply complete Σn) if it is a Σn set to which all Σn

sets are 1-1 reducible. Thus, a set is 1-complete Σ1 just in case it is 1-complete. We could
define m-complete Σn analogously, but it turns out that, just as in the special case n = 1, the
two notions coincide.

Before going on, we should notice that every set many-one reducible to a Σn set is itself
Σn. (So in particular, every set 1-1 reducible to a Σn set is Σn.) To see this, suppose S1 ≤m

S2 and S2 is Σn. Then there is a recursive function ψ such that S1 = {x: ψ(x) ∈ S2}, so S1

is defined by the formula (∃ y)(PS(x, y) ∧ A(y)), where A is a Σn formula that defines S and
PS(x, y) is a Σ1 formula that defines the graph of ψ. We can then calculate the whole
formula to be Σn. (A(y) and PS(x, y) are both Σn, so their conjunction is, too; and adding an
existential quantifier to a Σn formula just yields another Σn formula.) Therefore, the set S1

is Σn.
It is immediate from this that any set many-one reducible to a Πn set is itself Πn. For

suppose S1 ≤m S2 and S2 is Πn; then -S1 ≤m -S2 and -S2 is Σn, so -S1 is Σn, and so S1 is
Πn. If S many-one reduces to a ∆n set, then S many-one reduces to a set that is both Σn and
Πn, and is therefore itself both Σn and Πn, i.e. it is ∆n.

We can therefore show that A set S is complete Σn just in case for all S1, S1 is Σn ⇔ S1

≤1 S. Clearly, if S1 is Σn ⇔ S1 ≤1 S for all S1, then S is Σn (since S ≤1 S) and every Σn set
1-1 reduces to S, i.e. S is complete Σn. If, on the other hand, S is complete Σn, then S1 is Σn

⇒ S1 ≤1 S for all S1, so we only have to show that S1 ≤1 S ⇒ S1 is Σn. But we know that
S is Σn, so by the preceding remarks we know that any set 1-1 reducible to S is also Σn.

As a corollary to the lemma, we can deduce that each Ø(n) is complete Σn.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

155

Theorem: For all n > 0, Ø(n) is complete Σn.
Proof: This is just to say that for all S, S ≤1 Ø(n) iff S is Σn. But S ≤1 Ø(n) iff S is r.e. in
Ø(n-1), by the jump properties, iff S is Σn, by the lemma.

We therefore have several different characterizations of th
e Σn+1 sets:

S is Σn+1 ⇔ S ≤e some Πn set ⇔ S is r.e. in some Σn set
⇔ S is r.e. in Ø(n) ⇔ S ≤1 Ø(n+1) ⇔ S ≤m Ø(n+1).

(As for the last biconditional: if S ≤1 Ø(n+1) then obviously S ≤m Ø(n+1), and if S ≤m Ø(n+1)

then, since Ø(n+1) is Σn+1, S is also Σn+1.)

Trial-and-Error Predicates.

In the special case n = 1, Post's theorem implies that the ∆2 sets are precisely the sets
recursive in 0'. There are also other interesting characterizations of the ∆2 sets.

One such characterization has to do with a modification of the notion of a computation.
Consider a computing machine that gives tentative answers to questions that are put to it.
When asked "is x in S?", it may answer "yes", but then later on change its mind and answer
"no". In fact, it may change its mind several times; however, we require it to settle on a
single answer after a finite number of changes of mind. If M is such a machine, the set
computed by M is the set {x: M eventually settles on a "yes" answer for the input x}.
Once this notion is made precise, it turns out that the sets computed by such machines are
precisely the ∆2 sets. (The notion of this kind of computation, and this result, are due to
Hilary Putnam.)

One way to make this precise is as follows. Consider a total recursive function ψ in two
variables which takes only the values 0 and 1. Suppose that for any m, there is an s0 such
that ψ(m, s) = ψ(m, s0) for all s ≥ s0. (s0 need not be the same for all m.) ψ represents a
machine of the sort we are considering, and ψ(m, s) represents the sth answer given for the
input m. (0 and 1 represent the answers "no" and "yes", respectively.) The set associated
with the function ψ is the set S = {m: ψ(m, s0) = 1, where ψ(m, s0) = ψ(m, s) for all s ≥ s0}.
(Since s0 depends on m, we can equivalently define S = {m: ψ(m, ρ(m)) = 1}, where ρ is
any function such that for all m and for all s ≥ ρ(m), ψ(m, s) = ψ(m, ρ(m)). ρ(m) need not
be the least such s0. ρ is called a modulus of convergence for ψ. S will always be recursive
in any modulus of convergence for ψ.)

Let us call a set associated with such a ψ in the indicated way a trial-and-error
predicate. It can be shown that the trial-and-error predicates are precisely the ∆2 sets. The

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

156

proof that all trial-and-error predicates are ∆2 is easy and is left as an exercise for the reader.
The other direction is harder, and we shall sketch an informal proof. First, notice that any
r.e. set is a trial-and-error predicate, for suppose S is r.e. and let P be any semi-computation
for S. Then we can compute S (in the present sense of "compute") by setting P going and
giving "no, no, no, ..." as output. If and when P says "yes", then we change our minds and
start giving "yes, yes, ..." as output; if at any point P has not said anything, however, we
continue to say "no". Thus, our outputs involve only a finite number of changes of mind
(either one or none at all), so we have computed S in the appropriate sense. So all Σ1 sets
are trial-and-error predicates; the same applies to Π1 sets by reversing "yes" and "no".

Now consider the general case. Suppose a set S is ∆2; then it is recursive in some
particular r.e. set (Ø', for example). So S is computed by some procedure P with an oracle
to Ø'. Since Ø' is r.e., we have a trial-and-error machine for Ø'. For a given x, we can
compute tentative answers to the question "is x in S?" as follows. Suppose we are being
asked for the nth time. We run P for n steps, except that when P consults its oracle about
whether a ∈ Ø', we ask our trial-and-error machine whether a ∈ Ø'. (If n > 1, then we may
have asked it this question before.) If after n steps we have obtained an answer, we give that
answer; otherwise we say "no" (or "yes"; it doesn't matter which). Now, when P is run with
an oracle to Ø', the oracle is consulted only finitely many times before P halts with the
correct answer to whether x ∈ S, i.e. there is a finite collection a1, ..., ak of sets such that
when P is given correct answers to the questions "a1 ∈ Ø'?", ..., "ak ∈ Ø'?", and is given
enough time to run, it will halt with the correct answer to the question "x ∈ S?". So we will
eventually reach a stage in our computation such that we have asked the trial and error
machine the questions "a1 ∈ Ø'?", ..., "ak ∈ Ø'?" often enough to get correct answers, and
such that we run P long enough to get an answer, which must be the correct answer, to
whether x ∈ S. So for any x, there is an n large enough that our computation always gives
the correct answer to "x ∈ S?" after stage n.

The Relativization Principle.

There is a general principle in recursion theory, which is hard to make precise but which
ought to be stated nonetheless. It is that whenever we have a proof of some statement about
the absolute notion of recursiveness or recursive enumerability, then we can demonstrate,
using essentially the same proof, an analogous statement about the relative notion of
recursiveness in a set or of recursive enumerability in a set. Or in general, any statement
involving an absolute notion relativizes to the corresponding relative notion and by the same
proof, provided the relative notion involves an oracle (or extra predicate, etc.) to both a set
and its complement. This must be taken with a grain of salt, since if we have shown that
some particular set is not recursive, or that it is not r.e., we do not thereby show that there is
no set in which it is recursive or r.e. However, this is not the sort of statement that is

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

157

intended in the principle; once one has some experience with this principle, one gets a feel
for what sort of statements are and are not allowed.

Consider, for example, the result that K is r.e. but not recursive. Let us define, for any
given set S, WS to be the relation {<e, m>: (∃ s)(s ⊆ S U -S ∧ W(e, x, s))}. WS is thus an
enumeration of the sets r.e. in S. Thus, for any e, WS

e is the set {m: (∃ s)(s ⊆ S U -S ∧
W(e, x, s))}, and S' is simply the set {[e, m]: m ∈ WS

e}. We can define KS to be the set {e:
e ∈ WS

e}. KS really has the same definition as K, except that we now relativize the relevant
notions to S. The analog of the fact that K is r.e. but not recursive is the fact that KS is r.e.
in S but not recursive in S; this holds, and is shown by the very same proof we used to
show that K is r.e. but not recursive.

As another example, we can relativize the Σn-Πn hierarchy to a set S by considering
formulae in the language of arithmetic plus an extra predicate interpreted as S. (We thereby
get an atomic formula, namely ~P(x), which defines the complement of S, since the
language of arithmetic has negation.) Thus, we have the relativized notions Σn in S and Πn

in S, with the obvious definitions. We similarly say that a set or relation is arithmetical in S
if it is defined by some formula in the language of arithmetic with the extra predicate
interpreted as S. We can prove, by the same proofs we used to prove the corresponding
absolute theorems, that every set arithmetical in S is either Σn or Πn in S for some n, that
there is an enumeration of the sets Σn (or Πn) in S which is itself Σn (Πn) in S, and that
there is always a set that is Πn in S but not Σn in S. We also have a relativized version of
Post's theorem, and by the same proof: if d is the degree of S, then a set is ∆n+1 in S iff it is
recursive in d(n).

Now, people have tried to state the relativization principle formally, but every attempt so
far has been unsuccessful. That is, every formal claim which has been put forth as a
candidate statement of the principle has turned out to have counterexamples; however, these
counterexamples are not intuitively counterexamples to the relativization principle itself.

The relativization principle does not hold for complexity theory. Whereas in recursion
theory we do not place a time limit on a computation procedure, complexity theory is
concerned with computations for which a time limit is given in advance. Corresponding to
the question whether every r.e. set is recursive is the complexity-theoretic problem whether
P = NP, which is unsolved to this day. Whatever the answer may be to this problem,
however, we can be sure that it provides a counterexample to the relativization principle. We
can relativize the P = NP problem by considering computations with an oracle to a given set;
it turns out that there are some oracles for which P = NP and some for which P ≠ NP.
Obviously, if a relativization principle held in complexity theory, then we would have either
P = NP for all oracles or P ≠ NP for all oracles.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

158

A Refinement of the Gödel-Tarski Theorem.

We know from the work of Gödel and Tarski that the set of true sentences of the language
of arithmetic is not itself definable in arithmetic. That is, for any formula A(x) of the
language of arithmetic, there is a sentence B such that

(T) A(0(m)) ≡ B

does not hold, where m is the Gödel number for B (or in other words, B is a
counterexample to (T)). For if there were no such B, then the above biconditional would
hold for all B, and so A(x) would define the set of Gödel numbers of true statements. Our
work on the arithmetical hierarchy allows us to get a refinement of this result. Specifically,
if A is Σn (resp. Πn), then we can choose B to be Πn (resp. Σn).

To see this, suppose A(x) is Σn. Let B(x) be a Πn formula that is not Σn; we know from
our previous work that such a B(x) must exist. Now consider the function ψ(m) = the
Gödel number of B(0(m)). ψ is evidently recursive, so its graph is defined by some Σ1

formula PS(x, y). Consider the formula (∃ y)(PS(x, y) ∧ A(y)). This formula is true iff
ψ(m) satisfies A(x), i.e. iff the Gödel number of the formula B(0(m)) satisfies A(x); if (T)
has no Πn counterexamples, then this holds iff B(0(m)) is true, iff m satisfies B(x). So in
that case (∃ y)(PS(x, y) ∧ A(y)) is equivalent to B(x). Moreover, that formula is Σn, by our
calculations. But then B(x) is equivalent to a Σn formula after all, which is impossible. So
(T) has a Πn counterexample, and by similar reasoning, reversing the roles of Σ and Π, if
A(x) is Πn then (T) has a Σn counterexample. (In that case, we use the formula (y)(PS(x, y)
⊃ A(y)) instead of (∃ y)(PS(x, y) ∧ A(y)).)

Looking more closely at this argument, we see that if m is a number such that
(∃ y)(PS(0(m), y) ∧ A(y)) and B(0(m)) have different truth values, then B(0(m)) is itself a Πn

counterexample to (T); otherwise (∃ y)(PS(0(m), y) ∧ A(y)) is true iff A(0(q)) is true (where q
= ψ(m)) iff B(0(m)) is true (since q is the Gödel number of B(0(m))). Moreover, since the
only fact about B(x) we used was that it is a Πn formula which is not Σn, we see that for any
such formula B(x) and any Σn formula A(x), we can find a number m such that B(0(m)) is a
counterexample to (T). However, this is not to say that we can find m effectively from B(x)
and A(x); in fact, just as not all sets satisfy the effective form of Gödel's theorem, not all Πn

predicates B(x) are such that we can effectively find m from A(x).
It also turns out that this refinement of the Gödel-Tarski theorem is the best we can get,

i.e. given a Σn formula A(x), there may not be a Σn counterexample to (T). In fact, for all n
≥ 1, there is a Σn formula that defines truth for Σn sentences, and also a Πn formula that
defines truth for Πn sentences. We prove this by induction on n.

First, we show that if there is a Σn formula that defines truth for Σn sentences, then there
is a Πn formula that defines truth for Πn sentences. Suppose A(x) is such a Σn formula.
Let ψ be a recursive function such that if m is the Gödel number of a Πn sentence B, then

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

159

ψ(m) is the Gödel number of a Σn sentence equivalent to ~B, and let PS(x, y) be a Σ1

formula that defines the graph of ψ. Then a Πn sentence B is true iff ~B is not true, so
(y)(PS(x, y) ⊃ ~A(y)) defines truth for Πn sentences, and is equivalent to a Πn formula.

Now we know already that there is a Σ1 formula that defines truth for Σ1 sentences, so
the theorem holds for n = 1. Suppose it holds for n, and let A(x) be a Πn formula that
defines truth for Πn sentences. Let χ be a recursive function such that if (∃ x)C(x) is a Σn+1

sentence with Gödel number m, then χ(m, p) is the Gödel number of C(0(p)), and let CH(x,
y) be a Σ1 formula that defines the graph of χ. (∃ x)C(x) is true iff for some C(0(p)) is true
for some p, so (∃ y)(∃ z)(CH(x, z, y) ∧ A(y)) defines truth for Σn+1 sentences and is itself
Σn+1. As we have already seen, it follows that there is a Πn+1 formula that defines truth for
Πn+1 sentences, so we are done.

