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Abstract In this paper we will state and prove some comparative theorems concern-

ing PRA and IΣ1. We shall provide a characterization of IΣ1 in terms of PRA and

iterations of a class of functions. In particular, we prove that for this class of func-

tions the difference between IΣ1 and PRA is exactly that, where PRA is closed under

iterations of these functions, IΣ1 is moreover provably closed under iteration.

We will formulate a sufficient condition for a model of PRA to be a model of IΣ1.

This condition is used to give a model-theoretic proof of Parsons’ theorem, that is, IΣ1

is Π2-conservative over PRA. We shall also give a purely syntactical proof of Parsons’

theorem.

Finally, we show that IΣ1 proves the consistency of PRA on a definable IΣ1-cut.

This implies that proofs in IΣ1 can have non-elementary speed up over proofs in PRA.
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1 Parsons’ theorem

Parsons’ theorem says that IΣ1 is Π2-conservative over PRA. It was proved indepen-

dently by C. Parsons ([14], [15]), G. Mints ([12]) and G. Takeuti ([22]). Often, PRA is

associated with finitism ([20], [8], [21]). In this light, Parsons’ theorem can be consid-

ered of great importance as a partial realization of Hilbert’s programme.

The first proofs of Parsons’ theorem were all of proof-theoretical nature. Parsons’

first proof, [14], is based upon Gödel’s Dialectica interpretation. His second proof, [15],

merely relies on a cut-elimination. Mints’ proof, [12], employs the no-counterexample
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41018 Sevilla, España
E-mail: jjoosten@us.es



2

interpretation of a special sequent calculus. The proof by Takeuti, [22], employs an

ordinal analysis in the style of Gentzen.

Over the years, many more proofs of Parsons’ theorem have been published. In

many accounts Herbrand’s theorem plays a central role in providing primitive recursive

Skolem functions for Π2-statements provable in IΣ1. (Cf. Sieg’s method of Herbrand

analysis [18], Avigad’s proof by his notion of Herbrand saturated models [1], Buss’

proof by means of his witness predicates [4], and Ferreira’s proof using Herbrand’s

theorem for Σ3 and Σ1-formulas [5].) A first model-theoretic proof is due to Paris and

Kirby. They employ semi-regular cuts in their proof (cf. [19]:373-381).

This paper will add two more proofs to the long list. The first proof is given in

Section 3. It is a proof-theoretic proof and can be seen as a modern version of Parsons’

second proof. The main ingredient is the Cut-elimination theorem for Tait’s sequent

calculus.

The second proof is given in Section 4. It is a model-theoretic proof. A central

ingredient is an analysis of the difference between PRA and IΣ1 in terms of iteration

of total functions.

2 Primitive recursive arithmetic

Primitive recursive arithmetic, PRA for short, was first introduced by Skolem in [20].

Throughout literature there exist many different variants of PRA. In a sense though,

they are all the same, as they are easily seen to be equi-interpretable in a faithful way.

In this paper we shall consider theories modulo faithful interpretability.

Reading convention All statements about PRA and other theories in this paper

will refer to the definition given in that section.

Often one defines PRA in a language that contains for every primitive recursive

function a function symbol plus its defining axioms. In this extended language PRA

allows for induction over open formulas. In this section we shall with PRA refer to this

theory.

Definition 1 (IΣR1 ) IΣR1 is the predicate logical theory in the pure language of arith-

metic {+, ·, 0, 1, <} that contains Robinson’s arithmetic Q plus the Σ1-induction rule.

The Σ1-induction rule allows one to conclude ∀x ϕ(x,y) from ϕ(0,y)∧ ∀x (ϕ(x,y)→
ϕ(x+ 1,y)) whenever ϕ is a Σ1 formula.

It is well known that PRA is faithfully interpretable in IΣR1 in the expected way,

that is, every function symbol is replaced by its definition in terms of sequences. For a

comparison the other way around, we have the following lemma.

Lemma 1 IΣR1 ⊆ PRA.

Proof The proof goes by induction on the length of a proof in IΣR1 . If IΣR1 ` ϕ without

any applications of the Σ1 induction rule, it is clear that PRA ` ϕ.

So, suppose that the last step in the IΣR1 -proof of ϕ were an application of the

Σ1-induction rule. Thus ϕ is of the form ∀x∃ y ϕ0(x, y, z) and we obtain shorter IΣR1 -

proofs of the Σ1-statements ∃ y ϕ0(0, y, z) and ∃ y′ (ϕ0(x, y, z) → ϕ0(x + 1, y′, z)).
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The induction hypothesis tells us that these statements are also provable in PRA.

Herbrand’s theorem for PRA provides us with primitive recursive functions g(z) and

h(x, y, z) such that

PRA ` ϕ0(0, g(z), z) (1)

and

PRA ` ϕ0(x, y, z)→ ϕ0(x+ 1, h(x, y, z), z) (2)

Let f(x, z) be the primitive recursive function defined by
f(0, z) = g(z),

f(x+ 1, z) = h(x, f(x, z), z).

By (1) and (2) it follows from ∆0-induction in PRA that PRA ` ∀x ϕ0(x, f(x, z), z)

whence PRA ` ∀x∃ y ϕ0(x, y, z).

3 A proof-theoretic proof of Parsons’ theorem

The first proof we give of Parsons’ theorem is proof-theoretic. Our presentation is due to

L. Beklemishev. It will become evident that the whole argument is easily formalizable

as soon as the superexponential function is provably total. This is because our proof

only uses the standard Cut-elimination theorem.

In this section we will work with a fragment of first order predicate logic that only

contains ∧,∨, ∀, ∃ and ¬, where ¬ may only occur on the level of atomic formulae.

We can define → and unrestricted negation as usual. We shall thus freely use these

connectives too.

A proof system for this fragment of logic in the form of a Tait calculus is provided

in [17]. We will use this calculus in our proof. The calculus works with sequents which

are finite sets and should be read disjunctively in the sense that Γ = {ϕ1, . . . , ϕn}
stands for ϕ1 ∨ . . . ∨ ϕn. We will omit the set-brackets {}. The axioms of the Tait

calculus are:

Γ, ϕ,¬ϕ for atomic ϕ.

The rules are:
Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ ,
Γ, ϕ

Γ, ϕ ∨ ψ ,
Γ, ψ

Γ, ϕ ∨ ψ ,

Γ, ϕ(a)

Γ,∀x ϕ(x)
,

Γ, ϕ(t)

Γ,∃x ϕ(x)
,

plus the cut rule

Γ, ϕ Γ,¬ϕ
Γ

.

In the rule for the universal quantifier introduction it is necessary that the a does

not occur free anywhere else in Γ . And in the rule for the introduction of the existential

quantifier one requires t to be substitutable for x in ϕ. In our proof we use the nice

properties that this calculus is known to posses. Most notably the cut elimination

theorem and some inversion properties.

Let us now fix our versions of PRA and IΣ1 for this section.
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Definition 2 (IΣ1) The theory IΣ1 is an extension of predicate logic with some easy

Π1-fragment of arithmetic (for example the Π1-part of Robinson’s arithmetic Q), to-

gether with all axioms of the form

∀x (¬Progr(ϕ, x) ∨ ϕ(x,y)).

Here ϕ is some Σ1-formula and Progr(ϕ, x) is the Π2-formula that is equivalent to

ϕ(0,y) ∧ ∀x (ϕ(x,y)→ ϕ(x+ 1,y)).

Definition 3 (PRA) The theory IΣR1 , also called Primitive Recursive Arithmetic, is

the extension of predicate logic that arises by adding a simple Π1-fragment of arith-

metic1 together with the Σ1-induction rule to it. Here, the Σ1-induction rule is

Γ, ϕ(0,y) Γ,∀x (¬ϕ(x,y) ∨ ϕ(x+ 1,y))

Γ, ϕ(t,y)
.

where Γ is a Π2-sequent, ϕ a Σ1-formula and t is free for x in ϕ.

Theorem 1 IΣ1 is Π2-conservative over IΣR1 .

Proof So, our aim is to prove that if IΣ1 ` π then IΣR1 ` π whenever π is a Π2-

sentence. If IΣ1 ` π, then by induction on the length of such a proof we see that

some sequent Σ, π is provable in the pure predicate calculus. Here Σ is a finite set

of negations of axioms of IΣ1. By the Cut-elimination theorem for the Tait calculus

we know that there exists a cut-free derivation of the sequent. Thus we also have the

sub-formula property (modulo substitution of terms) for our cut-free proof of Σ, π.

The proof is concluded by showing by induction on the length of cut-free derivations

that if a sequent of the form Σ,Π is derivable then IΣR1 ` Π. Here Σ is a finite set

of negations of induction axioms of Σ1-formulas and Π is a finite non-empty set of

Π2-formulas.

The basis case is trivial. So, for the inductive step, suppose we have a cut-free proof

of Σ,Π. What can be the last step in the proof of this sequent? Either the last rule

yielded something in the Π-part of the sequent or in the Σ-part of it. In the first case

nothing interesting happens and we almost automatically obtain the desired result by

the induction hypothesis.

So, suppose something had happened in the Σ-part. All formulas in this part are

of the form ∃ a [ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1)) ∧ ¬ϕ(a)], with ϕ∈Σ1.

The last deduction step thus must have been the introduction of the existential

quantifier and we can by a one step shorter proof derive for some term t the following

sequent.

Σ′, ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1)) ∧ ¬ϕ(t), Π

By the inversion property of the Tait calculus (for a proof and precise formulation of

the statement consult e.g. [17] page 873) we obtain proofs of the same length of the

following sequents

Σ′, ϕ(0), Π , Σ′, ∀x (ϕ(x)→ ϕ(x+ 1)), Π and Σ′,¬ϕ(t), Π.

1 The same fragment as in Definition 2.
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As all of ϕ(0), ∀x (ϕ(x) → ϕ(x + 1)) and ¬ϕ(t) are Π2-formulas, we can apply the

induction hypothesis to conclude that we have the following.

IΣR1 ` ϕ(0), Π (1)

IΣR1 ` ∀x (ϕ(x)→ ϕ(x+ 1)), Π (2)

IΣR1 ` ¬ϕ(t), Π (3)

Recall that Π consists of Π2-statements. So, we can apply the Σ1-induction rule

to (1) and (2) and obtain ϕ(t), Π. This together with (3) yields by one application of

the cut rule (in IΣR1 ) the desired result, that is, IΣR1 ` Π.

Corollary 1 IΣn is Πn+1-conservative over IΣRn .

Proof IΣRn is defined as the canonical generalization of Definition 3. Changing the

indices in the proof of Theorem 1 immediately yields the result.

In [3] this result is stated as Corollary 4.8. It is a corollary of his Reduction property,

Theorem 2, which is also formalizable in the presence of the superexponential function.

The proof of Parsons’ theorem we have presented here is very close to the proof of the

reduction property.

4 A model theoretic proof of Parsons’ theorem

In this section we shall give a model theoretic proof of Parsons’ theorem. Our proof

has the following outline.

In Subsection 4.1 we give a slightly renewed proof of a theorem by Gaifman and

Dimitracopoulos. This theorem says that under certain conditions a definitional exten-

sion of a theory has nice properties, like proving enough induction.

In Subsection 4.2 we use this theorem to give a characterization of IΣ1 in terms of

PRA and closure under iteration of a certain class of functions. In Theorem 4 we will

see what it takes for a modelM of PRA to also be a model of IΣ1: A class of functions

of this model should be majorizable by another class of functions.

This theorem is at the heart of our model theoretic proof of Parsons’ theorem in

Subsection 4.3. We will show that any countable model N of PRA falsifying π ∈ Π2

can be extended to a countable model N ′ of IΣ1 + ¬π whence IΣ1 0 π. In extending

the model we will, having Theorem 4 in the back of our mind, repeatedly majorize

functions to finally obtain a model of IΣ1 + ¬π.

Our proof is based on a proofsketch in an unpublished note of Visser ([23]). The

very same note inspired Zambella in his [25] for a proof of a conservation result of Buss’

S1
2 over PV.

First, we fix some formulation of PRA and IΣ1 that suits the purposes of this

section.

Definition 4 The language of PRA is the language of PA plus a family of new function

symbols {Supn | n∈ω}. The non-logical axioms of PRA come in three sorts.

– Defining axioms for +, ·, and <,2

– Defining axioms for the new symbols

2 We can take for example Kaye’s system PA− from [11] where in Ax 13 we replace the
unbounded existential quantifier by a bounded one.
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– ∀x Sup0(x) = 2x,

– {Supn+1(0) = 1},
– {∀x Supn+1(x+ 1) = Supn(Supn+1(x)) | n ∈ ω},

– Induction axioms for ∆0({Supi}i∈ω)-formulas in the following form: ∀x (ϕ(0) ∧
∀ y<x (ϕ(y)→ ϕ(y + 1))→ ϕ(x)).

The logical axioms and rules are just as usual.

The functions Supi describe on the standard model a well-known hierarchy; Sup0

is the doubling function, Sup1 is the exponentiation function, Sup2 is superexponen-

tiation, Sup3 is superduperexponentiation and so on. It is also known that the Supi
form an envelope for PRA, that is, every provably total recursive function of PRA

gets eventually majorized by some Supi. (Essentially this is Parikh’s theorem [13].)

Consequently all terms of PRA are majorizable by a strictly monotone one.

PRA proves all the evident properties of the Supi functions like Supn(1) = 2,

1 ≤ Supn+1(y), x ≤ y → Supn(x) ≤ Supn(y), n≤m → Supn(x)≤Supm(y) and so on.

Of course PRA proves in a trivial way the totality of all the Supi as these symbols

form part of our language. We have chosen an equivalent variant of the usual induction

axiom so that we end up with a Π1-axiomatization of PRA. It is easy to see that our

definition of PRA is equivalent, or more precisely equi-interpretable, to any other of

our definitions of PRA.

Definition 5 The theory IΣ1 is the theory that is obtained by adding to PRA induc-

tion axioms ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1)) → ∀x ϕ(x) for all Σ1({Supi}i∈ω)-formulas

ϕ(x) that may contain additional parameters.

Reading conventions Throughout this section we will adhere to the following no-

tational convention. Arithmetical formulas defining the graph of a function are denoted

by lowercase greek letters. The corresponding lower case roman letter is reserved to be

the symbol that refers to the function described by its graph. By the corresponding

upper case roman letter we will denote the very short formula that defines the graph

using the lower case roman letter and the identity symbol only. Context, like indices

and so forth, are inherited in the expected way.

For example, if χn(x, y) is an arithmetical formula describing a function, in a richer

language this function will be referred to by the symbol gn. The corresponding Gn will

refer to the simple formula gn(x) = y in the enriched language.

4.1 Introducing a new function symbol

In our discussion we shall like to work with a theory that arises as an extension of PRA

by a definition. We will add a new function symbol f to the language of PRA together

with the axiom ϕ that defines f . Moreover we would like to employ induction that

involves this new function symbol, possibly also in the binding terms of the bounded

quantifiers. We will see that if the function f allows for a simple definition and has

some nice properties we have indeed access to the extended form of induction.

Essentially the justification boils down to a theorem of Gaifman and Dimitracopou-

los [6] a proof of which can also be found in [7] (Theorem 1.48 and Proposition 1.3).

We will closely follow here a proof of Beklemishev from [2] which we slightly improved

and modified.
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We first give the necessary definitions before we come to formulate the main result,

Theorem 2

Definition 6 (∆0({gi}i∈I)-formulas, I∆0({gi}i∈I))

Let {gi}i∈I be a set of function symbols. The ∆0({gi}i∈I)-formulas are the bounded

formulas in the language of PA enriched with the function symbols {gi}i∈I . The new

function symbols are also allowed to occur in the binding terms of the bounded quan-

tifiers. By I∆0({gi}i∈I) we mean the theory that comprises

– some open axioms describing some minimal arithmetic3,

– induction axioms for all ∆0({gi}i∈I)-formulas and

– (possibly) defining axioms of the symbols {gi}i∈I .

The defining axioms of the symbols {gi}i∈I are denoted by D({gi}i∈I).

From now on, we may thus write I∆0({Supi}i∈ω) instead of PRA.

Definition 7 (Tot(ϕ), Mon(ϕ))

Let ϕ(x, y) be a∆0({gi}i∈I) formula. By Tot(ϕ) we shall denote the formula ∀x∃ ! y ϕ(x, y)4

stating that ϕ can be regarded as a total function. By Mon(ϕ) we shall denote the for-

mula ∀x, x′, y, y′ (x ≤ x′∧ϕ(x, y)∧ϕ(x′, y′)→ y ≤ y′)∧Tot(ϕ) stating the monotonicity

of the total ϕ.

Definition 8 (∆0({gi}i∈I , F )-formula, I∆0({gi}i∈I , F ))

Let ϕ be such that I∆0({gi}i∈I) ` Tot(ϕ). Recall that the uppercase letter F para-

phrases the formula f(x) = y. A ∆0({gi}i∈I , F )-formula is a ∆0({gi}i∈I)-formula

that in addition may contain occurrences of F . By I∆0({gi}i∈I , F ) we denote the the-

ory I∆0({gi}i∈I) where we now also have induction for ∆0({gi}i∈I , F ) formulas. The

defining axiom of f , in our case ϕ, is also in I∆0({gi}i∈I , F ).

Note that f cannot occur in a bounding term in an induction axiom of I∆0({gi}i∈I , F ).

Also note that F is nothing but a formula containing f stating f(x) = y and consists of

just six symbols (if f is unary). Of course later we will substitute for F an arithmetical

definition of the graph of f , that is, ϕ(x, y).

The main interest of the extension of I∆0({gi}i∈I) by a definition of f is in Theorem

2 and in its Corollary 2. The latter says that we can freely use f(x) as an abbreviation

of ϕ(x, y) and have access to ∆0({gi}i∈I , f)-induction whenever f has a ∆0({gi}i∈I)

graph and is provably total and monotone in I∆0({gi}i∈I).

First we prove some technical but rather useful lemmata. They are slight improve-

ments of Beklemishev’s Lemma 5.12 and 5.13 from [2]. From now on we will work under

the assumptions of Theorem 2 so that I∆0({gi}i∈I) is such that any term t in its lan-

guage is provably majorizable by some other term t̃ that is strictly increasing in all of

its arguments. Throughout the forthcoming proofs we will for any term t denote by t̃

such a term that is provably strictly monotone (in all of its arguments) and majorizing

t.

Lemma 2 For every term s(a) of I∆0({gi}i∈I , f) and every

R ∈ {≤,≥,=, <,>} there are terms tRs and s̃(a) strictly increasing in all of their argu-

ments and a ∆0({gi}i∈I , F )-formula ψRs (a, b, y) such that I∆0({gi}i∈I , F ) +Mon(ϕ) `
∀ y≥tRs (a) (s(a)Rb↔ ψRs (a, b, y)) and I∆0({gi}i∈I , F ) + Mon(ϕ) ` ∀x (s(x) ≤ s̃(x)).

3 For example the open part of Robinson’s arithmetic.
4 That is, ∀x ∃y ϕ(x, y) ∧ ∀x ∀y ∀y′ (ϕ(x, y) ∧ ϕ(x, y′)→ y = y′).



8

Proof The proof proceeds by induction on s(a). In the basis case nothing has to be

done as xiRb, 0Rb and 1Rb are all atomic ∆0({gi}i∈I , F )-formulas. Moreover all of the

xi, 0 and 1 are (provably) strictly monotone in all of their arguments. For the induction

case consider s(a) = h(s1(a)), where h is either one of the gi or h = f . For simplicity

we assume here that h is a unary function.

The induction hypothesis provides us with a ∆0({gi}i∈I , F )-formula ψ=
s1(a, b, y)

and terms t=s1(a) and s̃1(a) such that

I∆0({gi}i∈I , F ) + Mon(ϕ) ` ∀ y≥t=s1(a) (s1(a) = b↔ ψ=
s1(a, b, y)),

and

I∆0({gi}i∈I , F ) + Mon(ϕ) ` ∀x (s1(x) ≤ s̃1(x)).

We now want to say that h(s1(a))Rb in a ∆0({gi}i∈I , F ) way. This can be done

by ∃ y′, y′′≤y (ψ=
s1(a, y′, y) ∧ h(y′) = y′′ ∧ y′′Rb) whenever y ≥ t=s1(a) + s̃(a). Here we

define s̃(a) to be just f(s̃1(a)) in case h = f and g̃i(s̃1(a)) in case h = gi. Clearly

I∆0({gi}i∈I , F ) + Mon(ϕ) ` ∀x (s(x) ≤ s̃(x)). Indeed one easily sees that

I∆0({gi}i∈I , F ) + Mon(ϕ) ` ∀ y≥t=s1(a) + s̃(a) [h(s1(a))Rb↔
∃ y′, y′′≤y (ψ=

s1(a, y′, y) ∧ h(y′) = y′′ ∧ y′′Rb)].

It is also easy to see that t=s1(a) + s̃(a) is indeed monotone. In case h = f we need

Mon(ϕ) here.

A similar reduction applies to the case when the function g has more than one

argument.

It is possible to simplify the above reduction a bit by distinguishing between h = f

and h 6= f and also between R being equal to = and R not being equal to =, or by

proving the lemma just for R being equal to = and showing that all the other cases

can be reduced to this. We are not very much interested in optimality at this point

though.

Lemma 3 For every ∆0({gi}i∈I , f)-formula θ(a) there is a

∆0({gi}i∈I , F )-formula θ0(a, y) and a provably monotonic term tθ(a) such that

I∆0({gi}i∈I , F ) + Mon(ϕ) ` ∀ y≥tθ(a) (θ(a)↔ θ0(a, y)).

Proof The lemma is proved by induction on θ.

– Basis. In this case θ(a) is s1(a)Rs2(a). Applying Lemma 2 we see that5 s1(a)Rs2(a)↔
∃ b≤y (ψ=

s2(a, b, y) ∧ ψRs1(a, b, y)) whenever

y ≥ ts1(a) + ts2(a).

– The only interesting induction case is where a bounded quantifier is involved. We

consider the case when θ(a) is ∃x≤s(a) ξ(a, x). The induction hypothesis yields

a provably monotonic term tξ(a, x) and a ∆0({gi}i∈I , F )-formula ξ0(a, x, y) such

that provably

∀ y≥tξ(a, x) (ξ(a, x)↔ ξ0(a, x, y))

5 If we only want to use Lemma 2 with R being = we can observe that s1(a)Rs2(a) ↔
∃ b, c≤y (ψ=

s1
(a, b, y) ∧ ψ=

s2
(a, c, y) ∧ bRc) whenever y ≥ ts1 (a) + ts2 (a).
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. Combining this with Lemma 2 we get that provably

∃x≤s(a) ξ(a, x)↔ ∃x′≤y (ψ=
s (a, x′, y) ∧ ∃x≤x′ ξ0(a, x, y))6

whenever y ≥ s̃(a) + t=s (a) + tξ(a, s̃(a)).

Theorem 2 Let I∆0({gi}i∈I) be such that any term t in its language is provably

majorizable by some other term t̃ that is strictly increasing in all of its arguments. We

have that I∆0({gi}i∈I , F ) + Mon(ϕ) ` I∆0({gi}i∈I , f).

Proof We will prove the least number principle for

∆0({gi}i∈I , f)-formulas in I∆0({gi}i∈I , F ) +Mon(ϕ) as this is equivalent to induction

for ∆0({gi}i∈I , f)-formulas. So, let θ(x,a) be a ∆0({gi}i∈I , f)-formula and reason

in I∆0({gi}i∈I , F ) + Mon(ϕ). By Lemma 3 we have a strict monotonic term tθ(x,a)

and a ∆0({gi}i∈I , F )-formula θ0(x,a, y) such that θ(x,a) ↔ θ0(x,a, y) whenever y ≥
tθ(x,a).

Now assume ∃x θ(x,a). We will show that ∃x (θ(x,a)∧∀x′<x ¬θ(x′,a)). Let x be

such that θ(x,a). We now fix some y ≥ tθ(x,a). Thus we have θ0(x,a, y). Applying the

least number principle to the ∆0({gi}i∈I , F )-formula θ0(x,a, y) we get a minimal x0

such that θ0(x0,a, y). As x0 < x and tθ is monotone we have y ≥ tθ(x,a) ≥ tθ(x0,a)

and thus θ(x0,a). If now x′ < x0 such that θ(x′,a) then also θ0(x′,a, y) which would

conflict the minimality of x0 for θ0. Thus x0 is the minimal element such that θ(x0,a).

As in [2] (Remark 5.14) we note here that Theorem 2 shows that ∆0({gi}i∈I , f)-

induction is actually provable from ∆0({gi}i∈I , F )-induction where the bounding terms

are just plain variables. Also we note that Lemma 2 and Lemma 3 do not use the full

strength of I∆0({gi}i∈I , F ).

Corollary 2 Let I∆0({gi}i∈I) be such that any term t in its language is provably

majorizable by some other term t̃ that is strictly increasing in all of its arguments. Let

f be ∆0({gi}i∈I)-definable by ϕ. Then, I∆0({gi}i∈I) + Mon(ϕ) ` I∆0({gi}i∈I , f).

Proof Immediate from Theorem 2 by replacing every occurrence of F by ϕ.

4.2 PRA, IΣ1 and iterations of total functions

This subsection contains two main results. In Theorem 3 we shall characterize the

difference between IΣ1 and PRA in terms of provable closure of iteration of a certain

class of functions.

In Theorem 4 we use this characterization to give a sufficient condition for a model

of PRA to be also a model of IΣ1.

Let us first specify what we mean by function iteration. If f denotes a function

we will denote by f it the (unique) function satisfying the following primitive recursive

schema: f it(0)=1, f it(x+ 1)=f(f it(x)).

Definition 9 Let ϕ(x, y) be some formula. By ϕit(x, y) we denote

∃σ ϕ̃it(σ, x, y) where ϕ̃it(σ, x, y) is the formula

Finseq(σ) ∧ lh(σ) = x+ 1 ∧ σ0 = 1 ∧ σx = y ∧ ∀ i<x ϕ(σi, σi+1).

6 Alternatively, one could take ∃x≤y (ψ≥s (a, x, y) ∧ ξ0(a, x, y)) for y ≥ t≥s (a) + tξ(a, s̃(a)).
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Note that if PRA proves the functionality of a ∆0({Supi}i∈ω)-formula ϕ, it also

proves the functionality of ϕ̃it, for example by proving by induction on σ that

∀σ ∀x, y, y′, σ′≤σ (ϕ̃it(σ, x, y) ∧ ϕ̃it(σ′, x, y′)→ σ = σ′ ∧ y = y′).

As we will need upperbounds on sequences of numbers a short remark on coding

is due here. By [a0, . . . , an] we will denote the code of the sequence a0, . . . , an of

natural numbers via some fixed coding technique. By [a0, . . . , an]u[b0, . . . , bm] we will

denote the code of the sequence a0, . . . , an, b0, . . . , bm that arises from concatenating

b0, . . . , bm to a0, . . . , an (to the right).

The projection functions are referred to by sub indexing. So, σi will be ai if σ =

[a0, . . . , an] and i ≤ n and zero if i > n, and n + 1 is called the length of σ. We say

that σ is an initial subsequence of σ′ if σ = [a0, . . . an] and σ′ = [a0, . . . an, . . . am] and

m ≥ n. We denote this by σ v σ′.
Further, we shall employ well known expressions like lh(σ), giving the length of a

sequence σ. If we write down statements involving sequences we will tacitly assume

that the statements actually make sense. For example, ∀ i<lh(x) ψ will thus actually

denote Finseq(x) ∧ ∀ i<lh(x) ψ.

We shall not fix any specific coding protocol as any protocol with elementary pro-

jections, concatenation etcetera is good for us.

The following theorem tells us what is the difference between PRA and IΣ1 in

terms of totality statements of ∆0({Supi}i∈ω)-definable functions.

Theorem 3 IΣ1 ≡ PRA + {Tot(ϕ)→ Tot(ϕit) | ϕ ∈ ∆0({Supi}i∈ω)}.

Proof For one inclusion we only need to show that IΣ1 ` Tot(ϕ) → Tot(ϕit) but this

follows easily from a Σ1-induction on x in ∃σ ∃ y ϕ̃it(σ, x, y) under the assumption that

∀x∃ y ϕ(x, y). We shall thus concentrate on the harder direction PRA + {Tot(ϕ) →
Tot(ϕit) | ϕ ∈ ∆0({Supi}i∈ω)} ` IΣ1.

To this end we reason in PRA + {Tot(ϕ) → Tot(ϕit) | ϕ ∈ ∆0({Supi}i∈ω)} and

assume ∃ y ψ(0, y)∧∀x (∃y ψ(x, y)→ ∃ y ψ(x+1, y)) for some ∆0({Supi}i∈ω)-formula

ψ(x, y). Our aim is to obtain ∀x∃ y ψ(x, y).

Let Leastψ,x(y) denote the formula ψ(x, y) ∧ ∀ y′<y ¬ψ(x, y′). We are going to

define in a ∆0({Supi}i∈ω)-way a formula ϕ(x, y) so that f it(x+ 1) = [y0, · · · , yx] with

∀ i≤x Leastψ,i(yi).

ϕ(x, y) :=

8>>>><>>>>:
(i) (x = 0 ∧ y = 0) ∨
(ii) (x = 1 ∧ ∃ y′<y (y = [y′] ∧ Leastψ,0(y′))) ∨
(iii) (x > 1 ∧ ∀ i<lh(x) Leastψ,i(xi)∧

∃ y′<y (y = xu[y′] ∧ Leastψ,lh(x)(y
′))) ∨

(iv) (x > 1 ∧ ¬(∀ i<lh(x) Leastψ,i(xi)) ∧ y = 0)

Thus, the function f defined by ϕ has the following properties. It is always zero

unless x=1 or x is of the form [y0, · · · , yn] where each yi is the smallest witness for

∃y ψ(i, y).

We note, that by our assumptions ∃y ψ(0, y) and ∀x (∃y ψ(x, y) → ∃y ψ(x+1, y)),

the function f is total. As the definition of ϕ is clearly ∆0({Supi}i∈ω) we may conclude

Tot(f it).
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We shall show that f it is ∆0({Supi}i∈ω)-definable, and that provably Mon(f it). If

we know this, then our result follows immediately. Because, by an easy I∆0({Supi}i∈ω, f it)-

induction we conclude ∀x ψ(x, (f it(x+ 1))x), whence ∀x∃y ψ(x, y). By Corollary 2 we

conclude PRA + {Tot(ϕ)→ Tot(ϕit) | ϕ ∈ ∆0({Supi}i∈ω)} ` ∀x∃y ψ(x, y) and we are

done.

We will first see inside our theory that Mon(f it). The monotonicity of f it is intu-

itively clear but we have to show that we can catch this intuition using only∆0({Supi}i∈ω)-

induction.

For example, we can first prove by induction on x that all of the f it(x+1) are “good

sequences” where by a good sequence we mean one of the form [y0, . . . , yx] with the yi
minimal witnesses to ∃y ψ(i, y). To make this a ∆0({Supi}i∈ω)-induction we should

reformulate the statement as for example ∀z ∀σ, x, y≤z (ϕ̃it(σ, x+1, y)→ Goodseq(y)).

Now assume ϕ̃it(σ′, x′, y′). We will show by induction on x that

∀x≤x′ ∃σ≤σ′ ∃ y≤y′ ϕ̃it(σ, x′ − x, y) (+)

from which monotonicity follows. If x = 0 we take σ′ = σ and y = y′. For the inductive

step, let σ ≤ σ′ and y ≤ y′ be such that ϕ̃it(σ, x′ − x, y). We assume that x + 1 ≤ x′

hence lh(σ) > 1, for if not, the solution is trivial.

By σ−1 we denote the sequence that is obtained from σ by deleting the last element.

Clearly ϕ̃it(σ−1, x
′ − x − 1, (σ−1)x′−x−1) and ϕ((σ−1)x′−x−1, y). Thus (σ−1)x′−x−1

is a good sequence which implies that clause (iii) in the definition of ϕ is used to de-

termine y. Consequently (σ−1)x′−x−1 v y and thus (σ−1)x′−x−1 ≤ y ≤ y′. Moreover

we note that σ−1 v σ and thus σ−1 ≤ σ ≤ σ′.

We now want to show the ∆0({Supi}i∈ω)-ness of ϕit(x, y) by providing an upper-

bound on the σ in ϕ̃it(σ, x, y). Under any reasonable choice of our coding machinery,

we can find an n ∈ ω such that

(a) [

x timesz }| {
y, · · · , y] ≤ Supn(x+ y),

(b) Supn(x+ y)u[y] ≤ Supn(x+ y + 1).

For such an n it is not hard to see that

∃σ ϕ̃it(σ, x, y)↔ ∃σ′≤Supn(x+ y) ϕ̃it(σ′, x, y).

We see this by proving by induction on σ that

∀σ ∀x, y≤σ (ϕ̃it(σ, x, y)→ ∃σ′≤Supn(x+ y) ϕ̃it(σ′, x, y)).

We note that this is sufficient as ϕ̃it(σ, x, y)→ x, y ≤ σ. The only interesting possibility

in the induction step is when we get for some new x + 1, y that ϕ̃it(σ + 1, x + 1, y).

For σ′′ := (σ + 1)−1 we have that σ′′ < σ + 1 and ϕ̃it(σ′′, x, y−1). By the induction

hypothesis we may assume that σ′′ ≤ Supn(x+ y−1). By the definition of ϕ̃it, we now

see that ϕ̃it(σ′′u[y], x+ 1, y). But,

σ′′u[y] ≤ Supn(x+ y−1)u[y]

≤ Supn(x+ y)u[y]

≤ Supn(x+ y + 1).
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We note that we filled the gap between PRA and IΣ1 by transforming an admissible

rule of PRA to axiom form. Indeed Tot(ϕ) |∼Tot(ϕit) is an admissible rule of PRA.

For if PRA ` Tot(ϕ), then f is a primitive recursive function as is well known. But

f it is constructed from f by a simple recursion. Thus f it is primitive recursive and

hence provably total in PRA. The same phenomenon occurs in passing from IΣR1 to

IΣ1 where the (trivially) admissible Σ1-induction rule is added in axiom form to PRA

to obtain IΣ1.

The fact that we allow for variables in Theorem 3 is essential. For if not, the logical

complexity of PRA + {Tot(ϕ) → Tot(ϕit) | ϕ∈∆0({Supi}i∈ω)} would be7 ∆3 and so

would be the logical complexity of IΣ1. But it is well known that IΣ1 can not be proved

by any consistent collection of Σ3-sentences.

A parameter-free version of PRA + {Tot(ϕ) → Tot(ϕit) | ϕ∈∆−0 ({Supi}i∈ω)} will

be equivalent to parameter-free Σ1-induction, IΣ1
−.

We now come to prove a theorem that tells us when a model of PRA is also a

model of IΣ1. This lemma is formulated in terms of majorizability behavior of some

total functions. A total function of a model M is a relation ϕ(x, y) (possibly with

parameters from M) for which M |= Tot(ϕ). Often we will write f ≤ g as short for

∀x (∃ y ϕ(x, y) → ∃ y′ (χ(x, y′) ∧ y ≤ y′)) and say that f is majorized by g. Thus if

f ≤ g we automatically have Tot(ϕ)→ Tot(χ).

Theorem 4 Let M be a model of PRA. If every ∆0({Supi}i∈ω)-definable total func-

tion (with parameters) of M is majorized by m + Supn for some m ∈ M and some

n ∈ ω, then M is also a model of IΣ1.

Proof Let M be satisfying our conditions. To see that M |= IΣ1 we need in the light

of Theorem 3 to show that M |= Tot(ϕ) → Tot(ϕit) for any ∆0({Supi}i∈ω) function

ϕ with parameters inM. So, we consider some function f such thatM |= Tot(ϕ). We

choose m ∈M \ {0} and n ∈ ω large enough so that

(a.) M |= f ≤ m+ Supn,

(b.) M |= ∀x (m+ Supn+1(mx+m+ 1) ≤ Supn+1(mx+m+m)).

The second condition is automatically satisfied if m is a non-standard element.

An easy ∆0({Supi}i∈ω)-induction shows that (m+Supn)it(x) ≤ Supn+1(mx+m).

(Remember that we have excluded m = 0.) The case x = 0 is trivial as 1 ≤ Supn+1(m).

For the inductive step we see that8

(m+ Supn)it(x+ 1) =

(m+ Supn)((m+ Supn)it(x)) ≤i.h.
m+ Supn(Supn+1(mx+m)) ≤def.
m+ Supn+1(mx+m+ 1) ≤(b.)

Supn+1(mx+m+m) = Supn+1(m(x+ 1) +m).

7 Actually we should be more careful here as we work in a richer language. However this
makes no essential difference as all the Supn are ∆1-definable over EA.

8 This looks like a legitimate induction but remember that (m + Supn)it has an a priori
Σ1({Supi}i∈ω)-definition. The argument should thus be encapsulated in a ∆0({Supi}i∈ω)-

induction, for example by proving ∀ z ∀σ, x, y≤z ( ˜(m+ Supn)
it
(σ, x, y) → y ≤ Supn+1(mx +

m)). The essential reasoning though boils down to the argument given here.
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We can use the obtained bounds to show the totality of f it by estimating the size

of σ that witnesses ϕ̃it(σ, x, y). We know (outside PRA) that σ is of the form

[1, f(1), f(f(1)), . . . , fx(1)] ≤
[1,m+ Supn(1),m+ Supn(f(1)), . . . ,m+ Supn(fx−1(1))] ≤
[1,m+ Supn(1), (m+ Supn)2(1), . . . , (m+ Supn)2(fx−2(1))] ≤

...
...

[1,m+ Supn(1), (m+ Supn)2(1), . . . , (m+ Supn)x(1)] ≤
[(m+ Supn)x(1), . . . , (m+ Supn)x(1)] ≤
[Supn+1(mx+m), . . . , Supn+1(mx+m)]

Every time we used dots here in our informal argument, some ∆0({Supi}i∈ω)-

induction should actually be applied. To neatly formalize our reasoning we choose

some k ∈ ω large enough for our n and m such that (in M)

(c.) [1] ≤ Supn+k(2m)

(d.) Supn+k(m(x+ 1) +m) u [Supn+1(m(x+ 1) +m)] ≤
Supn+k(m(x+ 2) +m)9

With these choices for m,n and k it is easy to prove by ∆0({Supi}i∈ω)-induction

that

∀x∃σ≤Supn+k(m(x+ 1) +m) ∃ y≤Supn+1(mx+m) ϕ̃it(σ, x, y).

If x = 0 then ϕ̃it([1], 0, 1) and by (c.) we have [1] ≤ Supn+k(m(0 + 1) + m). Also

1 ≤ Supn+1(m). Now suppose ϕ̃it(σ, x, y) with σ and y below their respective bounds.

We have by the definition of ϕ̃it that ϕ̃it(σ u [f(y)], x + 1, f(y)) (again we do as if we

had f available in our language). We need to show that the new values do not grow

too fast. But,

f(y) ≤I.H. f(Supn+1(mx+m)) ≤(a.)

m+ Supn(Supn+1(mx+m)) ≤(b.) f(Supn+1(m(x+ 1) +m))

as we have seen before. By (d.) we get that

σ u [f(y)] ≤I.H. Supn+k(m(x+ 1) +m) u [Supn+1(m(x+ 1) +m)]

≤(d.) Supn+k(m(x+ 2) +m).

4.3 The actual proof of Parsons’ theorem

In the setting of this section we formulate Parsons’ theorem as follows.

Theorem 5 ∀π ∈ Π2 (IΣ1 ` π ⇒ PRA ` π)

Before we give the proof of Parsons’ theorem we first agree on some model theoretic

notation.

We recall the definition of M ′ being a 1-elementary extension of M , denoted by

M ≺1 M
′. This means that M ⊆ M ′ and that for m ∈ M and σ(y) ∈ Σ1 we have

9 It is not hard to convince oneself that under any reasonable coding protocol such a k does
exist.
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M |= σ(m) ⇔ M ′ |= σ(m). In this case we also say that M is a 1-elementary

submodel of M ′. It is easy to see that

M ≺1 M
′ ⇔ [M |= σ(m)⇒M ′ |= σ(m)] for all σ(y) ∈ Σ2.

A 1-elementary chain is a sequence M0 ≺1 M1 ≺1 M2 ≺1 . . .. It is well known

that the union of a 1-elementary chain is a 1-elementary extension of every model in

the chain. It is worthy to note that in a 1-elementary chain the truth of Σ2-sentences

(with parameters) is preserved from left to right and the truth of Π2-sentences (with-

out parameters) is preserved from right to left.

By Th(M,C) we denote the first-order theory of M with all constants from C added

to the language. This makes sense if we know how to interpret the constants of C in

M .

We also recall the definition of the collection principle.

BΓ := {∀x<t ∃ y ϕ(x, y)→ ∃ s∀x<t ∃ y<s ϕ(x, y) | ϕ ∈ Γ}

together with a minimum of arithmetical axioms, e.g. PA−. We now come to the actual

proof of Theorem 5.

Proof of Theorem 5. Let a countable model M |= PRA +σ be given with σ ∈ Σ2. We

will construct a countable model M ′ of IΣ1 + σ using Theorem 4.

Our strategy will be to make any ∆0({Supi}i∈ω)-definable total function of M

that is not bounded by any of the m+ Supn (n ∈ ω, m ∈M) either bounded by some

m + Supn (n ∈ ω, m ∈ M ′) or not total in the PRA-model M ′. The model M ′ will

be the union of a Σ1-elementary chain of models M = M0 ≺1 M1 ≺1 M2 . . . ≺1 M
′ =

∪i∈ωMi.

At each stage either the boundedness of a total ∆0({Supi}i∈ω)-definable function

is guaranteed (a Π1-sentence: ∀x, y (ϕ(x, y)→ y ≤ m+Supn(x))) or its non-totality (a

Σ2-sentence: ∃x∀ y ¬ϕ(x, y)). As we shall work with a 1-elementary chain of models,

functions that are dealt with need no more attention further on in the chain. Their

interesting properties, that is boundedness or non-totality, are stable. By choosing the

order in which functions are dealt with in a good way, eventually all total functions

of all models Mi will be considered. We shall see that as a result of this process every

total function in M ′ that is ∆0({Supi}i∈ω)-definable is bounded by some M + Supn.

To properly order the functions that we shall deal with, we fix a bijective pair-

ing function in this proof satisfying x, y ≤ 〈x, y〉. We do as if the models Mn were

already defined and write fn0, fn1, fn2, . . . for the list of the (countably many) total

∆0({Supi}i∈ω)-definable functions of Mn. We emphasize that we allow the functions

fni to contain parameters from Mn. Furthermore we define gn to be fab for the unique

a, b ∈ ω such that 〈a, b〉 = n.

We define M0 := M .

We will define Mn+1 to be such that gn becomes (or remains) either bounded

or non-total in it and Mn ≺1 Mn+1. If we can do so, we are done. For suppose

M = M0 |= PRA + σ. As PRA is Π1-axiomatizable in the language containing the

{Supi}i∈ω we get that M ′ |= PRA and likewise M ′ |= σ.

If now M ′ |= Tot(ϕ) for some ϕ ∈ ∆0({Supi}i∈ω), we see that for some n,

Mn |= Tot(ϕ) as soon as Mn contains all the parameters that occur in ϕ. Thus
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f = gm for some m ≥ n. Thus in Mm+1 the function f will be surely majorized,

for Mm+1 |= ¬Tot(ϕ)⇒M ′ |= ¬Tot(ϕ). Consequently M ′ |= f ≤ m′ + Supk for some

m′ ∈Mm+1 ⊆M ′, k ∈ ω. By Theorem 4 we see that M ′ |= IΣ1.

If Mn |= gn ≤ m+ Supk for some m ∈Mn and k ∈ ω we set Mn+1 := Mn. Clearly

Mn ≺1 Mn+1 and gn is bounded in Mn+1 (regardless its totality).

So, suppose that gn is total in Mn and that Mn |= ¬(gn ≤ m + Supk) for all

m ∈Mn and all k ∈ ω. We obtain our required model Mn+1 in two steps.

Step 1.

We go from Mn ≺1 Mn1 |= B∆0({Supi}i∈ω)(+PRA). To this purpose, we add a fresh

constant d to our language and consider

T := Th(Mn, {m}m∈Mn
) ∪ {d > Supk(m) | k ∈ ω, m ∈Mn}.

As T is finitely satisfiable in Mn, we can find a countable model Mn0 |= T . Let Mn1 be

the (initial) submodel of Mn0 with domain {x ∈Mn0 | ∃ k∈ω ∃m∈Mn x ≤ Supk(m)}.
Clearly, Mn1 is indeed a submodel, that is, it is closed under all the Supk. For if

x ≤ Supl(m) then Supk(x) ≤ Supk(Supl(m)) ≤ Supk+l+2(m). We see that Mn1 is a

model of PRA as PRA is Π1-axiomatized. As Mn ⊆Mn1, we get Mn ≺1 Mn1. For,

Mn |= ∃x ϕ(x) , ϕ(x) ∈ Π1 ⇒ for some m∈Mn

Mn |= ϕ(m) ⇒
Mn0 |= ϕ(m) ⇒
Mn1 |= ϕ(m) ⇒
Mn1 |= ∃x ϕ(x).

We now see that Mn1 |= B∆0({Supi}i∈ω). So, suppose Mn1 |= ∀x<t ∃ y ϕ(x, y) for

some t ∈ Mn1 and ϕ ∈ ∆0({Supi}i∈ω). Clearly Mn0 |= ∀x<t ∃ y<d ϕ(x, y) for some

d ∈Mn0, actually for any d ∈Mn0 \Mn1. Now by the ∆0({Supi}i∈ω) minimal number

principle we get a minimal d0 such that Mn0 |= ∀x<t∃ y<d0 ϕ(x, y). If d0 were in

Mn0 \Mn1, then d0 − 1 would also suffice as a bound on the y’s. The minimality of

d0 thus imposes that d0 ∈ Mn1. Consequently Mn1 |= ∃ d0 ∀x<t∃ y<d0 ϕ(x, y) and

Mn1 |= B∆0({Supi}i∈ω).

Step 2.

We go from10 Mn1 |= B∆0({Supi}i∈ω)(+PRA) to a model Mn1 ≺1 Mn3 |= PRA+

¬Tot(χn). Mn+1 will be the reduct of Mn3 to the original language.

If Mn1 |= ¬Tot(χn) nothing has to be done and we take Mn3 = Mn1. So, we

assume that Mn1 |= Tot(χn). We consider the set

Γ := Th(Mn1, {m}m∈Mn1) ∪ {gn(c) > m+ Supk(c) | m ∈Mn1, k ∈ ω}

with c a fresh constant symbol. As gn is not majorizable in Mn1 we see that any finite

subset of Γ is satisfiable whence Γ is satisfiable. Let Mn2 be a countable model of Γ .

Of course, we can naturally embed Mn1 in Mn2.

10 Or from the reduct of Mn1 to the original language for that matter.
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We will now see that c > Mn1. For suppose c ≤ m ∈ Mn1. Then Mn1 |=
∀x≤m∃ z gn(x)=z.11 By∆0({Supi}i∈ω)-collection we getMn1 |= ∃ d0 ∀x≤m∃ z≤d0 gn(x)=z.

But then Mn1 |= gn(c) ≤ d0 whence Mn1 |= ¬(gn(c) > d0 +Supk(c)). A contradiction.

Define Mn3 to be the (initial) submodel of Mn2 with domain {m ∈ Mm2 | ∃ k ∈
ω Mn2 |= m < Supk(c)}. As c ≥ Mn1 we get Mn1 ⊆ Mn3. We now see that Mn1 ≺1

Mn3. For suppose Mn1 |= ∃x ϕ(x) with ϕ(x) ∈ Π1 then Mn1 |= ϕ(m0) for some

m0 ∈ Mn1. Consequently Mn2 |= ϕ(m0) and as Mn3 ⊂e Mn2 and ϕ(m0) ∈ Π1, also

Mn3 |= ϕ(m0) whence Mn3 |= ∃x ϕ(x). Clearly Mn3 |= ¬Tot(χn) as gn(c) can not

have a value in Mn3. ut

Corollary 3 ∀π ∈ Π2 (BΣ1 ` π ⇒ PRA ` π)

Proof A direct proof of this fact is given in Step 1 in the above proof.

5 Consistency, cuts and length of proofs

A direct consequence of the formalizability of Parsons’ theorem is that PRA and IΣ1

are equi-consistent. To be more precise, for every theory T proving the totality of the

superexponentiation we have that

T ` Con(PRA)↔ Con(IΣ1).

Consequently IΣ1 0 Con(PRA). In this section we shall see that we can find a definable

IΣ1-cut J such that IΣ1 ` ConJ (PRA). More generally, we shall show that for this cut

J we actually have that for any Σ2-sentence σ, it holds that IΣ1+σ ` ConJ (PRA + σ).

As in [16] and [9] we note that Theorem 6 implies that certain proofs in PRA must

get exponentially larger than their counterparts in IΣ1. This, in a sense, says that

the use of the cut-elimination, whence the super exponential blow-up, in the proof of

Theorem 1 was essential.

To the best of our knowledge Ignjatovic ([9]) showed for the first time that IΣ1

proves the consistency of PRA on some definable cut. His reasoning was based on a

paper by Pudlák ([16]). Pudlák showed in this paper by model-theoretic means that

GB proves the consistency of ZF on a cut. The cut that Ignjatovic exposes is actually

an RCA0-cut. (See for example [19] for a definition of RCA0.)

The elements of the cut correspond to complexities of formulas for which a sort

of truth-predicate is available. By an interpretability argument it is shown that a

corresponding cut can be defined in IΣ1. It seems straight-forward to generalize his

result to obtain Theorem 6.

In [10] an explicit IΣ1-cut J is exposed such that IΣ1 ` ConJ (PRA). Actually, a

far more general result is proved there by proof theoretical methods. Namely, that for

each n∈ω there exists some IΣn-cut Jn such that for all Σn+1-sentences σ, IΣn + σ `
ConJn(IΣRn + σ). The proof is easily formalizable in the presence of supexp.

The proof we present here is a simplification of an argument by Visser. In an

unpublished note [23], Visser sketched a modification of a proof of Paris and Wilkie

from [24] to obtain our Theorem 6. Lemma 8.10 from [24], implies that for every

r∈ω there is an (I∆0 + exp)-cut such that for every σ∈Σ2, I∆0 + σ + exp proves the

consistency of I∆0 + σ +Ωr on that cut.

11 We actually should substitute the ∆0({Supi}i∈ω)-graph of gn here.
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5.1 Basic definitions

Let us first give a definition of PRA that is useful to us in our proof. Again, we will

work with the functions Supn(x) as introduced in Section 4. However, this time we

will not extend our language. Rather we shall work with arithmetical definitions of the

Supn(x). Let us recall the defining equations for the functions Supn(x).

- Sup0(x) = 2·x
- Supz+1(0) = 1

- Supz+1(x+ 1) = Supz(Supz+1(x))

We see that Supz(x) = y can be expressed by a Σ1-formula:12

(Supz(x) = y) := (∃sgSup(s, z, x, y)),

where gSup(s, z, x, y) is the following ∆0-formula:

Finseq(s) ∧ lh(s)=z+1 ∧
lh(sz)=x+1 ∧ ∀ i≤z (Finseq(si) ∧ [(i<z)→ lh(si) = (si+1)lh(si+1)−2])

∧ ∀ j<lh(s0) (s0)j = 2·j ∧
∀ i<lh(s)−1 ((si+1)0 = 1 ∧ ∀ j<lh(si+1)−1 ((si+1)j+1 = (si)(si+1)j

))

∧ (sz)x = y.

The intuition behind the formula gSup(s, z, x, y) is very clear. The s is a sequence of

sufficiently large parts of the graphs of the Supz′ ’s. Thus,

s =

8>>><>>>:
[[Sup0(0), Sup0(1), . . . , Sup0(lh(s0)− 1)],

[Sup1(0), Sup1(1), . . . , Sup1(lh(s1)− 1)],
...

[Supz(0), Supz(1), . . . , Supz(lh(sz)− 1)]].

Rather weak theories already prove the main properties of the Supz functions (without

saying anything about the definedness) like

Supn(1) = 2,

Supn(2) = 4,

1 ≤ Supn+1(y),

x ≤ y → Supn(x) ≤ Supn(y),

(n≤m ∧ x≤y)→ Supn(x)≤Supm(y),

and so on.

Definition 10 PRA is the first-order theory in the language {+, ·,≤, 0, 1} using only

the connectives ¬,→ and ∀, with the following non-logical axioms.

[A.] Finitely many defining Π1-axioms for +, ·, ≤, 0 and 1.

[B.] Finitely many identity axioms of complexity Π1.

12 By close inspection of the defining formula we see that Supz(x)=z can actually be regarded
as a ∆0(exp)-formula.
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[C.] For every ϕ(x,a)∈∆0 an induction axiom of complexity Π1 of the form:13

∀x ∀z (ϕ(0, z) ∧ ∀ y<x (ϕ(y, z)→ ϕ(y+1, z))→ ϕ(x, z)).

[D.] For all z∈ω a totality statement (of complexity Π2) for the function Supz(x) in

the following form: ∀x∃s∃ y≤sgSup(s, z, x, y). Here and in the sequel z denotes the

numeral corresponding to z, that is, the string

z timesz }| {
1 + . . .+ 1.

The logical axioms and rules are just as usual.

We shall need in our proof of Theorem 6 a formalization of a proof system that has the

sub-formula property. Like Paris and Wilkie we shall use a notion of tableaux proofs

rather than some sequent calculus. In our discussion below we consider theories T that

are formulated using only the connectives →, ¬ and ∀. The other connectives will still

be used as abbreviations.

Definition 11 A tableau proof of a contradiction from a set of axioms T containing

the identity axioms is a finite sequence Γ0, Γ1, . . . , Γr where the Γi satisfy the following

conditions.

– For 0 ≤ i ≤ r, Γi is a sequence of sequences of labeled formulas. The elements of

Γi are denoted by Γ ji . The elements of the Γ ji are denoted by ϕki,j(l) where l is the

label of ϕki,j and is either 0 or 1. In case l = 1 in ϕki,j(l), we call ϕki,j the active

formula of both Γ ji and Γi. Only non-atomic formulas can be active.

– Γ0 contains just one finite non-empty sequence of labeled formulas. We require

ϕk0,0∈T for k < lh(Γ 0
0 ).

– In every Γ jr (j < lh(Γr)) there is an atomic formula that also occurs negated in Γ jr .

– Every 0 ≤ i < r contains exactly one sequence Γ ji with an active formula in it.

This sequence in its turn contains exactly one active formula.

– For 0 ≤ i < r, we have lh(Γi) ≤ lh(Γi+1) ≤ lh(Γi) + 1.

– For 0 ≤ i < r, we have lh(Γ ji ) ≤ lh(Γ ji+1) ≤ lh(Γ ji ) + 2.

– For 0 ≤ i < r, we have ϕki,j = ϕki+1,j for k < lh(Γ ji ).

– lh(Γ ji ) < lh(Γ ji+1) iff Γ ji contains the active formula of Γi. In this case, with n =

lh(Γ ji ) and ϕmi,j the active formula, one of the following holds.14

(β) ϕmi,j is of the form ¬¬θ in which case Γni+1,j = θ and lh(Γ ji+1) = n+ 1.

(γ) ϕmi,j is of the form θ1 → θ2. In this case Γni+1,j = ¬θ1 and only in this case

lh(Γi+1) = lh(Γi) + 1. Let p := lh(Γi). Γ
p
i+1 is defined as follows: lh(Γ pi+1) =

lh(Γ ji+1) = n+ 1, Γ ki+1,p = Γ ki+1,j for k < n and Γni+1,p = θ2.

(δ) ϕmi,j is of the form ¬(θ1 → θ2). Only in this case lh(Γ ji+1) = lh(Γ ji ) + 2 and

Γni+1,j = θ1 and Γn+1
i+1,j = ¬θ2.

(ε) ϕmi,j is of the form ∀x θ(x). In this case lh(Γ ji+1) = n+ 1 and Γni+1,j = θ(t) for

some term t that is freely substitutable for x in θ(x).

(ζ) ϕmi,j is of the form ¬∀x θ(x). In this case lh(Γ ji+1) = n+ 1 and Γni+1,j = ¬θ(y)

for some variable y that occurs in no formula of Γ ji .

13 We mean of course a Π1-formula using only ¬,→ and ∀, that is logically equivalent to
the formula given here. By coding techniques, having just one parameter z in our induction
axioms, is no real restriction. It prevents, however, getting a non-standard block of quantifiers
in non-standard PRA-axioms.
14 We start with (β), so that we have the same labels as in Definition 8.9 from [24].
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It is well-known that ϕ is provable from T iff there is a tableau proof of a con-

tradiction from T ∪ {¬ϕ}. The length of tableaux proofs can grow superexponentially

larger than their regular counterparts. A pleasant feature of tableaux proofs is the

sub-formula property.

We will work with some suitable ∆1-coding of assignments that are always zero

on all but finitely many variables. The constant zero valuation is denoted just by 0.

Also do we use well-known satisfaction predicates like SatΠ1(π, σ) for formulas π ∈ Π1

and valuations σ. By Val(t, σ) we denote some ∆1 valuation function for terms t and

assignments σ. By Σ1(x) we denote the predicate that only holds on the standard

model on codes of (syntactical) Σ1-sentences.

5.2 IΣ1 proves the consistency of PRA on a cut

Theorem 6 There exists an IΣ1-cut J such that for all B∈Σ2 we have IΣ1 + B `
ConJ (PRA +B)

Proof We will expose an IΣ1-cut and show that IΣ1 + B ` ConJ (PRA + B) for any

B ∈ Σ2(formulated using only ¬, → and ∀). If we would have a J-proof of ⊥ from

PRA+B in IΣ1 +B we can also find a tableau proof of a contradiction (not necessarily

in J) from PRAJ +B, as IΣ1 proves the totality of the superexponentiation function.

By PRAJ we denote the axiom set of PRA intersected with J .

Thus, it suffices to show that IΣ1 +B ` TabCon(PRAJ +B). By TabCon we mean

the formalization of the assertion that there is no tableau proof of a contradiction.

The cut that does the job is the following:15

J(z) := ∀ z′≤z ∀x∃y Supz′(x) = y.

First we see that J(z) indeed defines a cut in IΣ1. Obviously IΣ1 ` J(0). We now

see IΣ1 ` J(z) → J(z+1). For, reason in IΣ1 and suppose J(z). In order to obtain

J(z+1) it is sufficient to show that ∀x ∃y Supz+1(x) = y. This follows from an easy

Σ1-induction. As B ∈ Σ2 we may assume that B = ∃x A(x) with A ∈ Π1.

We reason in IΣ1 + B and assume ¬TabCon(PRAJ + B). As B holds, for some

a we have A(a). We fix this a for the rest of the proof. Let p = Γ0, Γ1, . . . , Γr be a

hypothetical tableau proof of a contradiction from PRAJ +B.

Via some easy inductions a number of basic properties of p is established, like the

sub-formula property and the fact that every Σ1!-formula in p comes from a PRA-

axiom of the form [D.], etcetera. Inductively we define for every Γ ji a valuation σi,j .

- σ0,0 = 0.

- If Γ ji contains no active formula, σi+1,j = σi,j .

- If Γ ji contains an active formula one of (β)-(ζ) applies. Let m=lh(Γ ji ).

(β) σi+1,j = σi,j .

(γ) σi+1,j = σi+1,m = σi,j .

(δ) σi+1,j = σi,j .

(ε) σi+1,j = σi,j .

15 Formally speaking we should use the gSup(s, z, x, y) predicate here.
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(ζ) In this case essentially an existential quantifier is eliminated. We treat the three

possible eliminations.16

• The first existential quantifier in B is eliminated and B is replaced by A(y).

In this case σi+1,j = σi,j for all variables different from y. Furthermore we

define σi+1,j(y) = a.

• The first existential quantifier in a formula of the form

∃s∃ y≤s gSup(s, z, t, y) for some term t and number z∈J is eliminated and

replaced by ∃ y≤v gSup(v, z, t, y) for some variable v. In this case σi+1,j =

σi,j for all variables different from v. Furthermore we define σi+1,j(v) to

be the minimal number b such that

∃ y≤bgSup(b,Val(z, σi,j),Val(t, σi,j), y).

Note that, as z ∈ J , such a number b must exist.

• A bounded existential quantifier in a formula of the form ∃x≤t θ(x) is

eliminated and ∃x≤t θ(x) is replaced by y ≤ t ∧ θ(y) for some variable y.

In this case θ(y) is in ∆0 (yet another induction). We define σi+1,j(y) to be

the minimal c ≤ Val(t, σi,j) such that Sat∆0(pθ(c)q, σi,j) if such a c exists.

In case no such c exists, we define σi+1,j(y) = 0. For the other variables

we have σi+1,j = σi,j .

It is not hard to see that σi,j(x) has a Σ1 or even ∆1-graph. The proof is now completed

by showing by induction on i:

∀ i≤r ∃ j<lh(Γi) ∀ k<lh(Γ ji ) (Σ1(pϕki,jq)→ SatΣ1(pϕki,jq, σi,j)). (†)

Note that the statement is indeed Σ1 as in IΣ1 we have the Σ1-collection principle

which tells us that the bounded universal quantifiers can be somehow pushed inside

the unbounded existential quantifier of the SatΣ1 .

Once we have shown (†), we have indeed finished the proof as every Γ jr (j<lh(Γr))

contains some atomic formula and its negation. Atomic formulas are certainly Σ1

which gives for some j<lh(Γr) and some atomic formula θ, both SatΣ1(pθq, σr,j) and

SatΣ1(p¬θq, σr,j) and we have arrived at a contradiction. Hence TabCon(PRAJ +B).

As announced (†) will be proved by induction on i. If i=0, as there are no Σ1-

formulas in Γ 0
0 , (†) holds in a trivial way.

For the inductive step, let i<r and j<lh(Γi) such that

∀ k<lh(Γ ji ) (Σ1(pϕki,jq)→ SatΣ1(pϕki,jq, σi,j)).

We look for j′<lh(Γi+1) such that

∀ k<lh(Γ j
′

i+1) (Σ1(pϕki+1,j′q)→ SatΣ1(pϕki+1,j′q, σi+1,j′)). (‡)

If Γ ji contains no active formula, Γ ji+1=Γ ji and σi+1,j=σi,j , and we can just take

j′=j.
So, we may assume that Γ ji contains an active formula, say ϕmi,j , and one of (β)-(ζ)

holds. In the cases (β), (γ) and (δ) it is clear which j′ should be taken such that (‡)
holds. We now concentrate on the two remaining cases.

16 Again, to see (in IΣ1) that these are the only three possibilities, an induction is executed.
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(ζ). Here ϕmi,j is of the form ∃x θ(x). We only need to consider the case that ∃x θ(x) ∈
Σ1. By an easy induction we see that ∃x θ(x) is either ∆0 or a subformula (modulo

substitution of terms) of an axiom of PRA from group [D].

In case ϕmi,j = ∃x θ(x) and ∃x θ(x) ∈ ∆0, for some v /∈ Γ ji , ϕmi+1,j = θ(v). As we

know that SatΣ1(pϕmi,jq, σi,j), we see that σi+1,j is tailored such that Sat∆0(pϕmi+1,jq, σi+1,j)

holds. Clearly also SatΣ1(pϕmi+1,jq, σi+1,j) and we can take j=j′ to obtain (‡).
The other possibility is ϕmi,j = ∃s∃ y≤s gSup(s, z, t, y) for some (possibly non-

standard) term t. Consequently ϕmi+1,j = ∃ y≤v gSup(v, z, t, y) for some v /∈ Γ ji . Again

σi+1,j is tailored such that Sat∆0(pϕmi+1,jq, σi+1,j) holds and we can take j=j′ to ob-

tain (‡).

(ε). We only need to consider the case ϕmi,j = ∀x θ(x) with θ(x) ∈ Σ1. In case ∀x θ(x) ∈
Σ1, the induction hypothesis and the definition of σi+1,j guarantees us that j=j′ yields

a solution of (‡). So, we may assume that ∀x θ(x) /∈ Σ1. By an easy induction we see

that thus ∀x θ(x) is A(a) or θ(x) has one of the following forms:

1. A subformula (modulo substitution of terms) of an axiom of PRA of the form [A]

or [B],

2. A subformula (modulo substitution of terms) of an induction axiom [C],

3. ∃s∃ y≤sgSup(s, z, t, y) for some (possibly non-standard) term t and some z∈J .

Our strategy in all cases but 3 will be to show that17

∀σ SatΠ1(p∀x θ(x)q, σ). ♣

This is sufficient as
∀σ SatΠ1(p∀x θ(x)q, σ) ⇒
∀σ ∀x Sat∆0(pθ(v)q, σ[v/x]) ⇒
∀σ′ Sat∆0(pθ(v)q, σ′) ⇒
∀σ Sat∆0(pθ(t)q, σ) ⇒
∀σ SatΣ1(pθ(t)q, σ).

Here v is some fresh variable, θ[v/x] denotes the formula where x is substituted for v

in θ(v), and σ[v/x] denotes the valuation which (possibly) only differs from σ in that

it assigns to the variable v the value x.

The strategy to prove 3 is quite similar. The formula

∀x∃s∃ y≤s gSup(s, z, x, y) is a standard formula that holds if z ∈ J , whence for some

variable v we have

∀σ SatΠ2(p∀x∃s∃ y≤sgSup(s, v, x, y)q, σ[v/z])

and thus also

∀σ SatΠ2(p∀x∃s∃ y≤sgSup(s, z, x, y)q, σ).

We immediately see that

∀σ SatΣ1(p∃s∃ y≤sgSup(s, z, t, y)q, σ).

The proof is thus finished if we have shown ♣ in case ∀x θ(x) is either A(a) or a

subformula of an axiom of the groups [A], [B] and [C]. The only hard case is whenever

17 ∀σ SatΠ1 (pϕq, σ) is often denoted by TrueΠ1 (ϕ).
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∀x θ(x) is a subformula of a PRA axiom of group [C], as the other cases concern true

standard Π1-sentences only. By an easy induction we see that it is sufficient to show

that for every ϕ ∈ ∆0

∀x SatΠ1(p∀z (ϕ(0, z) ∧ ∀ y<v (ϕ(y, z)→ ϕ(y + 1, z))→ ϕ(v, z))q, σ0,0[v/x]).

This is proved by a Π1-induction on x. Note that in IΣ1 we have indeed access to

Π1-induction as IΣ1 ≡ IΠ1. The fact that ϕ can be non-standard urges us to be very

precise.

If x=0 we are done if we have shown

SatΠ1(p∀z (ϕ(0, z) ∧ ∀ y<0 (ϕ(y, z)→ ϕ(y + 1, z))→ ϕ(0, z))q, σ0,0)

or equivalently

∀z Sat∆0(pϕ(0, w)→ ϕ(0, w)q, σ0,0[w/z]).

By an easy induction on the length of ϕ we can show that for any σ

Sat∆0(pϕ(0, w)→ ϕ(0, w)q, σ).

For the inductive step we have to show

SatΠ1(p∀z (ϕ(0, z) ∧ ∀ y<v (ϕ(y, z)→ ϕ(y + 1, z))→ ϕ(v, z))q, σ0,0[v/x+ 1])

or equivalently that for arbitrary18 z

Sat∆0(pϕ(0, w) ∧ ∀ y<v (ϕ(y, w)→ ϕ(y + 1, w))→ ϕ(v, w)q, σ0,0[v/x+ 1][w/z]).

The reasoning by which we obtain this, is almost like ϕ were standard. So, we suppose

Sat∆0(pϕ(0, w) ∧ ∀ y<v (ϕ(y, w)→ ϕ(y + 1, w))q, σ0,0[v/x+ 1][w/z]) (\)

and set out to prove

Sat∆0(pϕ(v, w)q, σ0,0[v/x+ 1][w/z]).

The induction hypothesis together with some basic properties of the Sat predicates

gives us

Sat∆0(pϕ(0, w) ∧ ∀ y<v (ϕ(y, w)→ ϕ(y + 1, w))→ ϕ(v, w)q, σ0,0[v/x][w/z]). (])

A witnessing sequence for (\) is also a witnessing sequence for

Sat∆0(pϕ(0, w) ∧ ∀ y<v (ϕ(y, w)→ ϕ(y + 1, w))q, σ0,0[v/x][w/z]).

Combining this with (]) gives us Sat∆0(pϕ(v, w)q, σ0,0[v/x][w/z]). Also from (\) we get

Sat∆0(pϕ(v, w)→ ϕ(v+1, w)q, σ0,0[v/x][w/z]), so that we may conclude Sat∆0(pϕ(v+

1, w)q, σ0,0[v/x][w/z]). A witnessing sequence for the latter is also a witnessing se-

quence for

Sat∆0(pϕ(v, w)q, σ0,0[v/x+ 1][w/z]).

Acknowledgements I am grateful to Lev Beklemishev and Albert Visser for making their
proof-sketches available to me. Also discussions with them helped the writing of this paper a
lot.

18 By σ[v/x][w/z] we mean sequential substitution. This is not an important detail, as we
may assume that we have chosen v and w such that no variable clashes occur.
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187–206. Genève, University of Genève (1982)
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