
Hyperations, Veblen progressions and transfinite

iteration of ordinal functions

David Fernández-Duquea, Joost J. Joostenb

a Department of Computer Science and Artificial Intelligence
Universidad de Sevilla

Av. Reina Mercedes, s/n, 41012 Sevilla, Spain
dfduque@us.es
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Abstract

In this paper we introduce hyperations and cohyperations, which are forms of
transfinite iteration of ordinal functions.

Hyperations are iterations of normal functions. Unlike iteration by point-
wise convergence, hyperation preserves normality. The hyperation 〈f ξ〉ξ∈On

of a normal function f is a sequence of normal functions so that f 0 = id,
f 1 = f and for all α, β we have that fα+β = fαfβ. These conditions do not
determine fα uniquely; in addition, we require that 〈fα〉α∈On be minimal in
an appropriate sense. We study hyperations systematically and show that
they are a natural refinement of Veblen progressions.

Next, we define cohyperations, very similar to hyperations except that
they are left-additive: given α, β, fα+β = fβfα. Cohyperations iterate initial
functions which are functions that map initial segments to initial segments.
We systematically study co-hyperations and see how they can be employed
to define left inverses to hyperations.

Hyperations provide an alternative presentation of Veblen progressions
and can be useful where a more fine-grained analysis of such sequences is
called for. They are very amenable to algebraic manipulation and hence are
convenient to work with. Cohyperations, meanwhile, give a novel way to
describe slowly increasing functions as often appear, for example, in proof
theory.
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1. Introduction

Cantor famously discovered ordinal numbers [2] when he needed to suc-
cessively remove isolated points from a set of real numbers. Given a closed
set A ⊆ R, he considered the set dA of all non-isolated points1 of A. The set
dA may in turn posses isolated points, so we may remove these by considering
d2A, and so on.

Evidently dn+1A ⊆ dnA for all n, and we thus obtain a decreasing se-
quence

A ⊇ dA ⊇ ddA ⊇ . . . ⊇ dnA ⊇ . . .

However, it may very well be that the set
⋂
n<ω d

nA which one obtains at the
end of this process still has isolated points. Thus it is convenient to continue
the construction into the transfinite. To do this, let us denote the class of all
ordinals by On and the class of limit ordinals by Lim, and define

1. d0A = A

2. dξ+1A = ddξA for all ξ ∈ On

3. dλA =
⋂
ξ<λ

dξA for λ ∈ Lim.

By cardinality considerations, given a closed set A there must be an ordinal
α such that dαA = dα+1A, thus effectively removing all ‘hereditarily isolated’
points of A.

However, this is not the only setting in which one may wish to iterate
a function transfinitely. When working with sets, one has the convenience
of infinitary operations (such as intersection) for defining limit iterates, but
this is not necessary. If f : N→ N, one may well define transfinite iterations
of f by diagonailzation. To be precise, let Λ be a countable ordinal such that
for each λ < Λ we have assigned a fundamental sequence 〈λ[n]〉n<ω with the
property that λ = limn→ω λ[n].

Then, we may set

1. f 0(n) = n

2. f ξ+1(n) = f ξ(f(n))

3. fλ(n) = fλ[n](n).

1More generally, if A is an arbitrary subset of the reals, dA is the set of limit points of
A.
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If one begins with f(n) = n+1, then one precisely obtains the Hardy hierar-
chy [9], while the sequence 〈fωξ〉ξ∈On gives the fast-growing Wainer hierarchy
[12]. Observe that for λ ∈ Lim, the definition of fλ is somewhat ad-hoc,
depending on our choice of fundamental sequence, while for successor ordi-
nals the correspoinding iterate is determined by the previous ones. This is
often the case; defining iterations at limit stages usually requires choosing a
good option from many possible candidates, a phenomenon that we will also
encounter.

In this paper we are interested, specifically, in transfinite iterations of
functions f : On → On. Here, as in the set-theoretic setting, one has in-
finitary operations at hand (such as taking suprema and infima), but as we
shall see defining transfinite iterations is not unproblematic, especially if one
wishes for iteration to preserve structural properties of f .

Perhaps the best-known example of a hierarchy of ordinal functions is
given by Veblen progressions, introduced in [17]. Recall that if f = f0 is
some normal2 function and α an ordinal, fα in the Veblen progression of f is
the normal function that enumerates in increasing order the class of ordinals

{ξ | ∀β < α, fβ(ξ) = ξ};
we will discuss these in greater detail later. Veblen progressions may be used
to give systems of ordinal notation below the Feferman-Schüte ordinal, Γ0

[4, 15]. The method may be generalized to generate larger ordinals; see [3]
for an overview.

However, Veblen progressions are not iterations in the sense we shall con-
sider; for example, f2 is not the same as f1◦f1. Iterations of ordinal functions
in a sense similar to our own are discussed in [8] (where a category-theoretic
view of Veblen progressions is also given). There, the authors consider iter-
ating monotone functions by taking limits:

Definition 1.1 (Left transfinite iteration). Let f : On → On. We define
the left transfinite iteration of f as the unique sequence of functions TIl[f ] =
〈f ξ〉ξ∈On given by the following recursion:

2That is, strictly increasing and continuous. We use continuous in the sense of the
order topology on ordinals, so that f is continuous if f(λ) = limξ→λ f(ξ) for λ ∈ Lim.
Since normal functions are increasing, if f is normal one may replace this condition by
f(λ) = supξ<λ f(ξ).
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1. f 0 = id;

2. fα+1 = f ◦ fα;

3. fλγ = sup
α<λ

fαγ for λ ∈ Lim.

As [8] already noted, TIl preserves weak monotonicity but not normality.
Further, if f is continuous, then the sequence stagnates in the sense that
f ξ = fω for all ξ > ω; we shall discuss this in detail in the next section.
One of our main objectives is to describe a notion of transfinite iteration of
normal functions which does preserve normality and does not stagnate. We
shall define such iterations and call them hyperations.

Hyperations can be seen as a refinement of Veblen progressions. Much as
with the Hardy and Wainer hierarchies, if 〈f ξ〉ξ∈On enumerates the hyperates
of f while 〈fξ〉ξ∈On its Veblen progression, we have the relation

fω
α

= fα.

Indeed, fα may be defined completely in terms of Veblen progressions.
However, we see at least three reasons why the hyperations viewpoint may
often be useful:

1. it places the Veblen hierarchy in a new light providing an alternative
presentation;

2. the algebraic structure that comes with hyperations is very convenient,
facilitating applications, as the authors have found [5, 7];

3. hyperations naturally give rise to a uniform theory of certain well-
behaved left-inverses of hyperations that we call cohyperations.

Cohyperations also come with a beautiful algebraic structure. We shall
see that cohyperation is the proper notion for transfinitely iterating initial
functions, which are ordinal functions that map initial segments to initial
segments. As such, cohyperations give rise to rather slow-growing ordinal
functions. In various parts of proof theory slow growing functions on the
natural numbers play an important role (see for example [18, 19, 14]). The
slowly-growing cohyperations may well give rise to other useful examples of
slow-growing functions on the natural numbers, although at this point this
is still speculative.

As an academic curiosity by itself it is worthwhile to pursue a notion
of transfinite iteration for ordinal functions outright, but the notions of hy-
perations and cohyperations were originally developed by the authors when
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working in the field of transfinite provability logics [5, 6, 7] in order to ex-
tend many existing techniques into the transfinite setting. Provability logics,
aside from being complex and fascinating on their own right, have been used
by Beklemishev to give an ordinal analysis of Peano Arithmetic and related
systems [1]. We believe our efforts will lead to similar applications to much
stronger systems, such as Predicative Analysis.

Plan of the paper. In Section 2 we set the scene for our definition of
transfinitely iterating normal functions and motivate the choices we made.
In Section 3 we introduce the basic notions of ordinal arithmetic that we
need for our study.

Then, in Section 4 we define hyperations as minimal transfinite iterations
of a normal function. We establish the main properties of hyperations. In
particular we provide two characterizations, a recursive definition and one
characterization in terms of Veblen progressions.

Next, Section 5 defines left adjoints to normal functions, which are par-
ticularly well-behaved inverses. Section 6 then introduces exponentials and
logarithms, which are important examples of ordinal functions in our setting.

Section 7 introduces cohyperations, another form of iterations which are
dual to hyperations. Like with hyperations, we prove the essential properties
of cohyperations and give a recursive characterization for them. Section
8 then goes on to discuss exact sequences, which are very closely tied to
cohyperations.

Finally, Section 9 relates hyperations and cohyperations by showing that
the latter provide left-inverses for the former. As an important example we
mention hyperexponentials and hyperlogarithms.

2. Left vs. right additivity

Let us restrict our attention in this section on how to transfinitely iter-
ate normal ordinal functions; that is, ordinal functions f that are strictly
monotone, i.e., α < β ⇒ f(α) < f(β), and continuous in the sense that
f(λ) = lim

ξ→λ
f(ξ), for λ ∈ Lim.

Let us start out by considering TIl[f ]. If f is normal, we can prove by an
easy induction on β that

fα+β = fβ ◦ fα. (1)
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We call this property left additivity. We should remark that in this paper we
often denote composition by simple juxtaposition, so we will often write left
additivity as fα+β = fβfα. We are also relaxed about writing parentheses
around arguments, using f(ξ) and fξ indistinctly.

Left additivity is a natural condition to demand of a sequence of trans-
finite iterations of a function f . Indeed, one would readily associate it with
iteration and, for example, expect that

fω+1 = f ◦ fω;

[16], for example, uses left-additivity in defining iterations. Unfortunately,
there are no non-trivial left-additive sequences of normal, or even injective,
functions:

Lemma 2.1. Suppose that the sequence of functions 〈f ξ〉ξ∈On satisfies (1) and
f is not the identity. Then, for any infinite ordinal ξ, f ξ is not injective.

Proof. Let γ be such that γ 6= f(γ).
Since ξ is infinite we have that 1 + ξ = ξ, and we see that

f ξf(γ) = f 1+ξ(γ) = f ξ(γ).

Thus, left additivity is enough to discard having injective iterations of
injective functions, which is desirable for our purposes. A first attempt to
avoid this problem is to work with a slightly different definition of transfinite
iteration:

Definition 2.2 (Right transfinite iteration). Let f : On→ On. We define the
right transfinite iteration of f as the unique sequence of functions TIr[f ] =
〈f ξ〉ξ∈On given by the following recursion:

1. f 0 = id;

2. fα+1 = fα ◦ f ;

3. fλγ = sup
α<λ

fαγ for λ ∈ Lim.

Note that the only difference with TIl is Clause 2, where f is now applied
on the right. If f is continuous, it is easy to see that under this definition
each fα is continuous and by induction on β we can prove that

fα+β = fα ◦ fβ. (2)
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We refer to this property as right additivity.
In fact this condition does have advantages; (2) alone is compatible with

injectivity and even strict monotonicity of all iterates even if f is not the
identity. However, the recursion TIr[f ] is still not too useful when f is
a normal function, as it does not in general yield normal functions. For
example, if we consider the normal ordinal function f ≡ α 7→ 2α then our
definition gives

fω0 = fω1 = ω.

What is more serious is that both TIl and TIr stabilize after ω iterations
when f is continuous:

Lemma 2.3. Let f be a continuous function, and let TIl[f ] = 〈gξ〉ξ∈On,
TIr[f ] = 〈hξ〉ξ∈On.

Then, for all ξ ≥ ω, gω = gξ = hξ.

We will skip the proof which follows a simple induction, but it suffices to
observe that

gω+1(α) = fgω(α) = f lim
n→ω

fn(α) = lim
n→ω

fn+1(α) = gω(α);

note that we are using the continuity of f in the third equality.
Evidently, having notions of iteration which stagnate at ω is highly un-

desirable. One way out of this is to drop the limit condition from TIr and
replace it by (2). Thus we arrive at a notion of transfinite iteration that we
call weak hyperation; a weak hyperation of a function f is any sequence of
functions 〈gξ〉ξ∈On such that

g0 = id;
g1 = f ;
gα+β = gα ◦ gβ.

As we shall see, weak hyperations already have many desirable properties.
However, they are not uniquely defined by the above condition; any nor-
mal function f has many weak hyperations. A canonical candidate may be
chosen by imposing a minimality constraint. We shall refer to this unique
minimal weak hyperation as the hyperation of f . In Section 4, we will give a
detailed definition as well as a thorough treatment of the basic properties of
hyperations.

As mentioned, we shall prove that there is a very tight connection between
Veblen progressions and hyperations and in particular that hyperations can

7



be defined in terms of Veblen progressions, and vice-versa. However, one
of the main advantages of our hyperations is that they allow for a uniform
treatment of left-inverses with various desirable properties. We call these
left-inverses cohyperations.

Cohyperations transfinitely iterate initial functions, that is, functions
mapping initial segments to initial segments. The definition is similar to
that of hyperations, except that a cohyperation 〈gξ〉ξ∈On is left-additive and
pointwise maximal instead of minimal. These will be treated in Section 7.

3. Ordinal arithmetic

Before continuing, let us give a brief review of some basic notions of
ordinal arithmetic. We skip most proofs; for further details, we refer the
reader to a text such as [10] or [13].

Ordinals are canonical representatives for well-orders. The first infinite
ordinal is as always denoted by ω. Most operations on natural numbers
can be extended to ordinal numbers, like addition, multiplication and ex-
ponentiation (see [13]). However, in the realm of ordinal arithmetic things
often become more subtle. For example 1 + ω = ω 6= ω + 1, so addition is
non-commutative. Other operations also differ considerably from ordinary
arithmetic.

Fortunately, there are various similarities. In particular we have a form
of subtraction available.

Lemma 3.1.

1. Whenever ζ<ξ, there exists a unique ordinal η such that ζ+η = ξ. We
will denote this unique η by −ζ + ξ.

2. Given η > 0, there exist ordinals α, β such that η = α+ ωβ. The value
of β is uniquely defined. We will denote this unique β by `η.

3. For all η > 0, there exist α, β such that η = ωα + β and β < ωα + β.
The values of both α and β are uniquely defined. We denote α by Lη.

One of the most useful way to represent ordinals is through their Cantor
normal form (CNF):

Theorem 3.2 (Cantor normal form theorem).
For each ordinal α there is a unique sequence of ordinals α1 ≥ . . . ≥ αn such
that

α = ωα1 + . . .+ ωαn .
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We call a function f increasing if α < β implies f(α) < f(β). An ordinal
function is called continuous if limζ→ξ f(ζ) = f(ξ) for all limit ordinals ξ.
Functions which are both increasing and continuous are called normal.

It is not hard to see that each normal function has an unbounded set of
fixpoints. For example, the first fixpoint of the function ϕ : ξ 7→ ωξ is

sup{ω, ωω, ωωω , . . .}

and is denoted ε0. Clearly for these fixpoints, CNFs are not too informative
as, for example, ε0 = ωε0 . To remedy this, one may use notations and normal
forms that are slightly more informative and can represent the fixpoints of
normal functions, as is the case of Veblen Normal Forms (VNFs).

In his seminal paper [17], Veblen considered for each normal function f
its derivative f ′ that enumerates the fixpoints of f . If f is a normal function,
then the image of f –which we shall denote by F– is a closed (under taking
suprema) unbounded set. Likewise the function that enumerates a closed
unbounded set is continuous. For f a normal function, we define F ′ to be
the image of f ′ and we extend this transfinitely by setting

F0 := F ;
Fα+1 := (Fα)′;

Fλ :=
⋂
α<λ

Fα for limit λ.

We then define fλ to be the function that enumerates Fλ and write Veb[f ] =
〈fλ〉λ∈On.

By taking ϕ := ξ 7→ ωξ, one obtains the familiar Veblen functions ϕα.
However, Veblen progressions can be constructed out of any normal function.

We can often write an ordinal ωα in many ways as ϕξ(η). However, if we
require that η < ϕξ(η), then both ξ and η are uniquely determined. In other
words, for every α, there are unique ordinals η, ξ such that

1. ωα = ϕξ(η) and

2. η < ϕξ(η).

Combining this fact with the CNF Theorem one obtains Veblen Normal
Forms for ordinals.

Theorem 3.3 (Veblen Normal Form Theorem). For all α there exist unique
α1, β1, . . . , αn, βn (n ≥ 0) such that
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1. α = ϕα1(β1) + . . .+ ϕαn(βn),

2. ϕαi(βi) ≥ ϕαi+1
(βi+1) for i < n,

3. βi < ϕαi(βi) for i ≤ n.

Note that αi ≥ αi+1 does not in general hold in the VNF of α; for example,

ωε0+1 + ε0 = ϕ0(ϕϕ0(0)(0) + ϕ0(0)) + ϕϕ0(0)(0).

It is convenient to also define Veblen functions “from below”. For this we
use the following useful fact:

Lemma 3.4. Let f be a normal function and ξ an ordinal. Then, ζ =
limn→ω f

n(ξ) is the least fixed point of f greater or equal to ξ, that is, it is
the least ordinal such that

ξ ≤ ζ = f(ζ).

Proof. By Lemma 2.3, f ◦ limn→ω f
n = limn→ω f

n, so that ζ is a fixed point
of f .

Now, in order to see that it is the least such fixed point, let us assume
that f(ξ) 6= ξ (otherwise ζ = ξ and there is nothing to prove). Then, by an
easy induction it follows that fn(ξ) < fn+1(ξ) for all n.

Pick any η ∈ (ξ, ζ) and let N be the greatest number such that fN(ξ) < η;
such an N exists since 〈fn(ξ)〉ξ∈On is an increasing sequence converging to ζ.

But then fN+1(η) < f(η), and by maximality of N we also have that
η < f(η), i.e., η is not a fixed point of f .

As a corollary we also get that limn→ω f
n(ξ+1) gives the smallest fixpoint

of f which is greater than ξ. This observation is an essential ingredient in
giving a recursive definition of Veblen progressions:

Below, fnξ denotes (fξ)
n, which is typically not equal to (fn)ξ.

Theorem 3.5. Let f be a normal function an let Veb[f ] = 〈fξ〉ξ∈On.
Then,

1. for all ξ ∈ On, fξ+1(0) = lim
n→ω

fnξ (0)

2. for all ξ, α ∈ On, fξ+1(α + 1) = lim
n→ω

fnξ (fξ+1(α) + 1)

3. for all λ ∈ Lim, fλ(0) = lim
ξ→λ

fξ(0)

4. for all λ ∈ Lim and α ∈ On, fλ(α + 1) = lim
ξ→λ

fξ(fλ(α) + 1)

5. for all ξ ∈ On and α ∈ Lim, fξ(α) = lim
β→α

fξ(β).
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Although we will not prove this result, note that Item 2 follows from
Lemma 3.4; we have that lim

n→ω
fnξ (fξ+1(α) + 1) is the smallest fixpoint of fξ

greater than fξ+1(α), which is precisely the meaning of fξ+1(α + 1).

We are now ready to begin the study of hyperations.

4. Hyperations

Hyperation is a form of transfinite iteration of normal functions. If f is
a normal function, we wish to define the hyperates 〈f ξ〉ξ∈On of f , where ξ is
an arbitrary ordinal, in such a way that f ξ is always a normal function and,
in accordance to our considerations from Section 2, f ξ+ζ = f ξf ζ .

4.1. Weak hyperations and hyperations

Recall that On denotes the class of all ordinals and Lim the class of limit
ordinals.

Definition 4.1 (Weak hyperation). Let f be a normal function and Λ be
either an ordinal or the class of all ordinals.

A weak hyperation of f is a family of normal functions 〈gξ〉ξ<Λ such that

1. g0ξ = ξ for all ξ,

2. g1 = f ,

3. gξ+ζ = gξgζ whenever ξ + ζ < λ.

In general, a normal funcion has many weak hyperations; the values of
gω are not uniquely defined, given that ω cannot be written as a sum of
smaller ordinals. The same can be said of all gω

δ
for δ > 1. However, weak

hyperations are all rather well-behaved, as witnessed by the following lemma:

Lemma 4.2 (Properties of weak hyperations). Any weak hyperation 〈gξ〉ξ∈On

has the following properties:

1. if ξ < ζ then gξα ≤ gζα,

2. if ξ + ζ = ζ then gξgζ = gζ,

3. if η < ωρ then
gη(gω

ρ

(ξ) + 1) ≤ gω
ρ

(ξ + 1).

Proof.
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1.. If ξ < ζ and α is any ordinal, then gζα = gξg−ξ+ζα; but g−ξ+ζ is a normal
function so g−ξ+ζα ≥ α, thus gξg−ξ+ζα ≥ gξα.

2.. By right additivity we have that gζ = gξ+ζ = gξgζ .

3.. First note that
gω

ρ

(ξ) + 1 ≤ gω
ρ

(ξ + 1)

because gω
ρ

is increasing.
Meanwhile, η < ωρ so η + ωρ = ωρ, hence

gη(gω
ρ

(ξ) + 1) ≤ gηgω
ρ

(ξ + 1) = gω
ρ

(ξ + 1).

Corollary 4.3. Let fα be a weak hyperation. Then all values of f ζ are
fixpoints of f ξ whenever ξ + ζ = ζ.

Proof. Immediate from Lemma 4.2.2.

The following lemma tells us that we can weaken the requirement of
additivity in the definition of weak hyperations to a few special cases.

Lemma 4.4. Let ~g = 〈gξ〉ξ<Λ be a family of normal functions.
Then, the following are equivalent:

1. ~g is a weak hyperation of f .

2. ~g has the following properties:

(a) g0ξ = ξ for all ξ,
(b) g1 = f ,
(c) gω

ρ+ξ = gω
ρ
gξ whenever ξ < ωρ + ξ < Λ,

(d) gω
δ

= gω
δ
gω

ρ
whenever ωδ < ωρ < Λ.

Proof. Clearly the first item implies the second, particularly in view of Lemma
4.2.

To see that the second implies the first, it suffices to show that ~g is right
additive, that is, gξ+ζ = gξgζ whenever ξ + ζ < Λ.

We proceed by induction on ξ. For the base case, note that

g0+ζ = gζ = g0gζ

independently of ζ, given that g0 is the identity.

12



For the inductive step, suppose ξ + ζ < Λ and ξ > 0. The case for ζ = 0
is analogous to the case ξ = 0, so we assume ζ > 0.

Write ξ = ξ′ + ωα (so that ξ′ < ξ) and ζ = ωβ + ζ ′, with ζ ′ < ζ. By
induction on ξ′ < ξ, we assume that gξ

′+ϑ = gξ
′
gϑ whenver ξ′ + ϑ < Λ. In

particular,
gξ = gξ

′+ωα = gξ
′
gω

α

.

Now we consider two cases. First, assume α < β. In this case, ωα +ωβ =
ωβ. Meanwhile, by Property (d), gω

α
gω

β
= gω

β
and we have that

gξgζ = gξ
′
gω

α

gω
β

gζ
′
= gξ

′
gω

β

gζ
′
= gξ

′
gζ

IH
= gξ

′+ζ = gξ+ζ .

Now, if α ≥ β, we have that ζ < ωα + ζ and thus by using Property (c)
we get that

gξgζ = gξ
′
gω

α

gζ = gξ
′
gω

α+ζ IH
= gξ

′+ωα+ζ = gξ+ζ ,

as desired.

Definition 4.5 (Hyperation). A weak hyperation 〈gξ〉ξ∈On of f is minimal
if it has the property that, whenever 〈hξ〉ξ∈On is a weak hyperation of f and
ξ, ζ are ordinals, then gξζ ≤ hξζ.

If f has a minimal weak hyperation, we call it the hyperation of f and
denote it Hyp[f ].

Note that hyperations, if they exist, are unique. It is also the case that
they always exist; for this, we will establish an explicit recursion scheme to
compute the unique hyperation of a normal function f . In particular, we
see that the inequality we proved in Lemma 4.2.3 is optimal as equality is
attained in the limit for hyperations.

Theorem 4.6. Every normal function f has a unique hyperation Hyp[f ] =
〈f ξ〉ξ∈On and it is given by the following recursion:

1. f 0ξ = ξ,

2. f 1 = f ,

3. fω
ρ+ξ = fω

ρ
f ξ, where 0 < ξ < ωρ + ξ,

4. fω
ρ
0 = limζ→ωρ f

ζ0 for ρ > 0,

5. fω
ρ
(ξ + 1) = limζ→ωρ f

ζ(fω
ρ
(ξ) + 1) for ρ > 0,

6. fω
ρ
ξ = limζ→ξ f

ωρζ for ξ ∈ Lim and ρ > 0.
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Proof. By an easy induction on α and an auxiliary induction on β we readily
see that fα(β) is well-defined for all α and β. Thus, we must show that

1. 〈f ξ〉ξ∈On is a weak hyperation and

2. if 〈gξ〉ξ∈On is another weak hyperation, then gξζ ≥ f ξζ for all ξ, ζ.

For the first point, we first need to show that f ξ always normal, i.e.,
strictly increasing and continuous.

This is clear whenever ξ is of the form ωρ + ξ′ with ωρ + ξ′ > ξ′ > 0, since
compositions of normal functions are always normal. Thus we may assume
ξ = ωρ.

The continuity of f ξ is evident from Clause 6. To check that f ξ is in-
creasing it suffices to verify that f ξζ < f ξ(ζ + 1) for all ζ, but by induction,
f η is normal for all η < ξ, thus f η(fω

ρ
(ζ) + 1) ≥ fω

ρ
ζ + 1 and

lim
η→ωρ

f η(fω
ρ

(ζ) + 1) ≥ fω
ρ

(ζ) + 1 > fω
ρ

(ζ).

Hence it remains to show that 〈f ξ〉ξ∈On is additive. To do this, we will
prove by induction on Λ that 〈f ξ〉ξ<Λ is a weak hyperation.

In view of Lemma 4.4, it suffices to check that fω
δ
fω

ρ
ξ = fω

ρ
ξ whenever

ξ ∈ On and ωδ < ωρ < Λ. By induction we may assume that 〈f η〉η<ωρ is a
weak hyperation.

We then proceed case by case depending on whether ξ is zero, a successor
or a limit ordinal. Here we shall only consider the case ξ = ζ + 1, which is
the most involved:

fω
δ
fω

ρ
ξ = fω

δ
lim
η→ωρ

f η(fω
ρ

(ζ) + 1)

= lim
η→ωρ

fω
δ

f η(fω
ρ

(ζ) + 1)

IH
= lim

η→ωρ
fω

δ+η(fω
ρ

(ζ) + 1)

= lim
η→ωρ

f η(fω
ρ

(ζ) + 1)

= fω
ρ
ξ.

Now we must check that if ~g is a weak hyperation of f , f ξζ ≤ gξζ for all
ξ, ζ. We can assume ξ > 1, for otherwise there is nothing to prove.

We then establish the claim by induction on ξ with a subsidiary induction
on ζ, assuming it for ξ′, ζ ′, where either (i) ξ′ < ξ or (ii) ξ′ = ξ and ζ ′ < ζ.

14



As before, this proceeds case-by-case, where each argument is similar.
For example, assume ζ = 0 and ξ ∈ Lim. We then have that f η0 ≤ gη0 for
η < ξ; because gη0 ≤ gξ0 (Lemma 4.2), it follows that

f ξ0 = lim
η→ξ

f η0 ≤ lim
η→ξ

gη0 ≤ gξ0.

Once again, the most involved case is where ξ = ωρ and ζ = α + 1. Here
we must observe that

f η(fω
ρ

(α) + 1) ≤ gη(gω
ρ

(α) + 1).

This follows from our induction hypothesis since

f η(fω
ρ

(α) + 1) ≤ f η(gω
ρ

(α) + 1) ≤ gη(gω
ρ

(α) + 1),

where the first inequality follows by induction on α < ζ and the second by
induction on η < ξ.

It follows that

fω
ρ

ζ = lim
η→ωρ

f η(fω
ρ

α + 1) ≤ lim
η→ωρ

gη(gω
ρ

α + 1) ≤ gω
ρ

ζ,

as claimed.

Let us include an easy example to see how the recursion works.

Example 4.7. Recall that we defined ϕ(α) = ωα, and that the fixpoints of ϕ
are the epsilon numbers 〈εξ〉ξ∈On.

Let 〈ϕξ〉ξ∈On = Hyp[ϕ].
Then, we have that ϕω1 = ε1, that is, ϕω1 equals the second-smallest

fixpoint of the map α 7→ ωα.

Proof. We first compute

ϕω0 = lim
n→ω

ϕn(0) = lim
n→ω

ϕn(0).

By Lemma 3.4, this limit defines the first fixpoint of α 7→ ωα, normally
denoted ε0. Likewise, we compute

ϕω1 = lim
n→ω

ϕn(ϕω(0) + 1) = lim
n→ω

ϕn(ε0 + 1).

Again by Lemma 3.4, this is the smallest fixpoint of ϕ which is larger than
ε0, whence it is the next epsilon number, i.e. ε1, as was to be shown.

15



This is a special case of the more general equality

ϕωξ = ϕ1ξ = εξ;

we will return to this in the next section. It should also be noted that
hyperations of hyperations behave as one would expect:

Lemma 4.8. If f is any normal function and ξ, ζ are ordinals then (f ξ)ζ =
f ξ·ζ, where 〈f η〉η∈On = Hyp[f ] and 〈(f ξ)η〉η∈On = Hyp[f ξ].

Proof. We show that (f ξ)ζα = f ξ·ζα by induction on ζ with an auxiliary
induction on α.

For ζ = 0 there is nothing to prove and, if ζ = γ + δ with δ < ζ, then

(f ξ)γ+δ = (f ξ)γ(f ξ)δ
IH
= f ξ·γf ξ·δ = f ξ·γ+ξ·δ = f ξ·(γ+δ).

Otherwise, ζ = ωγ for some γ. We note that in this case, ξ · ωγ = ωδ for
some δ.

Then we must consider three cases, depending on whether α is zero, a
successor or a limit ordinal.

In case α = 0 we see that

(f ξ)ζ0 = lim
η→ζ

(f ξ)η0
IH
= lim

η→ζ
f ξ·η0 = lim

ν→ωδ
f ν0 = fω

δ

0.

Note that ωδ = limη→ωγ ξ · η since multiplication is continuous on the right-
hand argument.

In the successor case, we write α = β + 1. Then,

(f ξ)ω
γ

α = lim
η→ωγ

(f ξ)η((f ξ)ω
γ

(β) + 1)
IH
= lim

η→ωδ
f η(fω

δ

(β) + 1) = fω
δ

α,

where in the inductive step we are simultaneously using (f ξ)ω
γ
β = fω

δ
β by

induction on β < α and (f ξ)η = f ξ·η by induction on η < ζ = ωγ.
The limit case follows from

(f ξ)ω
γ

α = lim
β→α

(f ξ)ω
γ

β
IH
= lim

β→α
fω

δ

β = fω
δ

α.

16



4.2. Hyperations and Veblen progressions

We shall now see that Veblen progressions can be naturally embedded in
our hyperations. The steps in the Veblen progressions correspond to specific
iterates; as such, hyperations form a natural refinement of Veblen progres-
sions.

Troughout this subsection, given a normal function f , Veb[f ] = 〈fα〉α∈On

and Hyp[f ] = 〈fα〉α∈On.

Lemma 4.9. Given a normal function f and an ordinal α, we have that
fω

α
= fα.

Proof. We prove the lemma by induction on α. By definition we have fω
0

=
f0 which settles the base case.

For α + 1 we proceed to prove that fω
α+1
β = fα+1β by a subsidiary

induction on β considering several cases. For β = 0 we see that

fω
α+1

0 = lim
n→ω

fω
α·n0 = lim

n→ω
(fω

α

)n0
IH
= lim

n→ω
(fα)n0.

But by Theorem 3.5, limn→ω(fα)n0 = fα+10.
Likewise, for β + 1 we see that

fω
α+1

(β + 1) = lim
n→ω

(fω
α

)n(fω
α+1

(β) + 1)

IH
= lim

n→ω
(fα)n(fα+1(β) + 1)

= fα+1(β + 1).

The cases for limit β or limit α are similar and we omit them here.

Corollary 4.10. If
α = ωα1 + . . .+ ωαn ,

then
fαζ = fα1 . . . fαn(ζ)

for any ordinal ζ.

Proof. Directly from Theorem 4.9 and the fact that we have f ξ+ζ = f ξf ζ .

We thus see that hyperations define Veblen progressions. As such hy-
perations are natural refinements of them and a Veblen progression Veb[f ]
comes with a corresponding refinement Hyp[f ]. We shall now see that Veblen
progressions in their turn uniquely determine weak hyperations.
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Theorem 4.11. Let ~g = 〈gξ〉ξ∈On be a weak hyperation of a normal function
f . If we moreover have that gω

α
= fα for each α then ~g = Hyp[f ].

Proof. Write ξ = ωξ1 + . . .+ ωξn in CNF. By additivity we see that

gξ = gω
ξ1 . . . gω

ξn
,

which by assumption equals fξ1 . . . fξn . By Corollary 4.10, it follows that
gξ = f ξ, as claimed.

5. Initial functions and left adjoints

Normal functions are typically not surjective and hence non-invertible.
However, being injective, they are always left-invertible. Further, if f is
normal and gf is the identity, g is usually not normal. Initial functions,
meanwhile, provide natural left-inverses for normal functions, in particular
when they are also left adjoints.

We will say a function g is initial if, whenever I is an initial segment (i.e.,
of the form [0, β) for some β), then f(I) is an initial segment.

Lemma 5.1. If f is initial, then fξ ≤ ξ for every ordinal ξ.

Proof. By a simple induction on ξ. If f is initial we have that

f [0, ξ) = [0, β)

for some β; by induction on ξ, if ζ < ξ it follows that f(ζ) ≤ ζ, and thus
β ≤ supζ<ξ(ζ + 1) = ξ.

Further,
f [0, ξ] = f [0, ξ) ∪ {f(ξ)} = [0, β) ∪ {f(ξ)}

must also be an initial segment, from which it follows that f(ξ) ≤ β ≤ ξ.

Let f be a normal function. Then, g is a left adjoint for f if, for all
ordinals α, β,

α = f(β)⇒ g(α) = β (3)

and
α < f(β)⇒ g(α) < β. (4)

Not all normal functions have left adjoints:

18



Lemma 5.2. If a normal function f has a left adjoint, then f(0) = 0.

Proof. This follows from the fact that, if α < f(0) and g is a left adjoint
to f , then g(α) < 0, which is absurd; thus there can be no such α, that is,
f(0) = 0.

However, this is the only condition we need to have left adjoints of normal
functions, which are always initial:

Lemma 5.3. Let f be a normal function with f(0) = 0.
Then, f has an initial left adjoint g. Further, if h is any left adjoint for

f , then h is initial.

Proof. The existence of a left adjoint is easy; simply consider g defined by
g(β) = α if β = f(α), g(β) = 0 if there is no such α.

Now, if h is a left adjoint for f , we claim that for all β, h[0, β] = f−1[0, β],
which is clearly an initial segment since f is increasing. This follows by
induction on β.

First note that

h[0, β) =
⋃
δ<β

h[0, δ]
IH
=
⋃
δ<β

f−1[0, δ] = f−1[0, β).

Thus, h[0, β] = f−1[0, β) ∪ {h(β)}.
Now, if β lies in the range of f , β = f(γ) implies that f−1 {β} = {γ},

while h(β) = γ because h is a left adjoint of f . It follows that {h(β)} =
f−1 {β}, so that

h[0, β] = f−1[0, β) ∪ f−1 {β} = f−1[0, β].

If β does not lie in the range of f , let γ be the least ordinal such that
β < f(γ). Then, h(β) < γ, so that by minimality of γ, fh(β) < β and thus
h(β) ∈ f−1[0, β); therefore,

h[0, β] = h[0, β) ∪ {h(β)} = f−1[0, β) = f−1[0, β].

Thus initial functions are natural inverses to normal functions. Because
of this, later in the text we shall turn our attention to iterations of initial
functions. But first, let us introduce some important examples.
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6. Exponentials and logarithms

In this section we shall define some particularly natural and interesting
ordinal functions from the point of view of our framework. After deriving
some basic properties we see how to obtain an ordinal notation system from
these new functions.

6.1. Exponentials and logarithms

By Lemma 5.2, we know that ϕ (the ω-based exponential) does not have
any left adjoint. However, we can introduce a mild modification which does.

Set e(ξ) = −1 + ωξ. Note that e(ξ) = ωξ unless ξ = 0, in which case
e(0) = 0. The advantage of e over ϕ, as mentioned, is the existence of left
adjoints. We mention two:

1. The left-logarithm, first exponent or greatest exponent L, where L(ξ) is
the unique ordinal α so that ξ = ωα + β with β < ωα + β. We set
L(0) = 0. We remark that, given ξ, ζ,

(a) L(ξ + ζ) = max {L(ξ), L(ζ)} and
(b) L(ξ · ζ) = L(ξ) + L(ζ).

2. The end-logarithm, last exponent or least exponent ` assigns to an or-
dinal ξ the unique δ such that ξ can be written in the form γ + ωδ; we
also set `0 = 0. Here we see that

(a) `(ξ + ζ) = `ζ and
(b) `(ξ · ζ) = Lξ + `ζ.

Exponentials and logarithms shall provide us with key examples of func-
tions to hyperate and cohyperate, respectively, and indeed are the authors’
motivation for the present work, due to their applicability to provability logic
[5, 7].

It is convenient to relate the Veblen progression 〈eξ〉ξ∈On with 〈ϕξ〉ξ∈On:

Lemma 6.1. Given ordinals α, β, 〈eξ〉ξ∈On = Veb[e] and 〈ϕξ〉ξ∈On = Veb[ϕ],

1. eα(0) = 0,

2. e0(1 + β) = ϕ0(1 + β),

3. e1+α(1 + β) = ϕ1+α(β).

Proof.

1.. Since e0(0) = 0, 0 is a fixed point of e0 and, by an easy induction, one
can check that it is a fixed point of all eξ. Thus eξ(0) = 0 for every ξ ∈ On.
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2.. Obvious from the definition of e = e0.

3.. Let us prove this claim by induction on α. Here it suffices to check that,
for all α′ < α, 1 + β is a fixed point of e1+α′ if and only if it is a fixed point
of ϕα′ .

Observe first that all non-zero fixed points of e0 or ϕ0 are infinite, so that
1 + β = β. Thus

eα′(β) = β
IH⇔ ϕα′(1 + β) = β

⇔ ϕα′(β) = β.

Example 6.2. In view of Example 7.6, we must have that

e1(2) = ϕ1(1) = ε1.

6.2. Weak normal forms

Hyperations in general and hyperexponentials in particular can be used
to give different sorts of notation system for ordinals.

For example, given an ordinal ξ, we say an expression

ξ =
∑
i≤I

eαiβi + n

is a Weak Hyperexponential Normal Form if I, n < ω, βi < eαiβi for i ≤ I
and eαiβi ≥ eαi+1βi+1 whenever i < I. Note that Weak Hyperexponential
Normal Forms are typically not unique. For example, ωω = e21 = e1e11. We
do, however, have uniqueness if every αi is of the form ωδ.

Say an ordinal ξ is definable by a set of ordinals Θ if ξ has a normal form∑
i<I e

αiβi + n where each αi ∈ Θ and, inductively, Θ defines each βi. Every
set of ordinals defines 0.

Proposition 6.3. Every ordinal ξ > 0 has a weak hyperexponential normal
form and hence is definable by Θ large enough.

If we further require that every exponent be of the form ωδ, then the
WHNF obtained is unique.
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Proof. Write ξ in Veblen Normal Form and, in view of Lemma 6.1, replace
ϕα(β) by eω

α
(1 + β) for α > 0, ϕ0(β) by e1(β) for β > 0. The occurrences of

ϕ0(0) can be captured in the term + n in the end of a WHNF.
If all exponents are of the form ωδ, we may invert the process to obtain

a VNF from a given WHNF; the uniqueness of the latter follows from the
uniqueness of the former.

This proposition provides us one way to uniquely choose a particular
WHNF. In [11] it is shown that max{α | ∃γ eαγ = ωβ} exists for each
ordinal β. This gives rise to another unique WHNF representation where
each αi in ξ =

∑
i<I e

αiβi + n is chosen maximal.

7. Cohyperations

As mentioned in Section 2, left-additive iteration does not allow for injec-
tivity and thus is not possible within the class of normal functions. However,
left-additive iteration of initial functions can be defined and indeed is closely
tied to hyperation; we will call this form of iteration cohyperation. Recall
that a function is initial if it maps initial segments to initial segments.

Cohyperations are tailored to yield left adjoints to hyperations; thus,
as we observed in Lemma 5.3 we are bound to work with initial functions.
Moreover, left-additivity should naturally be associated to cohyperations;
indeed, let 〈gξ〉ξ∈On be a family of left inverses to a weak hyperation 〈f ξ〉ξ∈On

(i.e., gξf ξ = id for all ξ), and suppose that γ = fα+βδ. Observe that

gβgαfα+βδ = gβgαfαfβδ = gβfβδ = δ.

But at the same time δ = gα+βγ, and thus we have that

gα+βγ = gβgαγ.

Hence in order to produce left adjoints to hyperations we shall first turn our
attention to developing a theory of left-additive iterations of initial functions.

7.1. Weak cohyperations

Much of the work for cohyperations is analogous to that for hyperations,
although there are important differences. As before, we first define weak
cohyperations of a function f , and now impose a maximality condition to
pick out the cohyperation of f .
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Definition 7.1 (Cohyperation). Let Λ be either an ordinal or the class of
all ordinals and let f be an initial function.

A weak cohyperation of f is a family of initial functions 〈gξ〉ξ<Λ such
that

1. g0ξ = ξ for all ξ,

2. g1 = f ,

3. gξ+ζ = gζgξ.

If Λ = On and g is maximal in the sense that gξζ ≥ hξζ for every weak
cohyperation h of f and all ordinals ξ, ζ, we say g is the cohyperation of f
and write coH[f ] = 〈gξ〉ξ∈On.

Weak cohyperations also have some nice properties. The proofs of the
following two results are very similar to their hyperation analogue and we
omit them.

Lemma 7.2 (Properties of weak cohyperations). If 〈gξ〉ξ<Λ is a weak cohy-
peration of f , then

1. gζα ≤ gξα whenever ξ < ζ,

2. gζα = gζgξα whenever ξ + ζ = ζ.

Lemma 7.3. Let f be an initial function and let ~g = 〈gξ〉ξ<Λ be a family of
initial functions. Then, the following are equivalent:

1. ~g is a weak cohyperation of f ;

2. ~g satisfies the following:
(a) g0α = α,
(b) g1 = f ,
(c) gω

ρ+ξ = gξgω
ρ

provided ξ < ωρ + ξ,
(d) gω

ρ
ξ = gω

ρ
gω

δ
ξ whenever δ < ρ.

The clause gω
ρ
ξ = gω

ρ
gω

δ
ξ will imply that computing gω

ρ
ξ can often be

reduced to computing gω
ρ
gηξ, for appropriately chosen η. The next lemma

will give us an especially convenient candidate.
Given ordinals α, ξ and a family of functions ~f = 〈f η〉η<ξ, we define

η∗(~f, ξ, α) as the least ordinal η∗ < ξ such that

f η
∗
α = min

η∈[0,ξ)
f ηα.

Thus, η∗ is the least value which minimizes f ηα. In particular, if f 0 is
the identity, then η∗ > 0 if and only if f η

∗
α < α.

23



Lemma 7.4. Given a weak cohyperation ~g = 〈gξ〉ξ<Λ, ordinals ξ, α and
η∗ = η∗(~g, ξ, α),

1. gηα > gη
∗
α whenever η < η∗ and

2. gηα = gη
∗
α whenever η∗ < η < ξ.

Proof. The first claim follows from the minimality of η∗ and indeed does not
depend on left additivity.

Meanwhile, if η ∈ [η∗, ξ), we use Lemma 7.2.1 to see that gηα ≤ gη
∗
α,

but by the minimality of gη
∗
α, equality must hold.

7.2. Cohyperations

With the definition of η∗ we can give a recursive definition for a weak
cohyperation for an initial function f which, we shall see, gives us the cohy-
peration of f . However, until we prove this fact we shall call it the recursive
cohyperation of f :

Definition 7.5 (Recursive cohyperation). Given an initial function f , we
define a sequence of functions coH′[f ] = 〈f ξ〉ξ∈On by the following recursion:

1. f 0α = α,

2. f ξ0 = 0,

3. f 1 = f ,

4. fω
ρ+ξ = f ξfω

ρ
provided ωρ + ξ < ξ,

5. if ρ > 0 and η∗ = η∗(coH′[f ], ωρ, α) > 0, then

fω
ρ

α = fω
ρ

f η
∗
α,

6. if ρ > 0 and η∗(coH′[f ], ωρ, α) = 0, then

fω
ρ

α = sup
β∈[0,α)

(fω
ρ

(β) + 1).

Later we will show that coH′[f ] = coH[f ], but this will require some work.
First, let us include a simple example to see the recursive definition at

work. Recall from Lemma 3.1 that `(α) denotes the last exponent of α when
written in CNF.

Below, write coH′[`] = 〈`ξ〉ξ∈On.

Example 7.6. `ωε1 = 2.
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Proof. It is not hard to see that ` is indeed an initial function. We will
first compute `ωε0. Clearly, for each n < ω we have that `nε0 = ε0 whence
η∗(coH′[`], ω, ε0) = 0 and

`ωε0 = sup
β∈[0,ε0)

(`ω(β) + 1).

Now, for any β < ε0, there is some n < ω with `nβ = 0, whence

`ωβ = `n+ωβ = `ω`nβ = `ω0 = 0.

Consequently, `ωε0 = supβ∈[0,ε0)(`
ω(β) + 1) = 1.

Now we can compute `ωε1. Again, for all n < ω, `nε1 = ε1 so that
η∗(coH′[`], ω, ε1) = 0 and

`ωε1 = sup
β∈[0,ε1)

(`ω(β) + 1).

So, we first need to compute `ωβ for any β ∈ (ε0, ε1). A straightforward
induction shows that for each such β we can find a large enough n < ω
so that either `nβ = 0 or `nβ = ε0, given that ` has no fixpoints in this
interval. Thus, `ωβ = `ω`nβ which is either 0 or `ωε0 = 1. Consequently,
`ωε1 = supβ∈[0,ε1)(`

ω(β) + 1) = 2.

The next few lemmas will be used to prove that coH′[f ] = coH[f ].

Lemma 7.7. If f is an initial function and 〈f ξ〉ξ∈On = coH′[f ], then f ξ is
an initial function for all ξ.

Proof. The identity, i.e. f 0, clearly is an initial function. We proceed by
induction on ξ, assuming that f ξ

′
is an initial function for all ξ′ < ξ.

For the case ξ = γ + δ with γ, δ < ξ, a very easy argument shows that
the composition of initial functions is initial, so f ξ is initial.

Now, assume ξ = ωρ. Let us check that fω
ρ

is initial. Assume f η is
initial for all η < ωρ. We will prove, by a subsidiary induction on ζ, that
fω

ρ
[0, ζ] is an initial segment, assuming that, given ζ ′ < ζ, fω

ρ
[0, ζ ′] is an

initial segment.
First we note that,

fω
ρ

[0, ζ] =
{
fω

ρ

ζ
}
∪
⋃
ζ′<ζ

f η[0, ζ ′],
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and by induction on ζ,
⋃
ζ′<ζ f

η[0, ζ ′] is an initial segment, given that it is a
union of initial segments; call it [0, β).

Now, if η∗ = η∗(coH′[f ], ωρ, ζ) > 0, we see that f η
∗
ζ < ζ and thus

fω
ρ

ζ = fω
ρ

f η
∗
ζ ∈ [0, β),

so that fω
ρ
[0, ζ] = [0, β), an initial segment.

Otherwise,
fω

ρ

ζ = sup
ϑ∈[0,ζ)

(fω
ρ

(ϑ) + 1) = β.

Thus
fω

ρ

[0, ζ] = [0, β],

which is also an initial segment, as claimed.

Lemma 7.8. If f is an initial function, then 〈f ξ〉ξ∈On = coH′[f ] is a weak
cohyperation of f .

Proof. Let us show by induction on Λ that 〈f ξ〉ξ<Λ is a weak cohyperation.
We have seen in Lemma 7.7 that f ξ is initial for all ξ. Thus, in view of

Lemma 7.3, we must check that

fω
ρ+ξ = f ξfω

ρ

(5)

provided ξ < ωρ + ξ < Λ and

fω
ρ

ξ = fω
ρ

fω
δ

ξ (6)

whenever ωδ < ωρ < Λ. We may assume, inductively, that 〈f ξ〉ξ<ωρ is a weak
cohyperation.

Note, however, that (5) is satisfied by the definition of fω
ρ+ξ, so it suffices

to show (6). More generally we shall show that, if η < ωρ and ζ is any ordinal,
fω

ρ
ζ = fω

ρ
f ηζ.

If f ηζ = ζ, there is nothing to prove. Hence we are left with the case
f ηζ < ζ, which in particular implies that η∗ = η∗(coH′[f ], ωρ, ζ) is non-zero.

Here we must consider two subcases. The case η > η∗ is easy, since
f η
∗
ζ = f ηζ and by definition fω

ρ
ζ = fω

ρ
f η
∗
ζ; thus we focus on the case

η < η∗.
By induction on f ηζ < ζ, we may assume that, given ϑ < ωρ,

fω
ρ

f ηζ = fω
ρ

fϑf ηζ = fω
ρ

f η+ϑζ,
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where the second equality uses the hypothesis that 〈f ξ〉ξ<ωρ is a weak cohy-
peration.

In particular, for ϑ = −η + η∗ we see that

fω
ρ

f ηζ = fω
ρ

f η
∗
ζ = fω

ρ

ζ.

Setting η = ωδ we obtain (6).

Now that we see that the recursive cohyperation actually defines a cohy-
peration we are allowed to replace the clauses 5 and 6 respectively by

5’. If ρ > 0 and f ηα < α for some η < ωρ, then fω
ρ
α = fω

ρ
f ηα,

6’. If ρ > 0 and f ηα = α for all η < ωρ, then

fω
ρ

α = sup
β∈[0,α)

(fω
ρ

(β) + 1).

We are almost ready to prove that that the recursive cohyperation actu-
ally defines the unique cohyperation, but we first need a technical lemma.

Lemma 7.9. Let f be an initial function and 〈f ξ〉ξ∈On = coH′[f ].
If η∗ = η∗(coH′[f ], ωρ, α) and β < f η

∗
α then fω

ρ
β < fω

ρ
α.

Proof. First assume that η∗ = 0, that is, f ηα = α for all η < ωρ.
Then, by Clause 6,

fω
ρ

α = sup
γ<α

(fω
ρ

(γ) + 1),

so in particular fω
ρ
β < fω

ρ
α.

We now consider the case that η∗ > 0 and note that

f ηf η
∗
α = f η

∗+ηα = f η
∗
α

for all η < ωρ. But this shows that η∗(coH′[f ], ωρ, fη
∗
α) = 0.

It follows from the first case that, if β < f η
∗
α,

fω
ρ

β < fω
ρ

f η
∗
α = fω

ρ

α.

We are now ready to prove our main theorem.
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Theorem 7.10. If f is an initial function then coH′[f ] is its cohyperation,
that is,

coH′[f ] = coH[f ].

Proof. Let 〈f ξ〉ξ∈On = coH′[f ].
In view of Lemma 7.8, all that remains for us to prove is that f ξ bounds

every weak cohyperation gξ, i.e., that f ξζ ≥ gξζ for all ξ, ζ.
Now we work by induction on ξ and ζ, considering several cases depending

of which clause defines f ξα.

Clauses 1-3.. These clauses establish the desired inequality for ξ ≤ 2.

Clause 4.. Write ξ = ξ′+ωρ and let η∗ = η∗(coH′[f ], ωρ, f ξ
′
α). We note that

fω
ρ

f ξ
′
α = fω

ρ

f η
∗
f ξ
′
α = fω

ρ

f ξ
′+η∗α

and further
η∗(coH′[f ], ωρ, f ξ

′+η∗α) = 0.

Now, we have by induction on ξ′ + η∗ < ωρ that f ξ
′+η∗α ≥ gξ

′+η∗α, and thus
we can use Lemma 7.9 to see that

fω
ρ

f η
∗
f ξ
′
α = fω

ρ

f ξ
′+η∗α ≥ fω

ρ

gξ
′+η∗α

IH

≥ gω
ρ

gξ
′+η∗α = gξα.

Clause 5.. In this case, ξ = ωρ and we have that

fω
ρ

ζ = fω
ρ

f η
∗
ζ,

where η∗ = η∗(coH′[f ], ωρ, α) > 0.
By induction we have gη

∗
α ≤ f η

∗
α and we use Lemma 7.9 to see that

fω
ρ

α ≥ fω
ρ

gη
∗
α

IH

≥ gω
ρ

gη
∗
α = gω

ρ

α.

Clause 6.. We see that

f ξα = sup
β<α

(f ξ(β) + 1)
IH

≥ sup
β<α

(gξ(β) + 1) ≥ gξα,

where the last inequality uses the assumption that gξ is initial.

Like hyperations, cohyperations of cohyperations behave as one would
expect. We present the following without proof, which is very similar to its
hyperation analogue.

Lemma 7.11. If f is an initial function and ξ, ζ are ordinals then (f ξ)ζ =
f ξ·ζ.
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8. Exact sequences

One nice thing about cohyperations is that, in a sense, they need only
be defined locally. To make this precise, we need the notion of an exact
sequence.

Definition 8.1. Let g be an initial function, 〈gξ〉ξ∈On = coH[g] and f : Λ→
Θ be an ordinal function.

Then, we say f is g-exact if, given ordinals ξ, ζ, f(ξ + ζ) = gζf(ξ).

A g-exact function f describes the values of gξf(0). However, for f to be
g-exact, we need only check a fairly weak condition:

Lemma 8.2. Let g be an initial function and 〈gξ〉ξ∈On = coH[g].
Then, the following are equivalent:

1. f is g-exact

2. for every ordinal ξ, f(ξ) = gξf(0)

3. for every ordinal ζ > 0 there is ξ < ζ such that f(ζ) = g−ξ+ζf(ξ).

Proof. It should be clear that condition 1 implies the other two, so we shall
show that 3 implies 2 and 2 implies 1.

3⇒ 2.. Let f satisfy condition 3, and suppose inductively that, for all ξ < ζ,
f(ξ) = gξf(0).

Pick ξ < ζ such that f(ζ) = g−ξ+ζf(ξ). Then,

f(ζ) = g−ξ+ζf(ξ) = g−ξ+ζgξf(0) = gζf(0),

as claimed.

2⇒ 1.. Assume that f satisfies condition 2. We then see that, given ξ < ζ,

f(ζ) = gζf(0) = g−ξ+ζgξf(0) = g−ξ+ζf(ξ).

Example 8.3. The sequence

(ε1, ε1, ε1, . . . , 2, 0, . . .)

that is constant ε1 for the first ω coordinates, 2 on the ωth coordinate and 0
after that is `-exact.

Proof. By Example 7.6 and Lemma 8.2.

29



9. Inverting hyperations

As promised, cohyperation provides left-inverses for hyperations. In this
section we will show how this is obtained.

Theorem 9.1. Suppose that f is a normal function and 〈f ξ〉ξ∈On its hyper-
ation. Let g be a left adjoint for f with cohyperation 〈gξ〉ξ∈On.

Then, gξ is a left adjoint of f ξ for all ξ.

Proof. We prove this by induction on ξ.
Suppose that α ≤ f ξβ. If ξ = γ+δ with γ, δ < ξ, we see that α ≤ fγf δβ,

so that gγα ≤ f δβ and thus gδgγα ≤ β. Strict equality and strict inequality
are preserved by this argument.

Thus we may assume ξ = ωρ for some ρ > 0.
The case β = 0 is also easy; recall that by Lemma 5.2, f(0) = 0, and thus

f ξ0 = 0 for all ξ. But then, gξ0 is also 0 for all ξ because gξ is initial.
So we assume that β 6= 0. Let us also suppose, inductively, that (3) and

(4) hold for α′, β′ whenever (i) β′ < β or (ii) β′ = β and α′ < α.
Consider first the case that equality holds; α = fω

ρ
β. Note that, if

η < ωρ, by induction on ξ = ωρ,

gηfω
ρ

= gηf ηf−η+ωρ = f−η+ωρ = fω
ρ

;

thus given β, there is no η < ωρ with gηfω
ρ
β < fω

ρ
β.

It follows that gω
ρ
α is defined by Clause 6; that is,

gω
ρ

α = sup
α′∈[0,α)

(gω
ρ

(α′) + 1) ≤ β,

where the inequality follows by induction on α′ < α, since if α′ < α = fω
ρ
β,

gω
ρ
α′ < β.
Next we check that gω

ρ
α ≥ β.

For all β′ < β, we can assume by induction that gω
ρ
fω

ρ
β′ = β′. But

fω
ρ
β′ < fω

ρ
β = α, and thus

gω
ρ

α ≥ sup
β′<β

(gω
ρ

fω
ρ

(β′) + 1)
IH
= sup

β′<β
(β′ + 1) = β.

Finally, let us see that if α < fω
ρ
, then indeed gω

ρ
α < β. Here we proceed

by induction on β.
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If β is a limit ordinal, then α < fω
ρ
β′ for some β′ < β, in which case by

induction hypothesis gω
ρ
α < β′ < β.

If β = β′ + 1, α < f η(fω
ρ
(β′) + 1) for some η < ωρ. Thus, by induction

on η < ξ = ωρ, gηα < fω
ρ
(β′) + 1, so that gηα ≤ fω

ρ
β′ and by induction on

β′ < β,
gω

ρ

α = gω
ρ

gηα ≤ β′ < β.

Corollary 9.2. If f is a normal function with hyperation 〈f ξ〉ξ∈On and g is
a left adjoint to f with cohyperation 〈gξ〉ξ∈On, then, given ordinals ξ < ζ and
α, gξf ζ = f−ξ+ζ and gζf ξ = g−ξ+ζ.

Proof. Immediate from Theorem 9.1, writing f ζ = f ξf−ξ+ζ and gζ = g−ξ+ζgξ.

As an important example we mention hyperlogarithms, i.e., the cohy-
perations 〈Lξ〉ξ∈On and 〈`ξ〉ξξ∈On, where, recall, L(ωα + β) = α (provided

β < ωα + β) and `(α + ωβ) = β.

Corollary 9.3. The cohyperations Lξ, `ξ are left adjoints to the hyperations
eξ for all ξ.

Proof. Immediate from Theorem 9.1 and the fact that L, ` are both initial
left adjoints to e.

Example 9.4. As seen in Example 6.2, eω2 = ε1; meanwhile, according to
Example 7.6, `ωε1 = 2.

Then, `ωeω2 = 2, as predicted by Corollary 9.3.

Concluding remarks

The work we have presented gives a general theory of two forms of itera-
tion of ordinal functions which give natural alternatives to existing notions.
The ordinals one may generate through hyperations are no larger than those
given by Veblen progressions. However, the deep algebraic structure of hyper-
ations and cohyperations has great advantages in applications, as the authors
have found in their work in provability logics, and we trust that many mathe-
maticians working routinely with ordinals will find our framework appealing.

As with Veblen progressions, one may work with higher-order versions
of hyperations, where iteration is applied to exponents of functions, thus
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facilitating operations well beyond Γ0. This is a direction well worth looking
into, and possibly a necessary one if provability logics are to work their way
into the analysis stronger and stronger theories.

Moreover, one may also think of hyperations and cohyperations as special
cases of iteration through additive sequences of functions. To be precise, one
may think of hyperations (and similarly cohyperations) as operators of the
form HypFC , where C is a class of functions and F a criterion for selecting
a preferred candidate from all right-additive function families in C. From
this perspective, Hyp would become Hypmin

Nrm, where Nrm denotes the class of
normal functions and min denotes pointwise minimization. We have studied
the two versions which were most useful for a specific application; however,
there are many more possibilities left to be explored.

Acknowledgments

This will be filled out later.
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