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Abstract

This paper is a first exploration how the modal logic of interpretability
can play a role in the study of large cardinals in set theory. First we reason
that such a role is likely to be fruitful. Next, for two particular readings
of the binary modality � we study its repercussions for the corresponding
logic.

The first reading of A�B is “Inside any Vκ where A holds we can find
a Vκ′ where B holds”. Here κ and κ′ range over inaccessible cardinals.
We show how this reading can be related and reduced to previous results
by Solovay.

The second reading of A�B is “Inside any Vκ where A holds we can
find a Vλ where B holds”. Here κ ranges over one particular large (at
least inaccessible) cardinal notion and λ ranges over a different (but also
at least inaccessible) large cardinal. We see that in this case a bi-modal
logic suffices. Moreover, we obtain that for an ample class of cardinal
notions the corresponding logic will not include the basic modal logic IL.

1 Introduction

This paper is a first exploration how the modal logic of interpretability can
play a role in the study of large cardinals in set theory. In this paper we shall
introduce the important notions in set theory and sketch/reason where and why
modal logics are likely to play a fruitful role.

1.1 Independence in set theory

With the foundational crisis of mathematics at the turn of the 19th century
mathematicians/logicians craved for more mathematical rigor. In mathematical
practice this resulted in that more and more parts of mathematics got formalized
to the very detail. Set theory grew to be the golden standard in this tendency
to formalizing and large parts of mathematics obtained their rigor from their
formalization within set theory.

As a consequence one particular axiomatization of set theory itself, what we
now call Zermelo Fraenkel set theory, got well developed and studied in great
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detail. In the course of this study it was found that many elementary and natural
questions can not be settled within set theory itself. The most prominent such
example is probably the question of the Continuum Hypothesis, CH, stated
boldly as “Is there a subset of the reals that is strictly larger1 than the natural
numbers N but strictly smaller than R, the set of reals itself?” CH claims that
there is no such subset of the reals. This question was the first of Hilbert’s 23
questions that he considered most urgent at the turn of the 19th century.

In 1940 Gödel showed ([5]) that CH cannot be refuted by the axioms of
set theory by providing a model of ZF (actually of ZFC) where CH holds. In
addition, Paul Cohen ([3], [4]) showed in his seminal work from 1963 that CH
is also not provable from set theory by introducing his celebrated technique of
forcing. These two results showed that CH is actually independent from set
theory.

Various other natural questions in set theory also turned out to (likely) be in-
dependent from set theory. Among those are the existence assertions of so-called
large cardinals. For the purpose of this paper very little actual set theoretical
detail is needed and for the moment it suffices to superficially describe the large
cardinals. Large cardinals are (infinite) cardinal numbers with some specific
very strong closure properties. A large cardinal axiom states the existence of
such large cardinals.

1.2 Modal logics and mathematics

Numerous versions of large cardinal axioms are around and most of them are
likely to be independent from set theory. The natural question is how these
large cardinal axioms relate to each other and which of them are natural from
which point of view without even entering the discussion of Platonism/Realism
in mathematics. In this enterprise, the author thinks, modal logics can play a
guiding role.

Modal logic as a calculus

For our purposes, modal logics are calculi developed to reason about a particular
part of mathematics. The most useful modal logics are formulated in an easy
-often propositional- language and are decidable. They typically contain one
or more modalities to capture a particular feature of mathematics. A classical
example is Solovay’s study of provability ([14]) where the 2 modality is used to
study the notion of “provable in, say, Peano Arithmetic”.

The beauty and power of modal logics lies in the following. Large parts
of mathematical reasoning can be captured in a single axiom scheme or rule.
For example, in provability logic the axiom scheme 2A → 22A reflects the
theorem of so-called Provable Σ0

1 Completeness: any true Σ0
1 sentence is actually

provable. Thus, as the axiom schemata and rules in a modal logic correspond
to whole blocks of reasoning and entire theorems in mathematics, modal logics
provide a very high level reason tool par excellence.

1In the sense of cardinality.

2



The situation is very much comparable to a calculus for, say, integration.
This calculus comprises a set of rules like

∫
xndx = 1

n+1x
n+1. But for example

this particular rule represents a whole block of reasoning including upper and
lower Riemann approximations of the area under the function xn that can be
analyzed in their limit behavior importing other results like for example the
binomial expansion theorem etcetera.

The difference with a modal calculus is that this calculus is formulated in a
logic framework and thus lends itself naturally to a study of the limits of the
calculus. To conclude, modal logics provide a natural and high-level framework
to analyze and study mathematical phenomena. As such they can play the role
as an excellent viewpoint on the naturality of certain independent principles. In
the context of set theory modal logic is already used for this purpose.

Modal logics and set theory

In [7], Hamkins used a modal framework where the 2 was used to model “truth
in all forcing extensions”. On a high level he could formulate a natural principle
inspired by C. Chalons. This principle states that any set-theoretical statement
ϕ is true whenever ϕ is such that once true in a certain forcing extension P, it
stays true in any subsequent forcing extension of P. Or as Hamkins phrases it in
his plain language slogan: “anything forceable and not subsequently unforceable
is true”. In modal language the scheme is represented by 32ϕ → ϕ which
in this setting is actually equivalent to 32ϕ → 2ϕ which is more familiar to
modal logicians and is known as the Euclidean Axiom.

It turns out that this principle is equi-consistent with set theory. However,
once the principle is allowed to have real valued parameters in ϕ various inter-
esting statements about large cardinals and in particular various large cardinal
axioms follow. Thus these particular large cardinals are natural in the viewpoint
provided by this modal setting that allowed so elegantly to formulate a general
principle.

This paper can be seen as a first exploration to extending an endeavor as in
Hamkins’ [7] to a modal language of a richer signature. Such a logic of richer
signature is interpretability logic. This logic has apart from the unary modality
2 a binary modality �. This modality is used so that U � V is understood to
model that a theory U interprets a theory V or alternatively, A�B is understood
to model that for some basic theory T , the theory T + A interprets the theory
T + B. In the paper we shall focus on possible set-theoretical readings of �.
In looking for such readings, we are guided by two criteria, Criterium S and
Criterium I.

S The set-theoretical content of the translation should be interesting.

I The translation of the �-modality should somehow capture the most typ-
ical interpretabilty features. In other words, the modal logic should be
interesting.
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In interpretability logics we often use a unary modality 2 and a binary
modality �. The 2 modality can actually be dispensed with as we want 2A↔
¬A�⊥ to be a valid principle.

Modal logics, heuristics and predictive power

We believe that a good modal framework provides good heuristics and a rich
viewpoint for analyzing and exploring certain parts of mathematics. And in
this believe and in particular that interpretability logics can play the role of a
good viewpoint we are sustained by historical evidence. Recently, in [6] a new
mathematical theorem is obtained from pure modal desiderata. It was observed
that for a certain modal logic –which was known to be arithmetically sound–
to be modally complete, a particular modal principle had to hold. As it turned
out, the mathematical content of this modal principle actually turned out to be
a mathematical theorem.

This practice is somewhat similar as observed in other sciences. When the
language and the formalism is good, valid predictions are bound to follow. For
example, Albert Einstein’s theory of General Relativity on a purely theoretical
basis predicted certain phenomena like the perihelion precession of Mercury’s
orbit, and gravitational redshift of light which were later empirically confirmed.
Likewise, the existence of certain elementary particles that go by the name of
mesons were first predicted in 1935 by Hideki Yukawa on purely theoretical
grounds and were later confirmed by experiments. Of course, in the realm of
set theory such an empirical counterpart is unlikely to be present.

1.3 Basic notions in set theory

As mentioned before, for the purpose of this paper, we need very little detail on
the actual results in set theory. We refer the reader to [11] and [12] for details.
In particular in this paper we work with the notions of inaccessible cardinals,
forcing extensions, and he cumulative hierarchy of the set theoretical universe.
In particular we shall use that when κ is an inaccessible cardinal, then Vκ, the
“κ”th level of the cumulative hierarchy, is a model of set theory.

2 Interpretability logics

Interpretability logics are an extension of provability logic. The modal language
contains apart from the usual unary 2 modality a binary � modality that should
capture the notion of interpretability.

A short word on reading conventions in interpretability logics is due here.
For the boolean connectives we have the usual conventions. The 2 and 3 have
the same syntactical treatment and preference as the negation. The �-modality
is binding weaker than all the previously but stronger than →.

If we want a set-theoretical reading of the �-modality to be reminiscent of
the notion of interpretability so that we have access to its rich structure and

4



well-developed theory, we should require that some minimal interpretability
logic should be sound under the translation. This minimal part is the logic IL.

Definition 2.1. The logic IL is the modal logic generated by all propositional
tautologies, the rule of modus ponens and the rule of necessitation (` A/ ` 2A)
together with the following axiom schemes.

L1 : 2(C → D)→ (2C → 2D)
L2 : 2A→ 22A
L3 : 2(2A→ A)→ 2A
J1 : 2(C → D)→ C �D
J2 : (C �D) ∧ (D � E)→ C � E
J3 : (C � E) ∧ (D � E)→ C ∨D � E
J4 : C �D → (3C → 3D)
J5 : 3A�A

Two other prominent principles are

M : A�B → A ∧2C �B ∧2C

and
P : A�B → 2(A�B).

The logic that arises by adding more axiom schemes to IL is denoted by IL
with the names of the principles postfixed to it.

Often we consider the part of IL that only contains the 2-modality. This is
the logic GL.

Definition 2.2. The logic GL is the logic in a modal language only containing
the 2-modality that is closed under modus ponens, necessitation and the axiom
schemes L1, L2, and L3. The logic K4 is just GL with omission of L3.

Let us do a small exercise in proofs in IL that will serve us well later on.

Lemma 2.3. IL proves all of the following formulas.

1. A�A

2. 2A↔ ¬A�⊥

3. 3⊥ ↔ ⊥

Proof.

Ad 1 A→ A is a tautology, whence by necessitation we obtain 2(A→ A). By
J1 we obtain A�A.

Ad 2 By basic modal reasoning we get 2A→ 2(¬A→ ⊥). But from 2(¬A→
⊥) we arrive at ¬A�⊥ by an application of J1.
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Ad 3 The implication ⊥ → 3⊥ is obvious. And 3⊥ → ⊥ is equivalent to 2>
which is theorem of GL as we saw in 1.

a

For IL we have good modal semantics that provide intuition and guidance
in reasoning about the logic. The semantics is an extension of the well known
semantics for GL.

Definition 2.4. An IL frame is a triple 〈W,R, {Sx | x ∈W}〉. Here W is a set
of worlds. The R is a binary relation on W that models the 2 modality. For
each x ∈W , the Sx is a binary relation on W that models the � modality. The
requirements on the R and Sx relations are as follows.

1. R is transitive;

2. R is conversely well-founded, that is, there is no infinite chain x0Rx1Rx2R . . .;

3. For each x ∈W , the Sx is a binary relation on x↑ where
x↑ := {y ∈W | xRy};

4. For each x ∈W , the Sx is reflexive;

5. For each x ∈W , the Sx is transitive;

6. R � (x↑) ⊆ Sx in other words/symbols xRyRz → ySxz.

Definition 2.5. An IL model is a quadruple 〈W,R, {Sx | x ∈ W},〉 where
〈W,R, {Sx | x ∈ W}〉 is an IL model and  is a so-called forcing relation that
assigns to each propositional variable p a set of worlds in W where p holds (we
also say where p is forced). The forcing relation  is extended to the set of all
modal formulas by stipulating that

+ x  A ∧ B ⇔ [x  A and x  B] and likewise for other Boolean
connectives;

+ x  2A ⇔ ∀y[xRy ⇒ y  A];

+ x  A�B ⇔ ∀y[xRy ∧ y  A⇒ ∃z(ySxz ∧ z  B)].

It is well known that IL is sound and complete with respect to its modal
semantics.

3 Inaccessible cardinals

It was Solovay who first studied some modal logics of set theory. Some of his
findings he did not publish but were included in the book by Boolos ([2]). In
particular, Solovay gave a characterization of the modal formulas that hold if
the 2 is taken to denote a formalization of “True in all set theory models Vκ
where κ is an inaccessible cardinal”. In order to formulate his result, we first
need a definition.
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Definition 3.1. The logic J is is obtained by adding the linearity axiom schema
2(2A→ B) ∨2(�B → A) to GL. Here �B is an abbreviation of B ∧2B.

Solovay’s theorem now reads as follows. (See [2], Theorem 2 of Chapter 13.)

Theorem 3.2. J ` A⇔ ∀ ∗ ZFC ` A∗

In this theorem, the ∗ is a so-called realization that sends propositional
variables to sentences in the language of ZFC. The ∗ is extended to sentences in
the obvious way, by, as mentioned before, translating the 2 to “true in all Vκ”.
As always, realizations are understood to commute with the Boolean connectives
in that (A ∧B)∗ := A∗ ∧B∗ etcetera.

3.1 Interpretability and inaccessible cardinals

Inspired by Solovay’s result, Theorem 3.2, a first idea is to read the � as follows.

(A�B)∗ := “Inside every Vκ where A∗ holds, we can find a
Vκ′ where B∗ holds.”

Here κ and κ′ are inaccessibles. As IL ` A� A, the reading should be slightly
adapted.

(A�B)∗ := “Inside every Vκ where A∗ holds, either B∗ holds, or
we can find a Vκ′ where B∗ holds.” (†)

With κ and κ′ again inaccessibles. Clearly, under this reading we have that
A � A holds for any A. A more technically precise but otherwise equivalent
formulation of this interpretation is given by

(A�B)∗ := ∀κ [Vκ |= A∗ ⇒ (Vκ |= B∗ ∨ V κ |= “∃κ′Vκ′ |= B∗”)] (†)

As mentioned before, in IL, the � modality is tightly bound to the regular 2

modality by the fact that IL ` 2A ↔ ¬A � ⊥. If we wish to preserve this
duality between the modalities under our (†) interpretation, we are left with
no choice for the interpretation of the 2 modality as expressed in the following
lemma.

Lemma 3.3. If the equivalence 2A ↔ ¬A � ⊥ is to hold under the (†) inter-
pretation, the 2-modality should be translated as “true in all Vκ”.

Proof. We only use properties of the compositionallity of both the Tarski truth
definition and of the definition of a set-theoretical realization.

(2A)∗ ⇔ (¬A�⊥)∗

⇔ ∀κ [Vκ |= (¬A)∗ ⇒ (Vκ |= (⊥)∗ ∨ V κ |= “∃κ′Vκ′ |= (⊥)∗”)]
⇔ ∀κ [Vκ |= ¬A∗ ⇒ (Vκ |= 0 = 1 ∨ V κ |= “∃κ′Vκ′ |= 0 = 1”)]
⇔ ∀κ [Vκ |= ¬A∗ ⇒ (⊥ ∨ V κ |= “∃κ′Vκ′ |= 0 = 1”)]
⇔ ∀κ [Vκ |= ¬A∗ ⇒ (V κ |= “∃κ′Vκ′ |= 0 = 1”)]
⇔ ∀κ [Vκ |= ¬A∗ ⇒ (V κ |= 0 = 1)]
⇔ ∀κ [Vκ |= ¬A∗ → 0 = 1]
⇔ ∀κ [Vκ |= A∗]
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a

We remark that various steps in the above proof have their modal counter-
part in Lemma 2.3. With similar reasoning, so that we allow ourselves some
shortcuts, we see that under the (†) translation using inaccessibles we get the
following theorem. The theorem states that by and large the � modality can
be reduced to the 2 modality.

Theorem 3.4. When translating � with the scheme as in (†) and the 2 modality
as in Lemma 3.3, the following is a sound priciple:

A�B ↔ 2(A→ B ∨3B). (i)

Proof.

(A�B)∗ ⇔ ∀Vκ [Vκ |= A∗ ⇒ (Vκ |= B∗ ∨ Vκ |= “∃Vκ′Vκ′ |= B∗”)]
⇔ ∀Vκ [Vκ |= A∗ → (B∗ ∨ “∃Vκ′Vκ′ |= B∗”)]
⇔ ∀Vκ [Vκ |= A∗ → (B∗ ∨3B∗)]
⇔ 2(A∗ → (B∗ ∨3B∗))
⇔ 2(A∗ → B∗ ∨3B∗)

a

As a corollary of this theorem, we see that the soundness of IL under the
(†) translation becomes just an exercise in GL or actually in K4.

Lemma 3.5. Each of the axioms J1 . . . J5 is provable in K4 when each occur-
rence of A�B is replaced by 2(A→ B ∨3B).

Proof. This is an easy exercise in K4. The most involved axiom is J2. We
shall briefly comment on J4. Thus, we need to show that the translation of
A � B → (3A → 3B) is provable in K4. To this extent, we translate A � B
to 2(A → B ∨ 3B) and reason in K4. An elementary theorem of K4 tells us
that 2(C → D) implies 3C → 3D whence we obtain 3A → 3(B ∨ 3B).
But, 3(B ∨ 3B) is actually equivalent to 3B ∨ 33B and by an application
of the L2 axiom we see that the latter is equivalent to just 3B. Quad erat
demonstrandum. a

Theorem 3.6. The logic IL is sound under translating

- A � B to “Inside each Vkappa where A holds: either B holds or we can
find a Vκ′ where B holds”;

- 2A to “A holds in each Vκ”.

Proof. By 3.4 we see that under our translation, we can replace any occurrence
of A� B by 2(A → B ∨3B). But then, each proof in IL translates by 3.5 to
a proof in K4. As K4 ⊂ GL we get the soundness by Theorem 3.2. a

We thus conclude that under (†) the logic IL is sound. The next subsection
deals with completeness. As we shall see, for completeness some additional
principle needs to be added.
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3.2 Characterizations of the interpretability logic for in-
accessible cardinals

We can give a complete characterization of all the principles under the above
reading of �. First some definitions.

Definition 3.7. The logic J′ is the modal logic with a unary modality 2 and
a binary modality �. It has the same rules and axioms as J. In addition it has
the axiom scheme A�B ↔ 2(A→ B ∨3B).

Lemma 3.8. The logic J′ is conservative over J.

Proof. The logic J′ is just an extension by definition of J and we can thus obtain
our result by a simple definition on the proofs in J′. a

Corollary 3.9 (First characterization). J′ ` A⇔ ∀+ ZFC ` A+

Recall, in this corollary, the + is a realization that sends propositional vari-
ables to sentences in the language of ZFC. The + is extended to sentences in
the obvious way, translating the 2 to “true in all Vκ” and A � B to “In every
Vκ where A+ holds, either B+ holds, or we can find a Vκ′ where B+ holds.” We
use the + symbol here to distinguish from the ∗ in Theorem 3.2.

Proof. We define a translation on modal formulas as follows. It will be the
identity translation except for �. In that case we define

(A�B)tr := 2(Atr → (Btr ∨3Btr)).

Clearly we have for any formula A that J′ ` A↔ Atr. Thus J′ ` A⇔ J′ ` Atr.
By Lemma 3.8 we see that the latter is equivalent to J ` Atr. By Theorem 3.2
we see that this is equivalent to ∀ ∗ ZFC ` (Atr)∗. Clearly, for every + we can
find a ∗ such that A+ = (Atr)∗ and also the other way round. And thus we get
the required equivalence, that is, J′ ` A⇔ ∀+ ZFC ` A+. a

This characterization is not very satisfactory as it is not (essentially) formu-
lated in the language using �.

In Theorem 3.6 we saw that all of IL is provable in J′. It is actually not hard
to see that the principles M and P are also provable in J′. For those familiar in
interpretability logics, this is known to be a sign that the logic is of little interest
as ILP and ILM normally characterize different sort of logics. In other words,
if a logic proves both M and P this logic is probably not very informative.

We can reformulate our first characterization in a setting with a stronger
interpretability flavor.

Definition 3.10. The logic ILLW is obtained by adding the linearity axiom
schema: 2(2A → B) ∨ 2(�B → A) to ILW. Here W is the axiom scheme
A�B → A�B ∧2¬A.
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Theorem 3.11 (Second characterization). ILLW ` A⇔ ∀+ ZFC ` A+.

The proof of this theorem was actually first encountered in the realm of
provability logics with restricted substitutions as dealt with in [10] and in [9].

Proof. We again consider the translation as defined in the proof of Corollary
3.9. We will see that

ILLW ` ϕ⇔ J ` ϕtr (∗)
and

ILLW ` ϕ↔ ϕtr. (∗∗)

We first see that we have (∗∗). It is sufficient to show that ILLW ` p� q →
2(p → (q ∨3q)). We reason in ILLW. An instantiation of the linearity axiom
gives us 2(2¬q → (¬p∨ q))∨2((¬p∨ q)∧2(¬p∨ q)→ ¬q). The first disjunct
immediately yields 2(p→ (q ∨3q)).

In case of the second disjunct we get by propositional logic 2(q → 3(p∧¬q))
and thus also 2(q → 3p). Now we assume p � q. By W we get p � q ∧ 2¬p.
Together with 2(q → 3p), this gives us p � ⊥, that is 2¬p. Consequently we
have 2(p→ (q ∨3q)).

We now prove (∗). By induction on ILLW ` A we see that J ` Atr. All the
specific interpretability axioms turn out to be provable under our translation in
GL. The only axioms where the 2A→ 22A axiom scheme is really used is in
J2 and J4. To prove the translation of W we also need L3.

If J ` Atr then certainly ILLW ` Atr and by (∗∗), ILLW ` ϕ.
We now invoke Theorem 3.2 and combine it with (∗) to see that ILLW `

A↔ ∀ ∗ ZFC ` (Atr)∗. Again we realize that for every + we can find a ∗ such
that A+ = (Atr)∗ ans also the other way round. Thus we obtain ILLW ` A ↔
∀+ ZFC ` (Atr)+.

a

We note that we could have defined ILLW also starting with ILM or ILP.
We have chosen to use ILW as the W-principle is the minimal principle for
which our argument seems to work.

Let us summarize what we have obtained now. We have chosen a set-
theoretical reading of � using inaccessibles. We have found a completeness
result à la Solovay. Actually we have found two different characterizations. Are
we satisfied now? Not really.

Especially the the first characterization tells us that our set-theoretical read-
ing of � does not fully employ the richness of the interpretability logic. The
second characterization tries to hide this a bit. But a second moment of thought
again reveals the simple nature of the logic.

We therefore consider the modal semantics of IL. If the linearity axiom is
to hold on a frame, we are bounded to linear frames. The Sx-relations (the
semantical counterpart of the � modality) can do nothing on linear frames that
can not be done by the R-relation.
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Thus Criterium I actually rules out the reading we have studied so far. But
this should come hardly as a surprise. The very way we defined the interpre-
tation of � in (†) is expressible in the language of modal logic with just the 2

modality. An interesting reading should capture somehow the feature that the
2 modality is really stronger than the � modality in the sense of Axiom J1. We
can adopt thus a new desideratum. We do not want that

A�B → 2(A→ B ∨3B) (Tr)

is a valid principle for the set-theoretical reading of � and 2. If for the 2 we
use an inaccessable (or any large (at least inaccessible) cardinal, as Lemma 4.4
tells us) we get the linearity axiom into our logic. It is easy to see that (Tr)
holds on any linear frame. We thus come to the following natural and relevant
question.

Question 3.12. Is ILL a complete logic? In particular, do we have ILL `
A�B → 2(A→ B ∨3B)?

4 Pairs of large cardinals and bimodal logics

In finding a suitable set-theoretical reading of the 2 and � modality we want
to capture the notion that A � B is somewhat weaker than 2(A → B ∨ 3B).
One idea would be to read A�B as follows.

A�B := “In every model of Vκ where A holds, either B holds, or
there is a model Vλ of B”

Here and in the sequel of this section when referring to a pair κ-λ, κ is a large
(at least inaccessible) cardinal of type 1 and λ a large (at least inaccessible)
cardinal of type 0.

We see that, similar to Theorem 3.4, we have the following principle to be
sound under this reading.

A�B ↔ [1](A→ B ∨ 〈 〉B)

Here the [1]-modality is to be read as “truth in all Vκ” with κ of type 1. The
[ ]-modality is to be read as “truth in all Vλ” with λ of type 0. Thus actually
� gets translated to a statement in a bimodal logic.

As a bimodal logic, this is interesting to study and it tells us something about
how the κ and the λ behave with respect to each other. The first interesting
pair of large cardinals already yields an interesting question.

Question 4.1. What is the bimodal logic where the [1]-modality is read as “true
in all Vκ” with κ mahlo and [ ] is read as “true in all Vλ” with λ inaccessible.

As we shall see, in various cases it is not very likely though, that the new
reading of the �-modality will serve our purposes. We conclude this from some
“empirical” facts from set-theory.
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Empirical Fact 4.2. Somehow, all large cardinal axioms seem to be linearly
ordered along their consistency strength. To be more precise, for each pair of
cardinal axioms Aκ, Aλ we have that one of the following three situations hold.

(i) ZFC proves [ZFC +Aκ is consistent if and only if ZFC +Aλ is consistent]

(ii) ZFC +Aκ proves the consistency of ZFC +Aλ

(iii) ZFC +Aλ proves the consistency of ZFC +Aλ

This empirical fact, which so far has never been violated, has no direct
bearing on the modalities introduced in this section. It would be expressible
in modal logic if 3A were to be interpreted as “A holds in some model of set
theory”. However, in this section we restrict ourselves to the models of set
theory of the form Vα.

Moreover, the ordering in consistency strength of two large cardinal axioms
does not imply anything on the ordering of the actual ordinals that are as-
serted to exist by the respective axioms. For example ([13]), the existence of a
huge cardinal is much stronger than the existence of a supercompact cardinal
in terms of consistency strength. However, if both existed, then huge cardinals
are smaller than supercompact ones in terms of the ordinal ordering.

Empirical Fact 4.3. For various pairs of large cardinals we have that they are
comparable in our bimodal logic setting in the sense that [1]〈 〉> or [ ]〈1〉>.

As Benedikt Löwe pointed out te me this holds at least for pairs of cardinals
that are taken from the following list of large cardinals:

supercompact
Woodin
measurable
Mahlo
inaccessible

This second empirical fact, in combination with a side assumption, will be seen
to be problematic in combination with the J4-axiom:

A�B → (〈1〉A→ 〈1〉B).

First we remark the following.

Lemma 4.4. GL is sound for any translation of the 2-modality into “truth in
every Vκ”, where κ ranges over some large (at least inaccessable) cardinal.

Proof. The proof is a straight-forward generalization of the proof of this state-
ment for inaccessibles. a

Definition 4.5. A κ-λ interpretability principle of ZFC is a sentence A in the
modal language with � and 2 for which we have

∀† ZFC ` A†.
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Here † is a mapping that sends propositional variables to set-theoretical sen-
tences. This mapping is extended to all modal sentences in the canonical way
by translating 2 to “true in all Vκ” and C�D to “in all Vκ where C holds, either
D holds, or we can find a Vλ where D holds”. Here κ ranges over cardinals of
type 1, and λ over cardinals of type 0.

Theorem 4.6. Let κ and λ come from two different natural large cardinal
classes for which our Empirical Fact 4.3 holds. If T is a complete axiomatization
of the κ-λ interpretability principles of ZFC, and if moreover, T 0 [1][1]⊥ then
T does not contain IL.

Proof. Suppose T is a complete axiomatization of the κ-λ interpretability prin-
ciples of ZFC and suppose that T does contain IL. By Lemma 4.4, T should
contain all the theorems of GL for the [ ]-modality. By the Empirical Fact 4.3 we
have either [1]〈 〉> or [ ]〈1〉>. In the first case we get by Lemma 4.7 that [1]⊥.
In the second case we get by Lemma 4.8 that [1][1]⊥. Bot are in contradiction
with our side assumption that T 0 [1][1]⊥. a

The side assumption that T 0 [1][1]⊥ is really needed. In particular, for most
large cardinals the axiom stating that there exist at least two such cardinals is
strictly stronger than the axiom that merely asserts the existence of just at least
one. However, it seems unlikely that there are mathematicians/logicians that
do believe in the existence2 of one particular cardinal of kind X but reject that
there would be more of that kind of cardinal around too. We conclude this
section by providing the two technical lemmata needed in the proof of Theorem
4.6.

Lemma 4.7. Let T be a logic with one binary modality � and two unary modal-
ities [1] and [ ] such that T contains all the axioms of IL (formulated with �

and [1]) and is closed under the rules of modus ponens and necessitation for the
[1]-modality. Furthermore, T is supposed to prove all the theorems of GL for
the [ ]-modality. If now T ` [1]〈 〉>, then T ` [1]⊥.

Proof. So, let T satisfy the conditions of the theorem. We have that T `
〈 〉> ∨ [ ]⊥. By L3 for the [ ]-modality, 〈 〉> is actually equivalent to 〈 〉[ ]⊥.
Thus, T ` 〈 〉[ ]⊥ ∨ [ ]⊥. By [1]-necessitation, T ` [1](〈 〉[ ]⊥ ∨ [ ]⊥) and thus
certainly T ` [1](> → (〈 〉[ ]⊥∨ [ ]⊥)). By J1 this yields >� [ ]⊥. J4 now gives
us 〈1〉> → 〈1〉[ ]>. Together with our assumption that T ` [1]〈 〉>, we thus get
T ` [1]⊥. a

Lemma 4.8. Let T be a logic with one binary modality � and two unary modal-
ities [1] and [ ] such that T contains all the axioms of IL (formulated with �

and [1]) and is closed under the rules of modus ponens and necessitation for the
[1]-modality. Furthermore, T is supposed to prove all the theorems of GL for
the [ ]-modality. If now T ` [ ]〈1〉>, and T ` A�B → [1](A→ B ∨3B), then
T ` [1][1]⊥.

2Or “the consistency of the existence” for that matter.
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Proof. By standard IL-reasoning we see that T ` >� [1]⊥. As by assumption
T ` A�B → [1](A→ B ∨3B), we get that

T ` [1]([1]⊥ ∨ 〈 〉[1]⊥). (+)

Also by assumption T ` [ ]〈1〉>, and thus also T ` [1][ ]〈1〉>. Combining the
latter with (+) we get T ` [1][1]⊥. a

Note that we can sharpen Lemma 4.8 and see that T ` [1]⊥ if we also have
that T ` [ ]A→ [1]A. The formula [ ]A→ [1]A is commonly added as an axiom
in the realm of graded provability logics where the [1] modality stands for a
stronger provability notion than the [ ] modality. See for example [1].

5 Further research

Really, what we have seen in the above sections is but a first exploration in the
application of interpretability logics in the realm of set theory. And in a sense
the results presented are of a negative flavor: the set-theoretical interpretations
proposed do not interact well with interpretability logics. However a bimodal
logic for the κ-λ interpretability principles could be an interesting structure.

In Section 3 we concluded that the � modality did not essentially add any
expressivity. In Section 4 we saw that the � modality could be replaced by
introducing an additional unary modality thus working with a bi-modal logic.
Both versions do not employ yet the full strength and expressibility of inter-
pretability logics. In Appendix D of [15] definitions are provided on how to
interpret the � and the 2 in models of arithmetic. One could consider proceed-
ing along these lines in the realm of set theory. In this final section we mention
some other directions that can be pursued.

5.1 Using transitive models of set theory

This would be a generalization of Solovay’s second set-theoretical result men-
tioned in [2], Chapter 13, Theorem 1. Let us rephrase the theorem here. To
this end we first give two definitions.

Definition 5.1. A finite prewellordering is a frame 〈W,R〉 where W is finite
and R is a transitive and irreflexive relation such that for every w, x, y in W , if
wRx, then either wRy or yRx.

Definition 5.2. The logic I is defined by adding to GL the following axiom
scheme.

2(2A→ 2B) ∨2(2B → �A)

Solovay’s theorem on transitive models in set theory now reads as follows.

Theorem 5.3. Let A be a modal sentence. Let ∗ be a realization that maps
(2A)∗ to the sentence of the language of set theory that formalizes “A∗ holds in
all transitive models of ZF”. Then (A), (B), and (C) are equivalent.
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(A) For all ∗, ZF ` A∗.

(B) A is valid in all finite prewellorderings.

(C) I ` A.

We remark that the Sx-relations really give us more expressive power on
finite pre-wellorderings. We could also consider a combination of this with the
ideas explored in this paper, like in the following translation.

A�B := “for all Vκ where A holds, either B holds, or
we can find a transitive model of B′′

5.2 Using large cardinals and forcing extensions

The next natural thing to consider would be to read A�B as follows.

A�B → “In every Vκ where A holds, there is a forcing extension where B holds”

The spirit of forcing comes a lot closer to that of interpretability than the candi-
date notions we have considered before. To get something new, one really should
combine forcing with some other notion as suggested here. This is because the
logic of forcing is determined in [7] and [8].

5.3 Large cardinals and arithmetized interpretability state-
ments

We conclude the paper with a question that is somewhat out of the scope of
this paper. However it relates questions in interpretability to large cardinals in
another way and is interesting on its own.

Question 5.4. Can we find a natural large cardinal notion and two natu-
ral (preferably arithmetical) theories whose arithmetized interpretability state-
ments are dependent on the existence of these large cardinals?
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