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MODELS OF TRANSFINITE PROVABILITY LOGIC

DAVID FERNÁNDEZ-DUQUE† AND JOOST J. JOOSTEN††

Abstract. For any ordinal Λ, we can define a polymodal logic GLPΛ, with a modality

[ξ] for each ξ < Λ. These represent provability predicates of increasing strength. Although

GLPΛ has no Kripke models, Ignatiev showed that indeed one can construct a Kripke model

of the variable-free fragment with natural number modalities, denoted GLP0
ω . Later, Icard

defined a topological model for GLP0
ω which is very closely related to Ignatiev’s.

In this paper we show how to extend these constructions for arbitrary Λ. More generally,

for each Θ,Λ we build a Kripke model IΘ
Λ and a topological model TΘ

Λ , and show that

GLP0
Λ is sound for both of these structures, as well as complete, provided Θ is large enough.

§1. Introduction. It was Gödel who first suggested interpreting the modal
2 as a provability predicate, which as he observed should satisfy 2(φ → ψ) →
(2φ → 2ψ) and 2φ → 22φ. With this, the Second Incompleteness Theorem
could be expressed succinctly as 3> → 32⊥.

More generally, Löb’s axiom 2(2φ→ φ)→ 2φ is valid for this interpretation,
and with this we obtain a complete characterization of the propositional behavior
of provability in Peano Arithmetic [15]. The modal logic obtained from Löb’s
axiom is called GL (for Gödel-Löb) and is rather well-behaved; it is decidable
and has finite Kripke models, based on transitive, well-founded frames [14].

Japaridze [12] then suggested extending GL by a sequence of provability modal-
ities [n], for n < ω, where [n]φ could be interpreted (for example) as φ is derivable
using one instance of the ω-rule with nesting depth n. We shall refer to this ex-
tension as GLPω. GLPω turns out to be much more powerful than GL, and indeed
Beklemishev has shown how it can be used to perform ordinal analysis of Peano
Arithmetic and its natural subtheories [3].

However, as a modal logic, it is much more ill-behaved than GL. Most notably,
over the class of GLP Kripke frames, the formula [1]⊥ is valid! This is clearly
undesirable. There are ways to get around this, for example using topological
semantics. However, Ignatiev in [11] showed how one can still get Kripke frames
for the closed fragment of GLPω, which contains no propositional variables (only
⊥). This fragment, which we denote GLP0

ω, is still expressive enough to perform
Beklemishev’s ordinal analysis.

Later, Icard provided topological models for GLP0
ω [10]. The full logic actually

does have topological models, and indeed has been proven complete for these
semantics by Beklemishev and Gabelaia [2]. However, this requires rather heavy
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machinery and some non-constructive methods, all of which can be avoided when
dealing only with the closed fragment.

Our goal is to extend the results on GLP0
ω to GLP0

Λ, where Λ is an arbitrary
ordinal (or, if one wishes, the class of all ordinals). To do this we build upon
known techniques, but dealing with transfinite modalities poses many new chal-
lenges. In particular, models will now have to be much ‘deeper’ if we wish to
obtain completeness.

The layout of the paper is as follows. In Section 2 we give a quick overview of
the logics GLP0

Λ. Section 3 then gives some motivation for the constructions we
shall present.

In Section 4 we discuss how one ‘hyperates’ ordinal exponentiation and last
exponents. Hyperations are a form of transfinite iteration and will be crucial in
describing our models.

In Section 5 we introduce `-sequences, which provide a generalization of the
“worlds” in the Kripke semantics of GLP0

ω introduced by Ignatiev. Then, Section
6 defines generalizations of Ignatiev models with arbitrary “depth” and “length”
and shows that indeed they provide models for GLP0

Λ.
In Section 7 we define topological models for GLP0

Λ; these are generalizations of
the polytopological spaces introduced by Icard. Finally, Section 8 proves sound-
ness and establishes conditions on these models under which GLP0

Λ is complete
for them.

§2. The logic GLP0
Λ. Let Λ be either an ordinal or the class of all ordi-

nals. Formulas of GLP0
Λ are built from ⊥ using Boolean connectives ¬,∧ and

a modality [ξ] for each ξ < Λ. As is customary, we use 〈ξ〉 as a shorthand for
¬[ξ]¬.

Note that there are no propositional variables, as we are concerned here with
the closed fragment of GLPΛ.

The logic GLP0
Λ is given by the following rules and axioms:

1. all propositional tautologies,
2. [ξ](φ→ ψ)→ ([ξ]φ→ [ξ]ψ) for all ξ < Λ,
3. [ξ]([ξ]φ→ φ)→ [ξ]φ for all ξ < Λ,
4. 〈ζ〉φ→ 〈ξ〉φ for ξ < ζ < Λ,
5. 〈ξ〉φ→ [ζ] 〈ξ〉φ for ξ < ζ < Λ.

A Kripke frame is a structure F =
〈
W, 〈Ri〉i<I

〉
, where W is a set and 〈Ri〉i<I a

family of binary relations on W . Since we are restricting to the closed fragment
we make no distinction between Kripke frames and Kripke models. To each
formula ψ in the closed modal language with modalities 〈i〉 for i < I we assign
a set JψKF ⊆W inductively as follows:

J⊥KF = ∅

J¬φKF = W \ JφKF

Jφ ∧ ψKF = JφKF ∩ JψKF

J〈i〉φKF = R−1
i JφKF .
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Often we will write 〈F, x〉 |= ψ instead of x ∈ JψKF.

It is well-known that polymodal GL is sound for F whenever R−1
i is well-

founded and transitive, in which case we write it <i. However, constructing
models of GLPΛ is substantially more difficult than constructing models of GL,
as we shall see.

§3. Motivation for our model. The full logic GLPΛ cannot be sound and
complete with respect to any class of Kripke frames. Indeed, let F = 〈W, 〈<ξ〉ξ<λ〉
be a polymodal frame.

Then, it is not too hard to check that

1. Löb’s axiom [ξ]([ξ]φ → φ) → [ξ]φ is valid if and only if <ξ is well-founded
and transitive,

2. the axiom 〈ζ〉φ → 〈ξ〉φ for ξ ≤ ζ is valid if and only if, whenever w <ζ v,
then w <ξ v, and

3. 〈ξ〉φ → [ζ]〈ξ〉φ for ξ < ζ is valid if, whenever v <ζ w, u <ξ w and ξ < ζ,
then u <ξ v.

Suppose that for ξ < ζ, there are two worlds such that w <ζ v. Then from 2 we
see that w <ξ v, while from 3 this implies that w <ξ w. But this clearly violates
1. Hence if F |= GLP, it follows that all accessibility relations (except possibly
<0) are empty.

However, this does not rule out the possibility that the closed fragments GLP0
Λ

have Kripke frames for which they are sound and complete. This turned out to
be the case for GLP0

ω and in the current paper we shall extend this result to
GLP0

Λ, with Λ arbitrary.
More precisely, given ordinals Λ,Θ, we will construct a Kripke frame IΘ

Λ with
‘depth’ Θ (i.e., the order-type of <0) and ‘length’ Λ (the set of modalities it
interprets). IΘ

Λ validates all frame conditions except for condition 3. We shall
only approximate it in that we require, for ξ < ζ,

v <ζ w ⇒ ∃ v′ <ξ w such that v′ -p v.

Here p will be a set of parameters and u′ -p u denotes that u′ is p-bisimilar to
u. The parameters p can be adjusted depending on φ in order to validate each
instance of the axiom.

One convenient property of the closed fragment is that it is not sensitive to
‘branching’. Indeed, consider any Kripke frame 〈W,<〉 for GL0. To each w ∈W
assign an ordinal o(w) as follows: if w is minimal, o(w) = 0. Otherwise, o(w) is
the supremum of o(v) + 1 over all v < w.

The map o is well-defined because models of GL are well-founded. Further,
because there are no variables, it is easy to check that o : W → Λ (where Λ is a
sufficiently large ordinal) is a bisimulation.

Thus to describe the modal logic of W it is enough to describe o(W ). We can
extend this idea to GLPΛ; if we have a well-founded frame F = 〈W, 〈<ξ〉ξ<Λ〉, we

can represent a world w by the sequence ~o(w) = 〈oξ(w)〉ξ<Λ, where oξ is defined

analogously to o. Thus we can identify elements of our model with sequences
of ordinals. It is a priori not clear that this representation suffices also for the
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polymodal case, and one of the main purposes of this paper is to see that it
actually does.

Moreover, there are certain conditions these sequences must satisfy. They
arise from considering worms, which are formulas of the form 〈ξ0〉 ... 〈ξn〉⊥. In
various ways we can see worms as the backbone of the closed fragment of GLP.
It is known that each formula of GLP0

Λ is equivalent to a Boolean combination of
worms. Moreover, in [1] it is shown that the axioms 〈α〉φ→ 〈β〉φ for α ≥ β and
〈β〉φ → [α]〈β〉φ for α > β can be restricted simultaneously to worms to obtain
an equivalent axiomatization of GLP0

Λ.
Given worms A,B and an ordinal ξ, we define A ≺ξ B if ` B → 〈ξ〉A. This

gives us a well-founded partial order.

In [9, 7], we study ~Ω(A) = 〈Ωξ(A)〉ξ<Λ, where Ωξ(A) is the order-type of A
under <ξ. This gives us a good idea of what sequences may be included in the

model; as it turns out, ~Ω(A) is a ‘local bound’ for ~o(w), giving rise to `-sequences
(see Section 5).

Our models naturally extend the model which was first defined and studied by
Ignatiev for GLP0

ω in [11], which in our notation becomes Iε0ω , as well as Icard’s
topological variant, which here would be denoted Tε0ω . Originally, Ignatiev’s
study was an amalgamate of modal, arithmetical and syntactical methods. In
[13] the model was first submitted to a purely modal analysis and [4] built forth
on this work. In this paper, we prove soundness and completeness with respect
to both topological and relational (Kripke) semantics. In doing so we use purely
semantic techniques, with the exception of a minor syntactic result from [1]
which is needed in the completeness proof. A precursor to this paper [6] deals
only with Kripke semantics and does not use the technique of hyperexponentials
and -logarithms as discussed below.

§4. Hyperexponentials and -logarithms. In this section we shall intro-
duce hyperexponentials and hyperlogarithms as a form of transfinite iteration of
the function −1 + ωξ and its left-inverse `, respectively. These iterations have
been used in [9] for describing well-orders in the Japardize algebra, and will be
essential in defining our semantics. We give only a very brief overview, but [5]
gives a thorough and detailed presentation.

We shall denote the class of all ordinals by On and the class of limit ordinals
by Lim.

Definition 4.1. Let e(ξ) = −1 + ωξ. Then, we define the hyperexponential
eζξ by the following recursion:

1. e0ξ = ξ
2. eξ0 = 0
3. e1 = e
4. eω

ρ+ξ = eω
ρ

eξ, where ξ < ωρ + ξ
5. eω

ρ

(ξ + 1) = lim
ζ→ωρ

eζ(eω
ρ

(ξ) + 1), provided ρ > 0

6. eω
ρ

ξ = lim
ζ→ξ

eω
ρ

ζ for ξ ∈ Lim, ρ > 0.

Proposition 4.1 (Properties of hyperexponentials). The family of functions
〈eξ〉ξ∈On has the following properties:



MODELS OF TRANSFINITE PROVABILITY LOGIC 5

1. eξ is always a normal function1,
2. given ordinals ξ, ζ, eξ+ζ = eξeζ

3. given ξ ∈ On, eξ+11 = lim
n→ω

eξn

4. given ξ ∈ Lim, eξ1 = lim
ζ→ξ

eζ1

5. if ξ < ζ then eξα ≤ eζα
6. if ξ + ζ = ζ then eξeζ = eζ

Definition 4.2. For ordinals ξ, ζ, define the hyperlogarithms `ξζ by the fol-
lowing recursion:

1. `0α = α
2. `ξ0 = 0
3. `ξ(α+ β) = `ξβ if β > 0
4. `ω

ρ+ξ = `ξ`ω
ρ

provided ξ < ωρ + ξ

5. `ω
ρ

eω
δ

ξ =


`ω

ρ

ξ if δ < ρ

ξ if δ = ρ

eω
δ

ξ if δ > ρ.

Note in particular that, if ξ = ζ + ωρ, then `ξ = ρ; this is the last exponent or
end-logarithm of ξ.

Proposition 4.2 (Properties of hyperlogarithms). Hyperlogarithms have the
following properties:

1. given ordinals ξ, ζ, `ξ+ζ = `ζ`ξ

2. `ζα ≤ `ξα whenever ξ < ζ
3. `ζα = `ζ`ξα whenever ξ + ζ = ζ.

Hyperlogarithms provide left-inverses for hyperexponentials:

Lemma 4.1. Given ordinals α, β, ξ,

1. if α = eξβ, then `ξα = β and
2. if α < eξβ, then `ξα < β.

In general, if ξ < ζ, then `ξeζ = e−ξ+ζ .

There is a close relation between the iterates eω
ρ

ξ and Veblen functions; this
is also described in detail in [8]. For example, we have the following:

Lemma 4.2. Given ρ > 0, an ordinal ξ lies in the range of eω
ρ

if and only

if, for all δ < ρ, we have that ξ = eω
δ

ξ. In particular, eω
ρ+1

enumerates the
fixpoints of eω

ρ

.

Like with Veblen functions, we may use hyperexponentials to give a sort of
notation system for ordinals.

Given an ordinal ξ, say an expression

ξ =
∑
i<I

eαiβi + n

1That is, strictly increasing and continuous.
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is a weak normal form if I, n < ω and 0 < βi < eαiβi for all i < I. Note that
weak normal forms are typically not unique; for example, we have

ωω = e21 = eω.

Say an ordinal ξ is definable by a set Γ if ξ has a weak normal form∑
i<I

eαiβi + n

where n < ω, each αi ∈ Γ and, inductively, Γ defines each βi. Every set of
ordinals defines 0.

Similar to Veblen normal forms, we have the following result:

Proposition 4.3. Every ordinal ξ has a weak normal form and hence is de-
finable by Γ large enough.

§5. `-sequences. In this section we shall describe the objects that are to be
the ‘worlds’ of our models. As stated before, these will be infinite sequences of
ordinals; however, they must not only be weakly decreasing, but rather rapidly
so. More specifically, they have to decrease at least as quickly as `ξ.

Given ξ < ζ, we denote by −ξ + ζ the unique ordinal η such that ζ = ξ + η.

Definition 5.1 (`-sequence). Let Θ,Λ be ordinals.
We define an `-sequence (of depth Θ and length Λ) to be a function

f : Λ→ Θ

such that, for every ζ ∈ (0,Λ), we have that

f(ζ) ≤ `−ξ+ζf(ξ)(1)

provided ξ < ζ is large enough.2

If further

f(ξ + ζ) = `ζf(ξ)

whenever ξ + ζ < Λ we say f is exact.

Let us see a few examples of `-sequences:

• The sequence f = 〈ωω+1, ω, 1, 0, . . .〉 is an `-sequence, but it is not exact,
since `ωω+1 > ω. Note that once a sequence becomes zero it stabilizes, so
we may represent sequences by their non-zero components.

• The sequence g = 〈ωω+1, ω + 1, 0, . . .〉 is an exact `-sequence. Note that
g(1) > f(1) yet g(2) < f(2).

• The sequence h given by

h(ξ) =


ε0 for ξ < ω

1 for ξ = ω

0 otherwise

is an exact `-sequence, since `ωε0 = 1. Compare this to h′ defined as h but
with h′(ω) = 0; h′ is also an `-sequence, but it is not exact.

2More precisely, given ζ ∈ (0,Λ) there is ϑ < ζ such that (1) holds whenever ξ ∈ [ϑ, ζ).
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As it turns out, to prove that an `-sequence is exact, one only needs to check
a fairly weak condition:

Proposition 5.1. Let f : Λ→ Θ. Then, the following are equivalent:

1. f is exact;
2. for all ζ there is ξ < ζ such that

f(ζ) = `−ξ+ζf(ξ).

Proof. A proof can be found in [5]. a
Another nice property of exact sequences which will be useful later is the

following:

Lemma 5.1. If f : Λ → Θ is an exact `-sequence with f(0) > 0 and f(ξ) = 0
for some ξ < Λ, then there exists a maximum ordinal λ such that f(λ) 6= 0.
Further, f(λ) is a successor ordinal.

Proof. Let λ be the supremum of all ξ such that f(ξ) > 0.
If λ is a successor ordinal, then it immediately follows that f(λ) > 0 (or λ

would not be the supremum).
Otherwise, write λ = γ + ωρ with ρ > 0 and let ϑ ∈ [γ, λ) be large enough so

that f(ξ) = f(ϑ) for all ξ ∈ [ϑ, λ); such a ϑ exists since f is non-increasing.
Then, for δ < ρ we have that

`ω
δ

f(ϑ) = f(ϑ+ ωδ) = f(ϑ),

from which it follows that f(ϑ) = eω
δ

f(ϑ).

Hence f(ϑ) is a non-zero fixpoint of eω
δ

for all δ < ρ, from which it follows
using Lemma 4.2 that it lies in the range of eω

ρ

and thus is of the form eω
ρ

α,
with α > 0.

But then,

f(λ) = `ω
ρ

f(ϑ) = `ω
ρ

eω
ρ

α = α 6= 0.

Meanwhile, from maximality of λ it follows that f(λ+1) = `f(λ) = 0, so f(λ)
must be a successor ordinal. a

We also have global characterizations for arbitrary `-sequences:

Proposition 5.2. Given f : Λ→ Θ, the following are equivalent:

1. f is an `-sequence
2. for every ζ ∈ (0,Λ),

(a) if ζ = ξ + 1, f(ζ) ≤ `f(ξ) and
(b) if ζ ∈ Lim,

f(ζ) ≤ lim
ξ→ζ

`−ξ+ζf(ξ)

3. for all ξ < ζ < Λ,

`f(ξ) ≥ `e−ξ+ζf(ζ)

4. for all ξ < ζ < Λ,

`f(ξ) ≥ `eω
`ζ

f(ζ).
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Proof. In principle 1 is stronger than 2; if (1) holds for ξ large enough, it
holds in the limit. Note that for a successor ordinal ζ, if any ϑ < ζ exists such
that (1) holds for ξ ∈ [ϑ, ζ), then we can always pick ϑ so that ζ = ϑ+ 1.

So we need only check that 2 implies 1 in the case of limit ordinals; but this
follows from the fact that any function satisfying 2 must be non-increasing (which
can be seen by a simple inspection) and thus limits are actually attained.

Likewise, 3 is in principle stronger than 4, because `e−ξ+ζf(ζ) ≥ `eω
`ζ

f(ζ)
independently of ζ, ξ.

Thus our claim will be established if we show that 1 implies 3 and 4 implies 1.
Assume f satisfies 1; let us check that it satisfies 3. For this we fix ξ and

proceed by induction on ζ.
Write ζ = γ + ωρ and pick ϑ < ζ so that (1) holds for all ξ′ ∈ [ϑ, ζ); without

loss of generality, we can assume ϑ ≥ γ, so that ζ = ϑ+ωρ. We may also assume
that ϑ > ξ, otherwise there is nothing to prove.

By induction on ϑ < ζ we have that

`f(ξ) ≥ `e−ξ+ϑf(ϑ).

Meanwhile, f(ζ) ≤ `ωρf(ϑ), so that by Lemma 4.1.2, eω
ρ

f(ζ) ≤ f(ϑ).
Thus

`f(ξ) ≥ `e−ξ+ϑeω
ρ

f(ζ) = `e−ξ+ϑ+ωρf(ζ) = `e−ξ+ζf(ζ),

which is what we wanted.
Finally, if f satisfies 4, let us show that it also satisfies 1.
Choose ζ ∈ (0,Λ). Note that if ζ = ξ + 1 is a succesor, we can set ϑ = ξ and

get [ϑ, ζ) = {ξ}, while

`f(ξ) ≥ `e1f(ζ) = f(ζ).

Thus we can assume otherwise and write ζ = γ + ωρ with ρ > 0.
A quick inspection should show that f is non-increasing, so we can pick ϑ ∈

[γ, ζ) such that f(ξ) = f(ϑ) for all ξ ∈ [ϑ, ζ). Because ϑ ≥ γ we also have that
−ξ + ζ = ωρ for all such ξ. But by assumption

f(ξ) ≥ `f(ξ) ≥ `eω
ρ

f(ζ) = eω
ρ

f(ζ).

Hence our claim will follow if we show that f(ξ) is in the range of eω
ρ

, since then
we can apply `ω

ρ

on both sides to obtain

`ω
ρ

f(ξ) ≥ f(ζ).

To see this, pick δ < ρ; in view of Lemma 4.2 it suffices to show that f(ξ) is a

fixpoint of eω
δ

.
Since f satisfies 4, in the case that δ = 0 we have that

`f(ξ) ≥ `e1f(ξ + 1) = f(ξ),

since ξ + 1 ∈ [ϑ, ζ), and this is only possible if ξ lies in the range of e1.
Otherwise, δ > 0 and we see that

`f(ξ) ≥ `eω
δ

f(ξ + ωδ) = eω
δ

f(ξ + ωδ);
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but δ < ρ so ξ + ωδ ∈ [ϑ, ζ), which implies that f(ξ + ωδ) = f(ξ) and thus this

becomes `f(ξ) ≥ eωδf(ξ). Hence f(ξ) ≥ eωδf(ξ); since eω
δ

is a normal function,

it follows that f(ξ) is a fixpoint of eω
δ

, as claimed. a

§6. Generalized Ignatiev models. Now rather than considering `-sequen-
ces in isolation, we will be interested in forming a structure out of all `-sequences
(possibly restricting depth and length). In this section we will generalize Ig-
natiev’s universal model for GLP0

ω to obtain models for GLP0
Λ, independently

of Λ. Our model combines ideas from Ignatiev’s construction with results from
previous sections to deal with limit modalities.

Definition 6.1 (generalized Ignatiev model). Given ordinals Θ,Λ, define a
structure

IΘ
Λ =

〈
DΘ

Λ , 〈<ξ〉ξ<Λ

〉
by setting DΘ

Λ to be the set of all `-sequences of depth Θ and length Λ. Define
f <ξ g if and only if f(ζ) = g(ζ) for all ζ < ξ and f(ξ) < g(ξ).

Suppose Γ is a set of ordinals and ξ is any ordinal. We define the Γ-norm ‖ξ‖Γ
as the least p < ω such that one of the following holds:

1. ξ = 0 and p = 0,
2. ξ = 1 and p = 1,
3. ξ = α+ β with α, β < ξ and ‖α‖Γ + ‖β‖Γ = p or
4. ξ = eγα with γ ∈ Γ and p = 1 + ‖α‖Γ.

Let us compute a few examples:

• 2 = 1 + 1 so ‖2‖Γ = 2 independently of Γ. More generally, ‖n‖Γ = n for
n < ω.

• ω = e11 so ‖ω‖{1} = 1 + ‖1‖{1} = 2. However, ‖ω‖∅ =∞, since ω cannot
be written without the use of e.

• ‖ε0‖{1} = ∞, since ε0 = eω1 and ε0 cannot be written with a smaller
exponent.

• ‖ωω+1‖{1} = 4, since

‖ωω+1‖{1} = ‖e1(ω + 1)‖{1}

= 1 + ‖ω + 1‖{1}

= 1 + ‖ω‖{1} + ‖1‖{1}

= 1 + 2 + 1

= 4.

Definition 6.2 (〈p,Γ〉-approximation). Given a natural number p and a fi-
nite set of ordinals Γ, we say β is a 〈p,Γ〉-approximation of α if β < α and
‖β‖Γ ≤ p.

Henceforth, we will say 〈p,Γ〉 are parameters if p < ω and Γ is a finite set of
ordinals.
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Clearly there are only finitely many 〈p,Γ〉-approximations of a given α, and
hence there is a maximum one: we denote it by bαcpΓ. It will be convenient to
stipulate b0cpΓ = −1 for every p,Γ.

The approximations bαcpΓ will be very useful to us. One very elementary
property they have is the following:

Lemma 6.1. If ‖ζ‖Γ ≤ p and ζ < ξ, then ζ ≤ bξcpΓ.

Proof. Obvious from Definition 6.2. a
One can produce exact sequences from any function with finite domain, as we

shall see.
Below, suppose that r : Γ→ Θ, where Γ ⊆ Λ is finite. We will define dom(r)

to be the sequence ~σ which enumerates Γ. In general, if a function s has domain
Γ we may write s : Γ→ Θ or s : ~σ → Θ indistinctly.

Definition 6.3 (dre). Let ~σ = 〈σi〉i≤I be a finite, increasing sequence of ordi-
nals containing zero with σI < Λ, r : ~σ → Θ be any function and δi = −σi+σi+1.

Define a sequence dre : Λ→ Θ by setting

dre(ξ) =



0 for ξ > σI

r(σI) + 1 for ξ = σI

r(σi) + 1 + eδidre(σi+1) for ξ = σi with i < I

`ζdre(σi) for ξ = σi + ζ < σi+1.

Observe that this operation always produces exact `-sequences:

Lemma 6.2. Given any finite Γ ⊆ Λ and r : Γ→ Θ, dre is an exact `-sequence.

Proof. We must establish that, given ζ < Λ, there is ξ < ζ such that

dre(ζ) = `−ξ+ζdre(ξ).
We make a few case distinctions:

ζ > σI : Here we observe that dre(σI) is a successor ordinal and thus `−σI+ζdre(σI) =
0 = dre(ζ).

ζ ∈ (σi, σi] and dre(ζ) > 0: Write ζ = σi+1 + ζ ′.

Then, dre(ζ) = `ζ
′dre(σi).

ζ = σi+1: In this case,

`−σi+σi+1dre(σi) = `δidre(σi)

= `δi
(
r(σi) + 1 + eδidre(σi+1)

)
= `δieδidre(σi+1)

= dre(σi+1).

a
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If ~γ = 〈γi〉i≤I is a finite, increasing sequence of ordinals with γ0 = 0, we define
∆~γ = {δi}i<I , where δi = −γi + γi+1.

Lemma 6.3. If ~σ = 〈σi〉i≤I is a finite, increasing sequence of ordinals below Λ,
r : ~σ → Θ is any function and Γ is a finite set of ordinals such that ‖r(σi)‖Γ ≤ p
whenever i ≤ I, then

‖dre(σi)‖Γ∪∆~σ ≤ (p+ 1)I

for all i ≤ I.

Proof. One can show that

‖dre(σi)‖Γ∪∆~σ ≤ (p+ 1)(I − i)

by a simple backwards induction on i, observing the definition of dre(σi). a
The following simple, well-known lemma can be quite useful:

Lemma 6.4. If α < ξ and β ≤ `ξ, then

α+ ωβ ≤ ξ.

Proof. By observation of the Cantor normal form of ξ. a
We can use constructions of the form dre to approximate `-sequences. For

this, the notion of a radius will be useful.

Definition 6.4. Given a function f : Λ→ Θ, say another function r : Γ→ Θ
is a radius3 around f if

1. Γ ⊆ Λ is a finite set of ordinals containing 0 and
2. if r(ξ) is defined then r(ξ) < f(ξ).

Lemma 6.5. If r is a function with finite domain ~σ = 〈σi〉i≤I ,

1. for every i ≤ I, r(σi) < dre(σi) and
2. if r is a radius around an `-sequence f , then for all ξ < Λ, dre(ξ) ≤ f(ξ).

Proof. Let g = dre.
That r(σi) < g(σi) is obvious from the definition of dre(σi), since it is always

of the form

r(σ) + ωρ(2)

for some ordinal ρ.
To see the other inequality, we use backwards induction on i, noting that it is

obvious when ξ ≥ σI or g(ξ) = 0.
So we may suppose that ξ ∈ [σi, σi+1) and g(ξ) > 0. Assume inductively that

f(ξ′) ≥ g(ξ′) provided ξ′ ≥ σi+1.
By Proposition 5.2.3 we have that

`f(ξ) ≥ `e−ξ+σi+1f(σi+1) ≥ `e−ξ+σi+1g(σi+1) = `g(ξ),

where the second inequality follows by our induction hypothesis and the mono-
tonicity of `e−ξ+σi+1 .

3The reason for this terminology should be clarified in Section 7.
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Noting that g(ξ) = γ + ω`g(ξ) for some γ < f(ξ) (possibly γ = 0) we can then
see using Lemma 6.4 that

f(ξ) ≥ γ + ω`g(ξ) = g(ξ),

as claimed. a
There is another very natural operation to consider on `-sequences, which

under some conditions gives us new `-sequences:

Definition 6.5 (λ-concatenation). Given sequences

f, g : Λ→ Θ,

we define their λ-concatenation

f
λ∗ g : Λ→ Θ

by

f
λ∗ g(ξ) =

{
f(ξ) if ξ < λ

g(ξ) otherwise.

Lemma 6.6. If f, g ∈ DΘ
Λ and g(λ) ≤ f(λ), then f

λ∗ g is an `-sequence.

If, further, g(λ) < f(λ), then f
λ∗ g <λ f .

Proof. Obvious from the definition of f
λ∗ g. a

We will often be interested in r of a specific form. Given an `-sequence f ,
a finite sequence of ordinals ~σ containing zero and p < ω, define a radius r =
r[f, ~σ, p] around f with domain ~σ by r(σi) = bf(σi)cp∆~σ. Then set

bfcp~σ = dr[f, ~σ, p]e.

The sequence bfcp~σ does not satisfy the same formulas of the modal language
as f , but it does satisfy the same formulas that are ‘simple enough’. To see
this we extend the notion of n-bisimulation to the slightly more general 〈p,Γ〉-
bisimulation:

Definition 6.6 (partial bisimulation). Given f, g ∈ DΘ
Λ and parameters 〈p,Γ〉,

we say f is 〈p,Γ〉-bisimilar to f (in symbols, f -p
Γ g) by induction on p as fol-

lows:
For p = 0, any two `-sequences are 〈p,Γ〉-bisimilar.
For p = q + 1, f -p

Γ g if and only if, for every γ ∈ Γ:

Forth: Whenever f ′ <γ f , there is g′ <γ g with f ′ -q
Γ g
′.

Back: Whenever g′ <γ g, there is f ′ <γ f with f ′ -q
Γ g
′.

The following is a well-known result from modal logic:

Theorem 6.1. If Γ includes all modalities appearing in φ and p is the modal
depth of φ, then whenever

〈
IΘ

Λ , f
〉
|= φ and f -p

Γ g, it follows that
〈
IΘ

Λ , g
〉
|= φ.

We may view Γ indistinctly as a set or a sequence and thus also speak of
〈p, ~σ〉-bisimulation. There is a close relation between 〈q, ~σ〉-approximation and
〈p, ~σ〉-bisimulation, as we shall see.
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Given p < ω, a finite sequence of ordinals ~σ = 〈σi〉i≤I and `-sequences f, g,
say f is 〈p, ~σ〉-close to g, in symbols f ∼p~σ g, if for all i ≤ I,

bf(σi)cp∆~σ = bg(σi)cp∆~σ.
It is not hard to check that f ∼p~σ g if and only if bg(σi)cp∆~σ < f(σi) and
bf(σi)cp∆~σ < g(σi) for all i ≤ I. From this observation we easily obtain the
following:

Lemma 6.7. Suppose that f, g are `-sequences, p < ω and ~σ = 〈σi〉i≤I a finite,
increasing sequence of ordinals with σ0 = 0.

Then, if for all i ≤ I, either

bf(σi)cp∆~σ < g(σi) ≤ f(σi)

or

bg(σi)cp∆~σ < f(σi) ≤ g(σi),

it follows that f ∼p~σ g.

Proof. In the first case, we already have bf(σi)cp∆~σ < g(σi), and from the
inequality g(σi) ≤ f(σi) it immediately follows that bg(σi)cp∆~σ < f(σi).

The second case is analogous, and since we obtained the desired inequalities
for each i ≤ I, we conclude that f ∼p~σ g, as claimed. a

Lemma 6.8. Let ~σ be a finite sequence of ordinals. If f, g are `-sequences such

that f ∼(I+1)p

~σ g, then g -p
~σ f .

Proof. We prove the claim by induction on p. By symmetry it is enough to
consider the ‘forth’ condition.

Suppose that f ∼(I+1)p+1

~σ g; we will show that f -p+1
~σ g.

Let f ′ <σi f . We must find g′ <σi g such that f ′ -p
~σ g′; by induction

hypothesis, it suffices to pick g′ such that f ′ ∼(I+1)p

~σ g′.
Let

g′ = g
σi∗ bf ′c(I+1)p

~σ .

First we must check that g′ is an `-sequence and g′ <σi g. However, by Lemma
6.6, it suffices to show that g′(σi) < g(σi).

It follows from Lemma 6.5 that g′(σi) ≤ f ′(σi), and since f ′ <σi f we have
that g′(σi) < f(σi). But by Lemma 6.3,

‖bg′c(I+1)p

~σ (σi)‖∆~σ ≤ I(I + 1)p + I ≤ (I + 1)p+1,

so that g′(σi) is an
〈
(I + 1)p+1,∆~σ

〉
-approximation of f(σi) and thus g′(σi) ≤

bf(σi)c(I+1)p+1

∆~σ . Now, by assumption

bf(σi)c(I+1)p

∆~σ < g(σi),

so g′(σi) < g(σi), as required.

We must also check that f ′ ∼(I+1)p

~σ g′; in other words, that for all j ≤ I,

bf ′(σj)c(I+1)p

∆~σ = bg′(σj)c(I+1)p

∆~σ .

But for j < i this follows from the assumption that g ∼(I+1)p+1

~σ f , while for j ≥ i
this follows form Lemmata 6.5 and 6.7. a
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From this we immediately obtain the following:

Corollary 6.1. Any formula satisfiable over IΘ
Λ is satisfied by an exact se-

quence f ∈ DΘ
Λ

Proof. Suppose that
〈
IΘ

Λ , g
〉
|= φ. Let p be the modal depth of φ and ~σ a

sequence of length I which contains 0 and every modality in φ. Let q = (I+ 1)p.
Then, by Lemmata 6.5 and 6.7,

f = bgcq~σ ∼
q
~σ g,

so that by Lemma 6.8, f -p
~σ g and hence by Theorem 6.1,

〈
IΘ

Λ , f
〉
|= φ. Mean-

while, by Lemma 6.2, f is exact, as desired. a

§7. Generalized Icard topologies. Corollary 6.1 is a generalization of a
known result; it has been observed in the past that Ignatiev’s model has “too
many points” in the sense that any formula can be satisfied on the main axis,
i.e. the set of exact `-sequences. However, these extra points are necessary if we
wish to have Kripke semantics.

If we allow for topological semantics, then the main axis suffices.
We first note that the main axis of IΘ

Λ can be identified with Θ in a canonical

way, via the injection α 7→ ~̀α, where

~̀α =
〈
`ξα
〉
ξ<Λ

.

Thus we can embed Θ into DΘ
Λ , and the image is precisely the main axis. Our

goal for this section is to construct topologies Tλ for λ < Λ which give us a
polytopological model of GLP0

Λ. For this, let us review the derived-set semantics
of modal logic.

Recall that a topological space is a pair X = 〈X, T 〉 where T ⊆ 2X is a family
of sets called ‘open’ such that

1. ∅, X ∈ T
2. if U, V ∈ T , then U ∩ V ∈ T and
3. if U ⊆ T then

⋃
U ⊆ T .

Given A ⊆ X and x ∈ A, we say x is a limit point of A if, given U ∈ T such
that x ∈ U , we have that (A \ {x}) ∩ U 6= ∅. We denote the set of limit points
of A by dA, and call it the ‘derived set’ of A.

We can define topological semantics for modal logic by interpreting Boolean
operators in the usual way and setting

J3ψKX = d JψKX .

A polytopological space is a structure X =
〈
X, 〈Ti〉i<I

〉
, where each Ti is a

topology. The derived set operator corresponding to Ti shall be denoted di. We
can give conditions on the family of topologies so that GLPΛ is sound for X, and
indeed GLPω is complete for these semantics [2].

Below, a topological space 〈X, T 〉 is scattered if every non-empty subset A of
X has an isolated point; that is, if given x ∈ A there is a neighborhood U of x
(i.e., x ∈ U ∈ T ) such that U ∩A = {x}.

We then have:
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Lemma 7.1. Let Λ be an ordinal and X = 〈X, 〈Tξ〉ξ<Λ〉 be a polytopological
space.

Then,

1. Löb’s axiom [ξ]([ξ]φ → φ) → [ξ]φ is valid on X whenever 〈X, Tξ〉 is scat-
tered,

2. the axiom 〈ζ〉φ→ 〈ξ〉φ for ξ ≤ ζ is valid whenever Tξ ⊆ Tζ and
3. 〈ξ〉φ→ [ζ]〈ξ〉φ for ξ < ζ is valid if, whenever A ⊆ X, dξA ∈ Tζ .

Proof. See, for example, [2]. a
Although non-trivial spaces with these properties exist, they are hard to con-

struct, and as in the case of Kripke semantics it turns out that restricting to the
closed fragment significantly simplifies things.

Before defining our topological models, we recall the notion of a subbasis.
Every collection of sets S ⊆ X such that

⋃
S = X gives rise to a least topology

T containing S. In this case we say S is a subbasis for T . The elements of T are
characterized as follows: U ⊆ X is open if and only if, for every x ∈ U , there
exists a finite subset N of S such that

x ∈
⋂
N ⊆ U.

Finite intersections of sets in a subbasis are called basic sets4.
Our goal now is to build a sequence of topologies Tλ on Θ such that the

resulting polytopological space is a model of GLPΛ.
For this it will be convenient to assign three topological spaces to each ordinal

ξ. We set:

1. ξ⊥ to be ξ with the trivial topology, i.e., the only opens are ∅ and all of ξ;
2. ξI to be ξ with the initial segment topology, i.e. opens are intervals [0, γ),

with γ ≤ ξ + 1;
3. ξO to be ξ with the order topology, i.e. with the topology generated by

intervals of the form5 (α, β] or [0, β] with β ≤ ξ + 1.

For λ < Λ define a topology Tλ on |Θ|Λ (the bars indicate that exponentiation
is taken set-theoretically, not as ordinals) by setting, for λ < Λ, Tλ to be the
product topology ∏

ξ<λ

ΘO ×ΘI ×
∏
λ<ξ

Θ⊥.

Note that DΘ
Λ is a subset of |Θ|Λ and, in turn, Θ can be seen as a subspace

of DΘ
Λ via the injection ~̀. Hence Tλ induces a topology on Θ as a subspace of

|Θ|Λ; we will not make a distinction and also denote this topology by Tλ.
Equivalently, we can define Tλ by the subbasis consisting of intervals on coor-

dinates below λ and initial segments on λ. More precisely, subbasic sets are of
the form

(α, β]ξ = {f : α < f(ξ) ≤ β}

4Of course not all bases are of this form, but this characterization will suffice for our
purposes.

5Normally one defines order topologies using intervals of the form (α, β). But since we are

dealing with ordinals, we can always rewrite (α, β] as (α, β + 1), and thus intervals that are

closed on the right are also open.
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for some α < β ≤ Θ and ξ < λ, or of the form

[0, β]ξ = {f : f(λ) ≤ β}

for ξ ≤ λ.
We will call the resulting polytopological space TΘ

Λ . We interpret 〈λ〉 by
J〈λ〉AKTΘ

Λ
= dλ JAKTΘ

Λ
, i.e., the derivative operator with respect to the topol-

ogy Tλ.

There is a close connection between neighborhoods of ξ and radii r around ~̀ξ.
To see this, consider a Tλ-neighborhood of ξ

U =
⋂
i≤I

(αi, `
σiξ]σi ∩ [0, `λξ]λ,

where all σi < λ; sets of this form form a basis for Tλ.
Then define a radius r around f by r(σi) = αi. We can identify U with r and

indeed will write U = Bλr (ξ). Specifically, if dom(r) = 〈σ0〉i≤I with σI < λ, set

Bλr (ξ) =
⋂
i≤I

(r(σi), `
σiξ]σi ∩ [0, `λξ].

Thus we have a basis of Tλ such that neighborhoods of a point ξ are identified

with radii around ~̀ξ.
Moreover, there is a sense in which Tλ is ‘irreflexive’ in much the same way as

<λ:

Lemma 7.2. Given ξ ≤ Θ and λ < Λ, there is a Tλ-neighborhood U of ξ such
that whenever ζ ∈ U satisfies `λζ = `λξ, it follows that ζ = ξ.

Proof. By induction on λ.
If `λξ = 0, let ρ be the supremum of all ζ such that `ζξ > 0. By Lemma

5.1, ρ is actually a maximum6 and `ρξ is a successor ordinal γ + 1. Pick a Tρ-
neighborhood V of ξ such that ξ is the only element of V with `ρξ = γ+ 1; such
a neighborhood exists by induction hypothesis. It is not hard to check that ξ is
then the only element of U = V ∩ (γ, γ + 1]ρ ∈ Tλ, as desired.

Now assume that `λξ > 0 and write λ = α+ωρ. By induction hypothesis, there
is a Tα-neighborhood V of ξ such that there is no ζ 6= ξ in V with `αζ = `αξ.

Now write `αξ = γ + ωβ , and let U = V ∩ (γ, γ + ωβ ]ρ; we claim that U has
the desired property.

Indeed, if ζ ∈ U has `λζ = `λξ, this means that

`ω
ρ

`αζ = `λξ,

i.e. `αζ is of the form δ + eω
ρ

`λξ.
But we also know that

`ω
ρ

`αξ = `λξ,

so `αξ is also of the form δ′ + eω
ρ

`λξ; in particular this implies that

ωβ = eω
ρ

`λξ.

6Unless ξ = 0, in which case the claim is trivial, as {0} is open in all Tλ.
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But clearly the only element in the interval (γ, γ + ωβ ] which is of this form
is γ + ωβ itself, so it follows that

`αζ = γ + ωβ = `αξ.

By assumption ξ was the only element in U with this property, and we conclude
that ζ = ξ. a

We need one last simple definition before proving the main result of this sec-
tion.

If r, s are radii around f , define t = r t s by

t(ξ) =


r(ξ) if r(ξ) is defined but s(ξ) is not,

s(ξ) if s(ξ) is defined but r(ξ) is not,

max{r(ξ), s(ξ)} if r(ξ) and s(ξ) are both defined;

everywhere else, t(ξ) is undefined.
Then, one readily sees that

Bλrts(f) = Bλr (f) ∩Bλs (f).

We are now ready to prove the following:

Theorem 7.1. Given ξ < Θ and a formula ψ,〈
TΘ

Λ , ξ
〉
|= ψ ⇔

〈
IΘ

Λ ,
~̀ξ
〉
|= ψ.

Proof. We prove this by induction on ψ, where the cases for Booleans are
trivial and we focus only on modal operators.

First assume that
〈
IΘ

Λ ,
~̀ξ
〉
|= [λ]ψ. Let ~σ be an increasing sequence including

0 as well as all modalities appearing in ψ and let p be the modal depth of ψ. Let
J be the largest index such that σJ < λ.

Use Lemma 7.2 to find a Tλ-neighborhood V of ξ such that ξ is the only
element ζ in V with `λζ = `λξ, and let

U = V ∩
⋂
i≤J

(
b`σiξc(I+1)p

∆~σ , `σiξ
]
σi
∩ [0, `λξ]λ.

Let ζ 6= ξ ∈ U be arbitrary and consider f = ~̀ξ
λ∗ b~̀ζc(I+1)p

~σ . We know that

ζ ∈ V , so f(λ) ≤ `λζ < `λξ and thus f <λ ~̀ξ; since we had assumed that〈
IΘ

Λ ,
~̀ξ
〉
|= [λ]ψ, it follows that

〈
IΘ

Λ , f
〉
|= ψ.

For i ≤ J we obtain the inequality

bf(σi)c(I+1)p

∆~σ < `σiζ ≤ f(σi)

from the assumption that ζ ∈ U and for i > J we can see that

b`σiζc(I+1)p

∆~σ < f(σi) ≤ `σiζ

using Lemma 6.5; thus from Lemma 6.7 we have that f ∼(I+1)p

~σ
~̀ζ. It follows by

Lemma 6.8 and Theorem 6.1 that
〈
IΘ

Λ ,
~̀ζ
〉
|= ψ as well, and from our induction

hypothesis, that
〈
TΘ

Λ , ζ
〉
|= ψ. Since ζ ∈ U was arbitrary, we conclude that〈

TΘ
Λ , ξ

〉
|= [λ]ψ, as claimed.
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Now suppose that 〈IΘ
Λ ,
~̀ξ〉 |= 〈λ〉ψ, so that for some g <λ ~̀ξ we have that〈

IΘ
Λ , g

〉
|= ψ, and let U be any Tλ-neighborhood of ξ. Then, U contains a

neighborhood of ξ of the form Bλs (ξ) for some radius s around ~̀ξ.
Let ~σ = 〈σi〉i≤I be the sequence of all modalities in ψ and p be greater than

the modal depth of ψ.
Let r = r[f, ~σ, p]7 and t = s t r.
Now, let h = dte. By Lemma 6.2, h is exact, so that h = ~̀η for η = h(0). By

Lemma 6.5 we have that η ∈ U , since h(ζ) ∈ (s(ζ), `ζξ] whenever s(ζ) is defined.

By Lemmata 6.5 and 6.7 we have that g ∼(I+1)p

~σ h, since

h(σi) ∈
(
b`ζξc(I+1)p

∆~σ , `ζξ
]

for all i ≤ I.
Therefore, by Lemma 6.8, g -p

~σ h. It follows by Theorem 6.1 and induction

on ψ that
〈
TΘ

Λ , η
〉
|= ψ.

Since U was arbitrary we conclude that〈
TΘ

Λ , ξ
〉
|= 〈λ〉ψ.

a

§8. Soundness and completeness. In this section we shall see that GLP0
Λ

is sound for both IΘ
Λ and TΘ

Λ , as well as complete, provided that Θ is large
enough.

Indeed, the soundness of the logics follows rather straightforwardly from our
previous work.

Theorem 8.1. GLP0
Λ is sound for both IΘ

Λ and TΘ
Λ .

Proof. Most of the rules and axioms of GLP are standard, and we consider
only the more unusual cases.

Note that, since IΘ
Λ and TΘ

Λ satisfy the same set of formulas, it suffices to check
that each axiom is validated in one of these structures.

[ξ] ([ξ]φ→ φ)→ [ξ]φ: This axiom is valid over IΘ
Λ due to the transitivity and

well-foundedness of <ξ.
〈ζ〉φ→ 〈ξ〉φ, provided ξ < ζ: This axiom is valid over TΘ

Λ because Tζ is a
refinement of Tξ (Lemma 7.1.2).

〈ξ〉φ→ [ζ] 〈ξ〉φ, provided ξ < ζ: This axiom is valid over IΘ
Λ , given that if

f <ζ g and f <ξ h, since g(ϑ) = f(ϑ) for all ϑ < ζ, it follows that h <ξ g.

a
Before proceeding to consider completeness, let us see that ‘long’ `-sequences

have large initial coordinates:

Lemma 8.1. Given ordinals λ < Λ and n < ω, there exists an `-sequence f
with f(λ) = n and f(0) = eλn; furthermore, if g is any `-sequence with g(λ) ≥ n,
then g(0) ≥ f(0).

7I.e., for i ≤ I, r(σi) = b`σiξc(I+1)p

~σ
and r(ζ) is undefined otherwise.
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Proof. First we shall construct an `-sequence f with f(0) = eλn and f(λ) =
n, for any ordinal λ and n < ω.

Consider f : Λ→ Θ given by

f(ξ) = `ξeλn.

Clearly f is an exact `-sequence and, further,

f(λ) = `λeλn = e−λ+λn = n,

while f(0) = eλn.
Now assume that g(λ) ≥ n. By Proposition 5.2, `g(0) ≥ `eλn, which clearly

implies that g(0) ≥ eλn. a
To continue we will need a syntactic result which is proven in [1]. There it is

stated in the more general setting of Japaridze algebras, which generalize both
Kripke models and topological models; here we will state it for Kripke models,
which are sufficient for our purposes.

Theorem 8.2. Let F = 〈W, 〈Rξ〉ξ<Λ〉 be a Kripke frame such that F |= GLP0
Λ.

Then,

1. If Λ = λ+ 1 and for all n < ω, 〈λ〉n> is satisfied on F or
2. if Λ is a limit ordinal and for all λ < Λ, 〈λ〉> is satisfied on F,

then GLP0
Λ is complete for F.

With this we may state and prove our main completeness result:

Theorem 8.3. The following are equivalent:

1. GLP0
Λ is complete for IΘ

Λ

2. GLP0
Λ is complete for TΘ

Λ

3. Θ ≥ eΛ1.

Proof. Since IΘ
Λ and TΘ

Λ satisfy the same set of formulas, it suffices to show
that 1 and 3 are equivalent.

First suppose that Λ = λ+ 1 is a successor ordinal.
Then, in view of Theorem 8.2, GLP0

Λ is complete for IΘ
Λ if and only if IΘ

Λ

satisfies 〈λ〉n> for all n < ω. The latter is equivalent to the claim that, given
n < ω, there exists fn ∈ DΘ

Λ with fn(λ) ≥ n; by Lemma 8.1.1, such an fn exists
if and only if Θ > eλn. But this must hold for all n < ω, which by Proposition
4.1.3 is equivalent to

Θ ≥ lim
n→∞

eλn = eλ+11.

If Λ is a limit ordinal, the argument is similar; here GLP0
Λ is complete for IΘ

Λ

if and only if it satisfies 〈λ〉> for all λ < Λ, which is equivalent to the condition
that, for all λ < Λ, there is fλ ∈ DΘ

Λ with fλ(λ) ≥ 1. By Lemma 8.1.1, such
an fλ exists if and only if Θ > eλ1. But this must hold for all λ < Λ; using
Proposition 4.1.4, this is equivalent to

Θ ≥ lim
λ→Λ

eλ1 = eΛ1.

a
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