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Abstract

This paper analyses a selection of articles from European transport regula-
tions that contain algorithmic information, but may be problematic to imple-
ment. We focus on issues regarding the interpretation of tachograph data and
requirements on weekly rest periods. We first show that the interpretation
of data prescribed by these regulations is highly sensitive to minor variations
in input, such that near-identical driving patterns may be regarded both as
lawful and as unlawful. We then show that the content of the regulation may
be represented in mondadic second order logic, but argue that a more com-
putationally tame fragment would be preferrable for applications. As a case
study we consider its representation in linear temporal logic, but show that
a representation of the legislation requires formulas of unfeasible complexity,
if at all possible.

Keywords: linear temporal logic, monadic second order logic, formalized
law, transport regulations, automated law enforcement, tachograph

?This paper is part of the project RTC-2017-6740-7 funded by the “Ministry of Sci-
ence, Innovation and Universities”, the “State Agency for Research” and the “European
Regional Development Fund” (ERDF). David Fernández-Duque’s research was partially
supported by COST Action 17124 DigForAsp, supported by COST (European Coopera-
tion in Science and Technology), www.cost.eu.
∗Corresponding author
Email addresses: anadealmeidagabriel@ub.edu (Ana de Almeida Borges),
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1. Introduction

The authors of the paper are involved in research projects in collaboration
with industry, lawyers and legislators, where the main goal is to develop
verified legal software. The industrial and social need is evident: various
legal decisions are made on the basis of algorithmic processing of data, in
consequence of which individuals can be fined or even sent to jail. Software
contains errors, but in the legal context such errors should not be acceptable.

In particular, the above-mentioned projects have as first and main object-
ive to eradicate errors from software that interprets data from tachographs.
A tachograph is to a truck what a black-box is to an aeroplane: it registers
all kinds of activities from the truck and driver, such as speed, movement
and others. In practice, a police officer may pull a truck over for an inspec-
tion where the tachograph data is read and interpreted by some software.
Depending on the verdict of the program, the driver may be instantly fined
or sometimes even imprisoned. It is known that many erroneous automated
verdicts are issued. This is highly undesirable both from an industrial and
from a civil rights perspective. It is here that logic tries to come to the rescue.

The aim of the project is to recast the transport legislation into an unam-
biguous, mathematically formulated language, such that proof-checkers may
show that the developed code indeed satisfies the legislation. This paradigm
allows us to honestly speak of error-free software.1

The multi-disciplinary nature of the project poses many challenges. For
one, legislation is often intended to leave room for various interpretations and
applications of the law. In contrast, mathematical definitions and algorithms
are deterministic in nature and disallow ambiguity. The main mitigation of
this challenge seems to be the accepted tendency to require unambiguous
laws if they prescribe an algorithm. We will show how easily overlooked
subtleties in the law could produce drastic changes in the output, possibly
making a legal sequence of activities appear to be illegal.

Section 2 gives a basic introduction to the aspects of the European trans-
port regulations that we work with. Sections 3-6 are devoted to treating the
problems mentioned above and are largely based on [1].

Once this data has been appropriately processed, Sections 7-10 are largely

1It has its subtleties, though. Software will be as good as the specification, which may
be erroneous, and we must trust the small kernel of the proof-checker, apart from the
hardware and middle-ware involved.
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based on [2] and devoted to the next challenge, which lies in choosing the
right ontology and logico-mathematical framework in which to recast the
interpreted and disambiguated laws. We will argue that the content of the
European regulation can be modelled in monadic second order logic (MSO)
and its fragments.2

To illustrate this claim we identify some passages that may be problematic
from a logical perspective, most notably because they involve second order
quantification. All laws we consider will fall in the Σ1

1 fragment of monadic
second-order logic, and model-checking formulas in this fragment can be re-
duced to satisfiability of first-order formulas. Nevertheless, this satisfiability
problem is pspace-complete, so we argue that such laws should instead be
representable in a comptuationally tame fragment of MSO. We justify the
use of linear temporal logic (LTL) as a case-study to explore the represent-
ability in such a fragment, but show that the law cannot be represented by
an LTL formula of ‘reasonable’ complexity.

2. European transport regulations

Regulation (EU) 2016/799 [5] lays down the requirements for the use
of tachographs – digital devices that record the activities of road transport
drivers. This data is used to determine whether drivers have complied with
Regulation (EC) 561/2006 [6], which is written assuming a minute-by-minute
temporal resolution. Items (51) and (52) of Regulation (EU) 2016/799 regu-
late how the second-by-second data recorded by tachographs is to be trans-
lated into a minute-by-minute format. They read as follows:

(51) Given a calendar minute, if DRIVING is registered as the activity
of both the immediately preceding and the immediately succeeding
minute, the whole minute shall be regarded as DRIVING.

(52) Given a calendar minute that is not regarded as DRIVING according to
requirement 051, the whole minute shall be regarded to be of the same
type of activity as the longest continuous activity within the minute
(or the latest of the equally long activities).

2To be precise, we claim that MSO is suitable for formalizing the algorithmic content of
the European transport regulation. A general formalization of the law with its obligations,
prohibitions, and permissions, involves deontic reasoning which, it has been argued, cannot
be adequately captured within temporal or first order reasoning [3, 4].
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Once data has been formatted according to these items, it must be
checked whether they comply with Regulation (EC) 561/2006. For instance,
drivers must have a weekly rest period (similar to a weekend), as prescribed
by the following articles.

§4(h) ‘regular weekly rest period’ means any period of rest of at least 45
hours.

§4(i) ‘a week’ means the period of time between 00.00 on a Monday and
24.00 on the following Sunday.

§8.6. In any two consecutive weeks, a driver shall take at least:

• two regular weekly rest periods, or

• one regular weekly rest period and one reduced weekly rest period
of at least 24 hours. However, the reduction shall be compensated
by an equivalent period of rest taken en bloc before the end of the
third week following the week in question.

A weekly rest period shall start no later than at the end of six 24-hour
periods from the end of the previous weekly rest period.

§8.7. Any rest taken as compensation for a reduced weekly rest period shall
be attached to another rest period of at least nine hours.

§8.9. A weekly rest period that falls in two weeks may be counted in either
week, but not in both.

We have selected these passages because they have been particularly prob-
lematic during our attempts at implementing the law. There are of course
other conditions that drivers must comply with (e.g. daily rest periods), but
we will ignore them for the sake of exposition.

3. Potential issues with the regulations

In this section we informally discuss some potential pitfalls that may
occur when implementing the above-mentioned regulation. Later in the text
we provide a more rigorous analysis of these issues. We begin with the items
of Regulation (EU) 2016/799.
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3.1. Order of application

Requirement (51) is problematic in that it refers to an activity being re-
gistered in function of the preceding and succeeding minute, with no previous
reference to when an activity is considered registered. To be able to apply
Requirement (51), one needs to have previously registered some activity, and
only in (52) is a criterion for doing so established.

However, since Requirement (52) references Requirement (51), it seems
clear that in some sense (51) precedes (52). One possible interpretation is
that the requirements are to be applied as many times as needed to satisfy
both statements: we would have the chain of applications (51)-(52)-(51)-
(52)-· · · . In Section 5 we will prove that this sequence of applications is
equivalent to the sequence (52)-(51).

Another interpretation, which in a legal context might seem more cus-
tomary, is that the requirements are to be applied in the order of appearance,
(51)-(52). In this case, after the application of (52) it is possible to reach a
configuration that violates (51), as we shall see in Section 5.

In any case, the ambiguity of the regulation is undeniable. If we trace
these requirements back in time, we find that there was another sentence
immediately preceding (51) which was removed by an amendment in Com-
mission Regulation (EU) 1266/2009 [7], changing the global meaning of the
excerpt. Despite these issues, in this paper, we will restrict our attention to
the legal text in its current form.

Since the internal functioning of commercial tachographs is subject to
proprietary software restrictions, we cannot freely check the implementation
of the regulation that they have chosen. However, Guretruck S.L. has conduc-
ted experimental tests and deduced from them that commercial tachographs
apply Requirement (52) followed by Requirement (51), which is a dubious
interpretation of the law. They also disregard leap seconds, which are part
of the UTC time standard prescribed by Regulation (EU) 2016/799.

Guretruck S.L. has conducted experimental tests with real-world driver
data as well, finding that the minute labellings computed with the proper
UTC calendar vary up to 8% of driving time with respect to the minute
labellings computed disregarding leap seconds, even using a small sample of
driver files.

3.2. Placement of weekly rest periods

Let us consider a case implied by Article §8 of Regulation (EC) 561/2006
(see Figure 1). Each letter-divided segment denotes a week and the smaller
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segments denote a day. Furthermore, each serpentine line denotes weekly
rest periods of 68 hours except the last one, which only lasts 45 hours.

A B C D E F G

Figure 1: Six weeks of activity of a hypothetical driver.

Figure 1 represents the activities of a driver who starts resting Saturday at
00:00h and retakes her activity on Monday at 20:00h. Then, until the fourth
week, the driver periodically starts her weekly rest on Sunday at 00:00h and
retakes her activity on Tuesday at 20:00h. During the sixth week she rests
45 hours, from Monday at 20:00h to Wednesday at 17:00h.

Since all except the last of these weekly rest periods fall between two
weeks, it is reasonable to want to find a procedure that will determine whether
there exists a way of counting each of them within one week or the other as
per §8.9 such that the situation becomes legal.

In our simple example, the segment FG has a fixed rest period of 45 hours.
In the remaining weeks we have to choose where to assign the resting periods,
but it is evident that we cannot arrange them in a way that makes the whole
interval AG legal. One might argue that this situation is a bit controversial,
given that all other articles exposed above except §8.9 are complied beyond
their minimum requirements.

Here, the Regulation does not pose a logical problem, nor is it inconsist-
ently worded. But logic is not entirely unrelated to this issue. The complexity
that results from §8.9 generates a potential combinatorics problem. As an
example, we could encounter situations which follow the structure from Fig-
ure 1 with many more occurrences of the in between segments. Verifying the
legality of the situation could, in principle, require checking a large number
of possible assignments of rest intervals to weeks. This non-locality feature
has been discussed and formalised in Coq [8].

3.3. Timing of compensations

The second potential source of problems comes from the compensation
mechanism of §8.6. To illustrate it, we construct weeks A, B, and Ci, 1 ≤
i ≤ n such that the sequences A | C1 | . . . | Cn and C1 | . . . | Cn | B are
both legal, but the full sequence A | C1 | . . . | Cn | B is not. The question
then arises: where is the illegality? It is in the combination between A and
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B, where A and B can be arbitrarily far apart from each other. Clearly this
is not a good feature for a law.

Throughout this subsection, line segments represent weeks, and the num-
bers attached to them represent the number of hours rested during each
week. In Figure 2, the first and last segments represent the weeks A and B
we mentioned before.

A

44 45 45 45 24 45

B

Figure 2: Illegal interval of six consecutive weeks performed by a hypothetical driver.

As shown in Figure 3, if we do not consider the last week, the remaining
interval is rendered legal by the law, for we can assume that the hours to be
compensated will be incorporated in the week we omitted.

A

44 45 44+1 45 24 45+1

Figure 3: First five weeks of the example represented in Figure 2, together with a possible
sixth week that would make the whole interval legal.

Similarly, if we remove week A from the example of Figure 2, the resulting
interval (represented in Figure 4) is also legal, since we can assume that
the compensation for the fourth week takes place in the weeks outside our
interval.

45 45 45 24

B

45 45+21

Figure 4: Last five weeks of the interval represented in Figure 2, together with a possible
sixth week that would make the whole interval legal.

However, the interval of Figure 2 is illegal, as Figure 5 illustrates. This is
because after compensating the first week according to article §8.6, we still
have to compensate one hour, but we cannot allocate it within any of the
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three following weeks without having two consecutive reduced weekly rest
periods.

A

44 45 44+1 45 24

B

45

Figure 5: An attempt to assign compensations (dashed lines) that ultimately fails.

This example can be generalized to ensure that A and B are n weeks
apart. The corresponding interval (illustrated in Figure 6) has a similar
structure to the one we have treated. The first week has a 44 hour weekly
rest period, and all the following weeks have 45 hour weekly rest periods
except for the penultimate one, which has a 24 hour weekly rest period.

44

A

45 45 24 45

B

Figure 6: General example of an illegal interval that is legal when A or B is erased.

In this situation if we omit one of the weeks A or B the remaining interval
will be legal, but the interval as it stands is illegal.

4. Second and minute labellings

In this section we will formalize the concepts and terminology we use for
modelling labellings obtained from tachographs. We are given a list of con-
secutive seconds with their activity assigned by the tachograph. To represent
the seconds, we will use the integer numbers Z. The space of activities will
be A := {driving,rest,availability,work,unknown}. A labelling is
any function f : D → A, where D ⊆ Z is an interval. Although D is finite in
practice, in this section we will assume for convenience that D = Z; this is
not an issue since we may extend f by letting f(x) = unknown for x 6∈ D.
We will use the following convention: when Z is being interpreted as seconds,
we will say that S : Z → A is a second labelling, and when Z is interpreted
as minutes, we will say that M : Z→ A is a minute labelling.

When dealing with time shifts, we also use Z to represent the list of
minutes of the calendar and we encode a shift as an integer d ∈ Z. The
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set Z60 is the set of integers from 0 to 59, both included. Given a shift d,
we convert seconds to pairs consisting of a minute and a second of minute
through a function cd : Z→ Z× Z60 defined for each second s ∈ Z as:

cd(s) :=

(⌊
s− d

60

⌋
, (s− d)%60

)
,

where % denotes the Euclidean division remainder. We use cd0 for the first
component of cd and cd1 for the second.

Summarising, the calendar is such that minute 0 starts exactly at second
d, minute 1 starts at second d+ 60, and so on.

Example 4.1. Given a shift d = 20, we have that c20(30) = (0, 10), meaning
that second 30 is the second 10 of the minute 0.

Requirements (51) and (52) give instructions for converting a second la-
belling to a minute labelling, corresponding to the following transformations.

Definition 4.2. Given a minute labellingM : Z→ A, we define the labelling
after applying Requirement (51) as R51(M) : Z→ A defined, for i ∈ Z, by:

R51(M)(i) :=

{
driving if M(i− 1) =M(i+ 1) = driving,

M(i) otherwise.

Definition 4.3. Given a shift d, a second labelling S : Z→ A and a minute
labelling M : Z → A, we define the labelling after applying Requirement
(52) as the minute labelling R52(d, S,M) : Z→ A defined, for i ∈ Z, by:

R52(d,S,M)(i) :=

{
A(d,S, i) if M(i) = unknown,

M(i) otherwise,

where A(d,S, i) is the activity a ∈ A such that S−1(a)∩ [d+60i, d+60i+60)
contains the rightmost interval of maximal length.

In words, A(d,S, i) is the activity a that either contains the longest con-
secutive interval among all activities, or if there is a tie, then a has an interval
of maximal length that is to the right of that for any other activity.
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5. Order of application

Next we show that the application of Requirements (51) followed by (52),
with no further applications, might yield a configuration where (51) is viol-
ated as requirement, while the application of (52) followed by (51) is stable:
no further applications of either requirement produce any changes.

Definition 5.1. The unknown labelling is the minute labelling U : Z → A
such that, for all i ∈ Z, U(i) = unknown.

The algorithm starts as follows: we are given a second labelling S from
the tachograph, a shift d given by the calendar that we are using, and the
unknown labelling U as a starting minute labelling in which nothing is re-
gistered yet. Now, we can apply R51 and R52 above. It is an easy observation
that R51(U) = U , since there is no driving registered yet.

Theorem 5.2. Let U be the unknown labelling. There are second labellings
S and shifts d such that R52(d,S,R51(U)) 6= R51

(
R52(d,S,R51(U))

)
, i.e.,

such that the application of Requirement (51) after the application of Re-
quirements (51) and (52) still changes the minute labelling.

Proof. Consider, for instance, d = 0 and S(s) := driving if c0
0(s) is even,

S(s) := rest otherwise. In this case, for any i ∈ Z,

R52(0,S,R51(U))(i) = R52(0,S,U)(i) =

{
driving if i is even,

rest otherwise,

and R51
(

R52(d,S,R51(U))
)
(i) = driving.

Now, we are going to prove that, once we have applied Requirement (52)
followed by (51), the configuration reached is stable: no further applications
will produce any changes.

Theorem 5.3. Let U be the unknown minute labelling, let S be a second
labelling and let d be a shift. Then the following both hold:

(i) R51
(

R51
(

R52(d,S,U)
))

= R51
(

R52(d,S,U)
)
,

(ii) R52
(
d,S,R51

(
R52(d,S,U)

))
= R51

(
R52(d,S,U)

)
.
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M
minute labelling

no shift

M′

minute labelling
shift d

S
second labelling

0 1 2

0 1 2

d

Figure 7: A second labelling S which gives rise to two different minute labellings depending
on whether or not a shift d is applied. The color in the middle line indicates that the second
labelling matches with the minute labelling of the respective minute of the same color.

Proof. Let M1 = R52(d,S,U) and let M2 = R51
(

R52(d,S,U)
)
.

For (i), if i ∈ Z, by Definition 4.2 we have R51(M2)(i) := driving
if M2(i − 1) = M2(i + 1) = driving, R51(M2)(i) := M2(i) otherwise.
Hence, the non-trivial case is when M2(i − 1) = M2(i + 1) = driving.
If M2(i) = driving, then we are done. Assume towards a contradiction
that M2(i) 6= driving. Since M2 = R51(M1), we have that M1(i) 6=
driving (because applying R51 never erases driving). From this we see
that M2(i − 1) := M1(i − 1), hence M1(i − 1) = driving, and similarly
M1(i+1) = driving. But then,M2(i) = driving, which is a contradiction.

For (ii), just notice that R52 is the identity over the known part, and the
unknown does not change because we keep the same S.

Note that since R51(U) = U , starting with an application of R51 followed
by R52 followed by R51 is the same as starting with R52, and thus by The-
orem 5.3 we may conclude that all orderings of successive applications of R51
and R52 to U converge to the same labelling.

6. Time shifts

In this section we prove that, if we follow Regulation (EU) 2016/799, we
obtain that the same sample from the tachograph can give two completely
different minute labellings if interpreted in calendars with different shifts.

Theorem 6.1. Let d be such that 1 ≤ d ≤ 59. Let U be the unknown minute
labelling and let M and M′ be two minute labellings. Then there exists a
second labelling S such that R52(0,S,U) =M and R52(d,S,U) =M′.
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Proof. We can assume without loss of generality that d ≤ 30, otherwise we
switch M and M′. For every s ∈ Z, we define S(s) as follows:

S(s) :=


M′(c0

0(s)− 1) if c0
1(s) = 0,

M(c0
0(s)) if 0 < c0

1(s) ≤ 30,

M′(c0
0(s)) if c0

1(s) > 30.

Notice that R52(0,S,U)(i) = A(0,S, i), which is the activity of the rightmost
maximal interval in [60i, 60i + 60). By the definition of S, in that interval
there is a first second 60i of activity M′(i − 1), then 30 seconds of activity
M(i), and then 29 seconds of activity M′(i). Therefore, R52(0,S,U)(i) =
M(i). Now for the other condition: R52(d,S,U)(i) = A(d,S, i), which is the
activity of the longest interval in [d+60i, d+60i+60). By the definition of S,
in that interval there are first 31−d seconds of activityM(i), then 30 seconds
ofM′(i), and then d−1 seconds ofM(i+1). If d > 1, then the activity with
the longest interval is M′(i). If d = 1, then there is a draw between M(i)
and M′(i), but the latest is M′(i). In any case, R52(d,S,U)(i) =M′(i).

This construction can be visualized in Figure 7.

Informally, the theorem says that, given two minute labellings and a shift,
there is a second labelling that the driver might have recorded which gives
the first minute labelling in one calendar and the second minute labelling
in the shifted calendar. In particular, the same activities from a driver can
lead to a minute labelling with only driving or only resting. Requirement
(51) does not solve this problem; it only places some mild restrictions on the
labellings M, M′, as defined below.

Definition 6.2. A minute labelling M : Z → A is said to be feasible if,
for every i ∈ Z such that M(i − 1) = M(i + 1) = driving, we have that
M(i) = driving.

It is easy to see that only feasible minute labellings can be obtained by
applying Requirement (51) to minute labellings. As a direct consequence of
the above considerations, we obtain the following theorem.

Theorem 6.3. Let d be a time shift such that 1 ≤ d ≤ 59. Let U be the un-
known minute labelling and letM andM′ be two feasible minute labellings.
Then there exists a second labelling S such that R51

(
R52(0,S,U)

)
= M

and R51
(

R52(d,S,U)
)

=M′.

12



Thus we may obtain any two possible outcomes from the second labelling,
provided a shift is applied. This is problematic, both because it is hard to
argue that the same sequence of activities should change their legality if
performed with a few seconds of delay, and because such shifts do occur due
to whether the tachograph takes leap seconds or not. With this we conclude
our discussion of issues with labellings, and in the sequel consider the problem
of verifying that a given minute labelling complies with the law, assuming it
has been suitably obtained from the original tachograph data.

7. Temporal and monadic logics

In order to evaluate the legality of a driving record, we need to transform
the law into a format that may be checked algorithmically. We argue that
driving records are essentially linear temporal logic (LTL) models, and hence
well-understood logics such as LTL or monadic second order logic (MSO) may
be suitable for representing the algorithmic content of the law.

Our computational priority is efficient model-checking, as the property
‘The driving record M complies with the regulation ϕ’ must be routinely
verified using specialized software. Since MSO has decidable model-checking,
it is preferable over alternatives such as second order arithmetic. In MSO,
checking whether M |= ϕ can be solved in time linear on |M| for fixed ϕ.
This is already good news, as checking for compliance with regulations in
other contexts may be hard (e.g. the case of business processes [9]).

However, the problem is non-elementary when bothM and ϕ are allowed
to vary [10]. No model-checker can be expected to uniformly work efficiently
for all choices of ϕ, so that changes in the law can turn software obsolete.
Thus it is be desirable for regulations to be representable within a fragment
of MSO with tractable model-checking. To this end, we will use LTL as a
‘canonical’ tame fragment of MSO; we further elaborate on this choice below.

7.1. Linear temporal logic

Linear temporal logic is based on the language L�U given by the grammar
ϕ, ψ := ⊥ | P | ϕ→ ψ | ϕ | �ϕ | ϕUψ, where P is an element of a
countable set P of predicate symbols. We read as ‘next’, � as ‘henceforth’
and U as ‘until’.

We will always interpret formulas of L over the structure (N, S), where
S(n) = n + 1. Hence, for our purposes, an LTL model is merely a function
·M : P→ 2N. We define the satisfaction relation |= inductively by
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1. (M, n) |= P iff n ∈ PM

2. (M, n) 6|= ⊥

3. (M, n) |= ϕ→ ψ iff (M, n) 6|= ϕ or (M, n) |= ψ

4. (M, n) |= ϕ iff
(
M, S(n)

)
|= ϕ

5. (M, n) |= �ϕ iff for all k ≥ 0 we have that
(
M, Sk(n)

)
|= ϕ

6. (M, n) |= ϕUψ iff there exists k ≥ 0 such that
(
M, Sk(n)

)
|= ψ and

∀ i ∈ [0, k),
(
M, Si(n)

)
|= ϕ

As usual, a formula ϕ is satisfiable over a set of models Ω if there is M∈ Ω
and n ∈ N such that (M, n) |= ϕ; and valid on Ω if for every M ∈ Ω and
n ∈ N we have (M, n) |= ϕ.

We will consider the U-free fragment L�, the �-free fragment LU and the
�,U-free fragment, L◦. We define other Booleans and ♦ as abbreviations
in the standard way. Note that LU is expressively equivalent to L�U, so we
will seldom work over the full language. We could additionally consider past
tenses, but they do not add expressive power to LU in models with a starting
point (although there are issues with succinctness which we briefly discuss).

The articles we consider also require some counting, but this can be dealt
with using the following abbreviations, where n,m ∈ N. Below, an empty
disjunction should be read as ⊥ and an empty conjunction as >.

• 0ϕ := ϕ and n+1ϕ = nϕ;

• ♦<nϕ =
∨n−1

i=0
nϕ and �<nϕ =

∧n−1
i=0

nϕ.

Variants with ≤n instead of <n are defined by reading ≤n as <n+ 1.
Given any formula ϕ and a set Θ ⊆ { ,�,U}, we define the Θ-depth of ϕ

(in symbols, dptΘ(ϕ)) to be the nesting depth of tenses in Θ, defined in the
standard way. If Θ = {ϑ} we write ϑ-depth and dptϑ(·) instead of Θ-depth
and dptΘ(·), and if Θ = { ,�,U} we write temporal depth and dpt(·) instead
of Θ-depth and dptΘ(·). As a general rule we consider the -depth to be a
negligible complexity measure with respect to the depths of the other tenses.

Let us say a few words about our choice of LTL as a ‘canonical’ tame
fragment. First, the type of lower bounds we give require a concrete logic, so
a choice must be made for the sake of our case-study. LTL is well-known and
has relatively simple syntax and semantics. In practice one would want to use
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‘sugared’ versions of LTL, such as metric temporal logic (MTL; [11]), which
allow for expressions such as n+1 to be represented succinctly. Thus we
focus on U-depth rather than -depth or formula size; indeed, the standard
translation of MTL into LTL does not increase U-depth. This leaves open the
possibility of entirely different tame fragments of MSO (or even unrelated
logics) that may better capture the law, such as logics based on intervals
[12]. Our team is actively investigating such alternatives, but has not yet
found an option with a substantial technical advantage over LTL.

7.2. Monadic second-order logic

Define a term to be given by the grammar t := 0 | x | S(t), where x
belongs to some fixed set of first-order variables V. Then, the language L2

∀
is defined by the grammar

ϕ, ψ := ⊥ | P (t) | t < s | ϕ→ ψ | ∀ xϕ | ∀P ϕ,

where x is a variable, t and s terms, and P ∈ P. Once again we define
other Booleans and ∃ as standard abbreviations, and define L1

∀ to be the
sub-language of L2

∀ that does not allow quantifiers over elements of P.
The language L2

∀ is interpreted over models ·M : V ∪ P → N ∪ 2N such
that xM ∈ N if x is a variable and PM ⊆ N if P is a predicate symbol. For a
variable x and n ∈ N, letM[x/n] be the model that is the same asM except
that xM[x/n] = n, and for P ∈ P and A ⊆ N define M[P/A] analogously.
Extend ·M to terms by defining recursively 0M = 0 and (S(t))M = tM + 1.
The satisfaction relation is then defined as follows:

1. M 6|= ⊥

2. M |= P (t) iff tM ∈ PM

3. M |= ϕ→ ψ iff M 6|= ϕ or M |= ψ

4. M |= ∀xϕ iff for all n ∈ N, M[x/n] |= ϕ

5. M |= ∀P ϕ iff for all A ⊆ N, M[P/A] |= ϕ

Satisfiability and validity are defined as before. MSO denotes the language
L2
∀ endowed with these semantics, and MFO denotes MSO restricted to L1

∀.
In order to unify our semantics for LTL and MSO, we regard an LTL model
M as an MSO model by setting xM = 0 for all variables, and similarly regard
an MSO model as an LTL model by restricting the domain to P.
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We say that a set Ω of models is definable in a language L ⊆ L�U if there
is ϕ in L such that for any model M we have (M, 0) |= ϕ if and only if
M ∈ Ω. Similarly, Ω is definable in L ⊆ L2

∀ if there is ϕ in L such that for
any model M, M |= ϕ if and only if M ∈ Ω. With this in mind, we may
regard MFO as a temporal logic in terms of the following.

Theorem 7.1 (Kamp [13]). Let Ω be a set of LTL models. Then, Ω is
definable in LU if and only if it is definable in L1

∀.

When discussing expressivity, we will go back and forth between LTL and
MFO depending on which is more convenient for the application at hand.

8. Expressibility

In this section we show how the legal articles we have considered could be
represented within monadic second order logic. It is crucial to stress that the
articles allow for some interpretation and thus certain elements may admit
readings different from those we propose. We will also make a few simplifying
assumptions for the sake of exposition. From discussions with legal experts,
we believe that our interpretations are reasonable modulo the aforementioned
simplifying assumptions.

We have discussed previously how tachograph data is recorded second by
second, and then translated into a minute by minute format. However, we will
consider hourly labellings from now on for the sake of readability. Recall that
we defined the set of activities A = {driving,rest,availability,work,
unknown}. Each activity will be regarded as a propositional variable. Then
a labelling M (in the sense of Section 4) with domain N may be viewed as
an LTL model by setting PM = {n ∈ N : M(n) = P} for P ∈ A, and
PM = ∅ for all other propositional variables. We use N as domain so that
we may have Theorem 7.1 available. It is also possible to work with Z as
in previous sections, but the analogue of Theorem 7.1 in this setting would
require additional ‘past’ tenses, which would make some upcoming proofs
more tedious.

We also introduce a predicate symbol week which holds on the first
hour of each Monday. This condition can be treated model-theoretically –
i.e. models are assumed to be equipped with a correct valuation for week–
or syntactically by the L� axiom

week ∧�
(
week→ ( �<167¬week ∧ 168week)

)
16



(assuming that the model begins on the first hour of a Monday). LTL models
satisfying this formula at zero are called weekly models. With this in mind, we
proceed to illustrate how the content of the legislation could be represented.
However, since we want to isolate possible sources of impredicativity (i.e.,
second order quantification), we will work with simplified variants of the
legislation that are more suitable for expository purposes.

8.1. Article §8.9

Article §8.6 requires that each two week period be assigned two rest peri-
ods with some additional constraints, and §8.9 indicates how rest periods
should be assigned to specific weeks. Our goal in this subsection is to explore
the possible impredicativity arising from the assignment itself, independently
of the additional conditions of §8.6. Every week should contain at least one
24 hour rest period, but this by itself would not be sufficient to comply with
§8.6. On the other hand, a driver resting 45 hours each week would com-
ply with §8.6, so this would be a sufficient, but not necessary, condition for
compliance. In order to not commit to either condition, we will consider the
following general property: when is it that each week can be assigned a rest
period of at least d hours, so that each rest period intersects the week it is
assigned to? This simplified condition is already prima facie impredicative,
as it requires a function mapping rest intervals to weeks. Thus it may be
surprising that it can actually be defined in first order logic (and hence in
LTL).

Theorem 8.1. Given d ∈ [2, 85], there is an L1
∀-formula ϕ = ϕd ∈ L1

∀ such
that given any LTL modelM,M |= ϕ if and only if there is an assignment of
weekly rest periods such that every week is assigned a rest period of length
at least d.

Proof. In this proof we will assume that variables range over weeks. It is
clear that using our fundamental ontology this can be established in first
order logic, as a week can be identified with its starting point, which is
already marked by the predicate week. Let E(x) be a formula which holds
if and only if x is a week with an early rest period (of length at least d), which
means that it overlaps with the previous week, L(x) a formula that holds if
x contains a late rest period overlapping with the following week, and I(x)
be a formula that holds if and only if x is a week with an internal rest period
disjoint from (but possibly contiguous with) any early or late rest periods in
the week x.
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Clearly, E, I, L are first-order definable (although their definition depends
on d). The condition d ≤ 85 ensures that if E(x)∧L(x) holds then the week
x contains disjoint early and late rest periods.3 Define Ě(x) = E(x)∧¬I(x)∧
¬L(x), and define Ǐ(x), Ľ(x) analogously. Then set

ϕ = ∀x
(
E(x) ∨ I(x) ∨ L(x)

)
∧ ∀x ∀ y

(
x < y ∧ Ľ(x) ∧ Ě(y)→ ∃ z ∈(x, y) I(z)

)
.

We claim that ϕ holds if and only if there is an assignment such that each
week is assigned one rest period of length at least d. First assume that such
an assignment exists. Clearly ∀x

(
E(x) ∨ I(x) ∨ L(x)

)
holds, since if x were

a counterexample no rest period could be assigned to week x.
Now, suppose that x < y are such that Ľ(x) ∧ Ě(y), and choose x, y

such that y − x is minimal among all such pairs. Note that x is assigned
to its late rest period (as this is the only one available) and y is assigned
to its early rest period. It follows that there is a least z ∈ (x, y] that is not
assigned to its late rest period. By minimality z−1 is assigned to its late rest
period, hence z cannot be assigned to its early rest period. However, z must
be assigned to some rest period by assumption, and since this rest period is
neither early nor late, the week of z must contain some internal rest period,
and I(z) holds.

Now assume that ϕ holds and define an assignment recursively as follows.
Let R be a rest period and suppose that all earlier rest periods have been
assigned to some week. If R is internal, assign it to its current week. If R is
late for week w and w has not been assigned a rest period, assign R to w.
Otherwise, assign R to w + 1.

We prove by induction that every week is assigned to some rest period.
Fix y and assume that all earlier weeks have been assigned to some period.
Note that E(y) ∨ I(y) ∨ L(y) holds by ϕ. If I(y) holds then the week of y
has a rest period assigned to it. If L(y) holds then the late rest period of y
is assigned to it, unless an earlier one was already assigned to it. So we are
left with the hypothetical case where Ě(y) holds, and the early rest period
of y has been assigned to y−1. Let x < y be minimal with the property that

3If E(x) holds then we need to assign at most d−1 ≤ 84 resting hours of x to the early
rest period, and likewise for L(x). In a week there are 7 × 24 = 84 × 2 hours. Hence if
E(x)∧L(x) holds, we can assign hours from the first half of x towards the early rest period,
and from the second half towards the late rest period, ensuring that they are disjoint.
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every z ∈ [x, y) has had its late rest period assigned to it. First note that
E(x) fails, since otherwise x > 0 and either x− 1 has had its late rest period
assigned to it, contradicting the minimality of x, or else the early rest period
of x would have been assigned to the week of x by our recursion. Note also
that I(z) fails for all z ∈ [x, y), since any internal rest period is automatically
assigned to the current week. We conclude that Ľ(x) holds and I(z) fails for
all z ∈ (x, y), thus ϕ fails.

8.2. Article §8.6

Now that we have seen that the possibility of assigning rest periods is not
itself impredicative, we isolate the compensation mechanism from the rest
assignments and analyse it in a similar fashion. We claim that the content
of Article §8.6 admits a representation in L2

∀ by a Σ1
1 formula over the class

of weekly models.
Before we continue, we mention some remarks regarding our interpreta-

tion of the law. A weekly rest period must be compensated in the future,
but it may be compensated on the same week as the rest period itself. The
compensation must fall entirely within the union of the current calendar
week and the subsequent three calendar weeks. We will further assume that,
after compensation, each week should have a weekly rest period of exactly 45
hours assigned; this is not an issue, since if a week has a longer weekly rest
period, a portion of that rest period can simply be ‘unassigned’. Finally, we
assume that each week is assigned a single weekly rest. The legislation does
not explicitly forbid weeks with two weekly rests, but we find this to be the
most intuitive interpretation.

Our representation will use the following second order variables: RE is a
variable meant to denote the union of all early weekly rest periods, meaning
that they begin on the week previous to the one they are assigned to; RI is
a variable meant to denote the union of all intermediate weekly rest periods,
meaning that they are entirely contained in the week they are assgined to; RL

is a variable meant to denote the union of all late weekly rest periods, meaning
that they intersect the week after the one they are assigned to; C0, C1, C2,
and C3 are variables meant to denote periods of compensation, such that C0

compensates the current weekly rest, C1 compensates the previous weekly
rest, C2 compensates the weekly rest of two weeks ago, and C3 compensates
the weekly rest of 3 weeks ago.

If W is a week, let S(W ) be the successor week to W . We express §8.6
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by a formula

ψ§8.6 := ∃RE ∃RI ∃RL ∃C0 ∃C1 ∃C2 ∃C3 ψ
0
§8.6,

where ψ0
§8.6 contains no second order quantifiers.4 The formula ψ0

§8.6 is a
conjunction over formulas expressing the following properties:

• The sets RE, RI , RL, C0, C1, C2, C3 are mutually disjoint and all con-
tained in rest.

• Each of RE and RL is a union of non-contiguous intervals of length at
least 24 and no more than 45.

• For any week W , RI ∩ W is an interval which is either empty or of
length at least 24 and no more than 45.

• Given a week W , there is a unique maximal interval RW , called the rest
period assigned to W , such that RW ∩W 6= ∅ and either a) RW ⊆ RE

and the beginning of RW lies before W , b) RW ⊆ RI∩W , or c) RW ⊆RL

and RW intersects S(W ).

• Given a week W , RS(W ) must start no later than 6 × 24 hours after
RW , and at least one of RW , RS(W ) must be a 45-hour interval.

• Given a weekW , we define CW =
⋃3

i=0Ci∩Si(W ) and add the following
conditions: a) CW is an interval, disjoint from RW , and begins after
RW ends; b) There is an interval J such that CW ⊆ J ⊆ rest and
with |J \ CW | ≥ 95; c) |RW ∪ CW | = 45.

It should be clear that each of these conditions is first order definable,
hence ψ§8.6 is Σ1

1. Moreover, some inspection shows that over the set of weekly
models, ψ§8.6 coincides with our reading of §8.6. Indeed, the variables RE,
RI , and RL are used as auxiliary variables to define RW , the weekly resting

4We remark that we can quantify in first order logic over intervals, since an interval
[a, b] can be identified with its endpoints. Conditions of the form |X| ≥ n, where n is
fixed, are expressed by stating that there exist distinct x1, . . . , xn belonging to X.

5Note that in our reading of §8.7, we allow J ∩CW ′ 6= ∅ for some week W ′ 6= W . This
is because the law does not explicitly state that the nine-hour rest period attached to a
compensation period cannot be used to compensate an additional week. However, a more
strict reading where we demand J ∩ CW ′ = ∅ can be formalized similarly.
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period assigned to W . If RW is a reduced rest, the variables Ci are then
used to define the compensation period CW . Once these auxiliary variables
are fixed, checking whether each weekly rest is of suitable lenght or has been
compensated appropriately is a first order property.

We conclude that the content of §8.6 admits a Σ1
1 representation over the

set of weekly models, as claimed.

9. Stratified bisimulations

In this section we present a version of stratified bisimulations for LU

proposed by Kurtonina and de Rijke [14]. Since all languages we consider
contain Booleans and , it is convenient to begin with a ‘basic’ notion of
bisimulation for this language.

Definition 9.1. Given k ≥ 0 and two LTL models M and N , a binary
relation Z ⊆ N2 is a k- -bisimulation (between M and N ) if whenever
x Z y, P ∈ P, and j ≤ k, we have x+ j ∈ PM iff y + j ∈ PN .

We will use bounded -bisimulations as a basis to define bounded bisim-
ulations for more powerful languages.

Definition 9.2. Fix k ≥ 0 and two LTL modelsM and N . Let ~Z = (Zi)
∞
i=0

be a sequence such that for all i ∈ N, Zi is a k- -bisimulation and Zi+1 ⊆ Zi.

1. ~Z is a k-�-bisimulation (between M and N ) if whenever x Zi+1 y:

Forth �. For all x′ ≥ x there exists y′ ≥ y such that x′ Zi y
′.

Back �. For all y′ ≥ y there exists x′ ≥ x such that x′ Zi y
′.

2. ~Z is a k-U-bisimulation (between M and N ) if whenever x Zi+1 y:

Forth U. For all x′ ≥ x there exists y′ ≥ y and a function ξ : [y, y′]→
[x, x′] such that every z ∈ [y, y′] satisfies ξ(z) Zi z and ξ(z) = x′

if and only if z = y′.

Back U. For all y′ ≥ y there exists x′ ≥ x and a function η : [x, x′]→
[y, y′] such that every z ∈ [x, x′] satisfies z Zi η(z) and η(z) = y′

if and only if z = x′.

Stratified bisimulations are an essential tool in proving inexpressivity or
succinctness results, given that they preserve the truth of formulas of small
enough nesting depth.
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Lemma 9.3 (Kurtonina and de Rijke [14]).

1. Given two LTL models M and N and a k-�-bisimulation ~Z between
them, for all formulas ϕ ∈ L� and for all (x, y) ∈ Zi, if ϕ has -depth
at most k and �-depth at most i then (M, x) |= ϕ iff (N , y) |= ϕ.

2. Given two LTL models M and N and a k-U-bisimulation ~Z between
them, for all formulas ϕ ∈ LU and for all (x, y) ∈ Zi, if ϕ has -depth
at most k and U-depth at most i then (M, x) |= ϕ iff (N , y) |= ϕ.

In the next section we use Lemma 9.3 to show that certain legal properties
we have considered are hard or impossible to define in fragments of linear
temporal logic.

10. Non-expressibility

We have seen that Articles §8.9 and §8.6 are expressible in MFO and MSO,
respectively. We will see that they are not expressible in L� and that §8.6
is not reasonably expressible in LU. For this, we use constructions similar to
the examples given in Section 3. However, since these constructions will be
somewhat more elaborate, we settle some notation first.

Say that a modelM is eventually resting if there is some m such that for
all n > m and all P ∈ A, n ∈ PM iff P = rest. The end of an eventually
resting model is the least such value of m which is also a multiple of 168
(i.e., a whole number of weeks). A week-long model is an eventually resting
models whose end is 168. We define the concatenation of two eventually
resting models A,B, denoted A | B, as follows. Let m be the end of A.
Then, for a predicate symbol P and n ∈ N, we set

n ∈ PA|B ⇔

{
n ∈ PA if n ≤ m

n−m ∈ PB if n > m.

If k is a natural number then Ak denotes k concatenated copies of A.
If n ∈ [24, 168), then n denotes a week with one weekly resting period of
n; we assume that these weekly periods fall in the middle of each week
without overlapping with other weeks, with the details being non-essential.
However, we do assume that any two instances of the week represented by n
are identical.
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It will be convenient to represent a given moment in time both by the
number of hours t since the beginning of time, and by 168w + h, where w is
the number of weeks since the beginning of time, and h < 168 is the number
of hours since the beginning of that week.

10.1. Article §8.9

We have seen that the possibility of assigning weekly rest periods to each
week is first order definable. One may then ask if L� suffices to define it,
and the answer is negative. We prove this via the following construction.

Definition 10.1. Fix d ∈ [24, 84]. Define the following week-long models:

• E is a model whose first bd/2c hours are resting.

• I is a model whose hours (bd/2c+ 1, bd/2c+ d) are resting.

• L is a model whose last dd/2e hours are resting.

• Concatenations of letters denote unions of resting hours, i.e., EL de-
notes a week with a beginning and an end rest period.

Then, for each n ∈ N, define the eventually resting models An = (L | ELn |
EIL | ELn | E)n+1 and An = L | ELn | E | An.

Given d ∈ [24, 84] and a model M, we say that M admits a weekly rest
assignment if it is possible that each week is assigned a weekly rest period
of length at least d.

Lemma 10.2. The model An admits a weekly rest assignment but An does
not.

Proof. It is easy to see that An satisfies the formula ϕd of Theorem 8.1 and
that An does not.

Lemma 10.3. There is a bounded 168n-�-bisimulation ~Z between An and
An such that 0 Zn 0.

Proof. Define r := 2n + 3 and for x = 168w + h, y = 168v + ` ∈ N, let
x Zi y if h = ` and one of the following holds: (A1) x = y = 0 and i ≤ n,
(A2) 0 < v, max{w, v − n − 2} ≤ (n − i)r and v ≡ w + n + 2 (mod r), or

(A3) v = w + n+ 2. We need to show that ~Z is a stratified bisimulation.
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It is clear that Zi+1 ⊆ Zi. Assume that x Zi y and write x = 168w + h,
y = 168v+`; note that by definition we must have h = `. If i = 0, then some
inspection shows that x and y share the same formulas of the form jp with
j ≤ 168n, since the current and subsequent n weeks are of the same form. It
is sufficient to check this for Z0 because it contains all the Zi’s.

Otherwise, change variables so that x ∼i+1 y; we check that the required
clauses hold.

Forth �. Let x′ ≥ x and write x′ = 168w′ + h′. We claim that there
is v′ such that 168v′ + h′ ≥ 168v + h and 168w′ + h′ Zi 168v′ + h′. If
168(w′ + n + 2) + h′ ≥ 168v + h we may take v′ = w′ + n + 2, and the
bisimulation holds by (A3). Otherwise, we have v ≥ w′+ n+ 2 ≥ w+ n+ 2,
where the first inequality is strict unless h′ < h, in which case the second
inequality must be strict. Hence x, y do not satisfy (A1) nor (A3) and thus
max{w, v − n− 2} ≤ (n− i− 1)r. Take v′ ∈ (v, v + r] with v′ ≡ w′ + n+ 2
(mod r) and set y′ = 168v′+h′. Note that w′+n+2 ≤ v < (n−i−1)r+n+2
yields w′ ≤ (n− i)r, while v′ ≤ v + r ≤ (n− i− 1)r+ r = (n− i)r, and thus
v − n− 2 ≤ (n− i)r as well. Thus x′ Zi y

′ by (A2).

Back �. Let y′ ≥ y and write y′ = 168v′ + h′. As before, we claim that
there is w′ such that 168w′ + h′ ≥ 168w + h and 168w′ + h′ Zi 168v′ + h′. If
168(v′ − n− 2) + h′ ≥ 168w+ h we may take w′ = v′ − n− 2, and the result
follows by (A3). Otherwise, we have w ≥ v′ − n − 2 ≥ v − n − 2 with one
inequality being strict,so that x, y do not satisfy (A3). If x, y satisfy (A2),
then max{w, v − n − 2} ≤ (n − i − 1)r. If x, y satisfy (A1), we have that
w = v = 0 and i+1 ≤ n, so that max{w, v−n−2} = 0 ≤ (n−i−1)r as well.
Take w′ ∈ (w,w + r] with w′ + n + 2 ≡ v′ (mod r) and set x′ = 168w′ + h′.
It is not hard to check that max{w′, v′ − n− 2} ≤ (n− i)r. Thus x′ Zi y

′ by
(A2).

Theorem 10.4. Given d ∈ [24, 84], there is no L� formula ϕ such for every
model M, M |= ϕ if and only if M admits a weekly rest assignment.

Proof. Suppose that ϕ ∈ L� is such a formula. Let d◦ and d� be its -depth
and �-depth, respectively. Choose n such that d◦ ≤ 168n and d� ≤ n. Then
by Lemmas 9.3 and 10.3, (An, 0) |= ϕ iff (An, 0) |= ϕ. But, according to
Lemma 10.2, An admits a weekly rest assignment, while An does not.

10.2. Article §8.6

Our goal now is to show that Article §8.6 is not expressible in L�, and
that it needs a formula with a large U-depth to express it in LU. As before,
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we start by defining a model that complies with the article, and one that
doesn’t, and then prove that they are bisimilar.

Definition 10.5. For each n ∈ N, we define the following weekly models:
Bn = (44 | 45n | 46 | 45n)n | 24 | 45 | 24 and Bn = 44 | 45n | Bn.

Lemma 10.6. Given n ∈ N, Bn |= ψ§8.6 but Bn 6|= ψ§8.6.

Proof. In Bn, the first week’s missing hour can be compensated on the third
week. This creates a chain reaction of compensations, as the third week
also needs to be compensated (because it’s interpreted as a reduced rest of
44 hours together with a compensation of 1 hour). However, it is always
possible to compensate either two weeks after, or on the week of 46 hours, if
it is close enough. It is thus never necessary to use up hours from the second
block of n 45 hour rest weeks, which are all regular rest periods. This process
happens n times, until we reach the last three weeks of the model. Two of
them need to be compensated, but it is possible to do so using the unlimited
hours of rest available after the end.

Consider now Bn. The 24 hour weeks near the end of the model cannot be
used to compensate previous weeks, since 24 is the minimum allowed weekly
rest. The last 45 hour week cannot be used to compensate previous weeks
either, because then there would be more than one consecutive week with no
regular rest period. Thus, we erase the last three weeks from consideration.
There are m := 2n2 + 3n+ 1 weeks in the rest of the model, 2n2 +n of which
have 45 rest hours, n+ 1 of which have 44 rest hours, and n of which have 46
hours, for a total of 45m−1 rest hours. Thus there are not enough rest hours
to distribute among the period such that each week is assigned 45 hours of
weekly rest.

Lemma 10.7. There is a stratified 168n-�-bisimulation ~Z between Bn and
Bn such that 0 Zn 0.

Proof. The stratified bisimulation and the proof are analogous to those used
in the proof of Lemma 10.3.

Theorem 10.8. There is no L�-formula equivalent to ψ§8.6 over the class of
weekly models.

Proof. Suppose that ψ ∈ L� is a formula expressing Article §8.6 with -
depth d◦ and �-depth d�. Choose n big enough to ensure that d◦ ≤ 168n
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and d� ≤ n, and let ~Z be the bisimulation of Lemma 10.7. Then by Lemma
9.3, (Bn, 0) |= ψ iff (Bn, 0) |= ψ. This contradicts Lemma 10.6.

Now we show that any formula of LU requires nesting depth 20 of U.

Definition 10.9. For n ∈ N, we define models: Cn = (44 | 452n+1)21 | 66 |
24 | 45 | 24 and Cn = (44 | 452n+1) | Cn.

Lemma 10.10. Given n ∈ N, Cn |= ψ§8.6 but Cn 6|= ψ§8.6.

Proof. First we see that Cn |= ψ§8.6. Intuitively, even weeks are compensated
two weeks later, and the size of the compensation increases by one every
2n + 2 weeks. Thus for example one hour of week 0 is compensated by one
hour of week 2, which is compensated by one hour of week 4, and so on until
we reach week 2n + 2. Note however that this week only has 44 hours of
rest and has used one hour to compensate the previous week, so we need to
compensate two hours of rest. This is compensated by two hours on week
2n + 4, and so on until we reach the third 44 hour rest. Since two hours of
this rest are used to compensate a previous week, now three hours need to be
compensated, and so on. On week 21(2n+2) we use 21 hours to compensate,
which is the maximum allowed, given that each week requires a 24 hour rest
period. As before, the last 24 | 45 | 24 block cannot be used to compensate,
but can be compensated with the following unlimited rest.

More formally, every week w numbered 2k (including week zero) will
be reduced and compensated by week 2k + 2, up to and including week
21(2n + 2). The amount of the compensation is the unique i > 0 such that
(i− 1)(2n+ 2) ≤ w < i(2n+ 2).

As in Bn, the 24 | 45 | 24 block at the end of Cn cannot be used to
compensate previous weeks (see the proof of Lemma 10.6). There are m :=
22(2n + 2) + 1 remaining weeks in Cn, of which 22(2n + 1) have 45 resting
hours, 22 have 44 resting hours, and 1 has 66 resting hours, for a total of
45m−1 resting hours. Thus there are not enough resting hours to distribute
among the weeks.

Lemma 10.11. There is a stratified 168n-U-bisimulation ~Z between Cn and
Cn such that 0 Z20 0.

Proof. Define r := 2n + 2 and for 168w + h ∈ Cn and 168v + ` ∈ Cn, set
168w + h Zi 168v + ` if h = ` and one of the following properties holds:
(C1) max{w + r, v} < (21− i)r and w ≡ v (mod r), or (C2) v = w + r. We
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need to show that ~Z is a stratified bisimulation. To see this, assume that
x Zi y and write x = 168w+h, y = 168v+ `. Note that we must have h = `.
If i = 0 then some inspection shows that x and y share the same formulas of
the form jp with j ≤ 168n, as the current and subsequent n weeks are of
the same form. It is sufficient to check this for Z0 because it contains all the
Zi. If i > 0, change variables so that x ∼i+1 y; we check that the required
clauses hold.

Forth U. Let x′ ≥ x and write x′ = 168w′ + h′. Consider two cases.
First assume that w′ ≤ w + r. Set y′ = y + (x′ − x) and for z ∈ [y, y′] set
ξ(z) = x+ (z− y). It is then not hard to check that if x Zi+1 y by (C1) then
ξ(z) Zi z by (C1), and similarly if x Zi+1 y by (C2) then ξ(z) Zi z by (C2).
The other requirements on ξ are easy to check, so that ξ witnesses Forth

U.
Otherwise w′ > w + r. We claim that there is v′ such that 168v′ + h′ ≥

168v+h and 168w′+h′ Zi 168v′+h′. If 168(w′+ r) +h′ ≥ 168v+h we may
take v′ = w′ + r. Otherwise, we have v ≥ w′ + r > w + r so that x, y do not
satisfy (C2) and thus max{w+ r, v} ≤ (21− i−1)r. Take v′ ∈ (v, v+ r] with
v′ ≡ w′ (mod r) and set y′ = 168v′+ h′; from (21− i− 1)r ≥ v ≥ w′+ r and
v′ ≤ v + r ≤ (21− i)r we obtain x′ Zi y

′ by (C1).
We now construct the function ξ : [y, y′]→ [x, x′]. First define ξ(y′) = x′.

For z = 168u+t ∈ [y, y′), we consider two cases. If 168(u−r)+t ∈
[
x, x′

)
take

ξ(z) = 168(u − r) + t, which in view of (C2) satisfies all desired properties.
Otherwise, 168(u− r) + t 6∈ [x, x′), and choose d ∈ (0, r] such that w+ d ≡ u
(mod r), then set ξ(z) = 168(w + d) + t. The assumption that w′ > w + r
yields ξ(z) ∈ [x, x′]. It remains to show that ξ(z) Zi z, for which it suffices
to check that max{w + d+ r, u} < (21− i)r.

If 168(u−r)+t < x then since z ≥ y, either u > v and hence v < u ≤ w+r,
or else u = v and t ≥ h, so that forcibly u− r < w and thus v < w + r. But
v < w + r together with 168v + h′ Zi+1 168w + h means that (C1) holds so
that max{w+ r, v} < (21− i− 1)r. Thus we have u− r ≤ w < (21− i− 1)r
so that u < (21 − i)r. Similarly w + d ≤ w + r < (21 − i − 1)r yields
w + d+ r < (21− i)r.

Otherwise 168(u − r) + t ≥ x′. But then since z < y′, either u = v′ and
hence t < h′, so that v′− r = u− r > w′; or else u < v′ and v′− r > u− r ≥
w′. Thus w′ + r 6= v′, which together with 168w′ + h′ Zi 168v′ + h′ yields
max{w′ + r, v′} < (21 − i)r. From u ≤ v′ < (21 − i)r and w + d + r ≤
(w + r) + r < w′ + r < (21 − i)r we obtain max{w + d + r, u} < (21 − i)r,
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as needed.

Back U. This is essentially symmetric and we omit it.

Theorem 10.12. All LU formulas equivalent to ψ§8.6 have U-depth at least
20.

Proof. Suppose that ψ ∈ LU is a formula expressing Article §8.6 with -
depth d and U-depth less than 20. Choose n big enough to ensure that
d ≤ n, and let ~Z be the bisimulation of Lemma 10.11. Then by Lemma 9.3,
(Cn, 0) |= ψ ⇐⇒ (Cn, 0) |= ψ. This contradicts Lemma 10.10.

Remark 10.13. One can ask how Theorem 10.12 would differ if we in-
cluded ‘since’ in the language. In this case, (Cn, 0) and (Cn, 0) are only about
10-bisimilar. However, the nesting depth of 20 is determined only by the
resolution of our models. If instead we used a minute-wise resolution (which,
as we have mentioned, is the resolution required by the law itself), we could
stretch this to 20×60 by replacing the 44 hour reduced weekly rests by 44:59h
reduced weekly rests. Thus any LTL definition of ψ§8.6 would have to exploit
the temporal resolution in an essential way, making it arguably unnatural.

11. Concluding remarks

We have analysed the interdependence between Requirements (51) and
(52) of Regulation (EU) 2016/799, and shown that for any two different time
standards, there exists a labelling of second activities such that under one
time standard all minutes would be labelled as driving minutes while under
the other labelling they would all be labelled as resting minutes. This is not
only a theoretical issue: by analysing real-world data we have checked that
differences in driving time may indeed amount up to 8%.

We have also shown that the Σ1
1 fragment of monadic second order logic is

sufficient for formalizing even the most problematic passages we have found in
our study of European transport regulations. The upshot is that evaluating
whether a given truck driver’s record complies with regulations can then be
transformed into a model-checking problem over this fragment. Moreover,
truth of Σ1

1 MSO formulas is equivalent to validity for MFO, and via Kamp’s
theorem we may further reduce it to validity of LTL formulas, for which many
solvers are already available. Nevertheless, validity in LTL is PSPACE-
complete, and moreover the translation of MFO into LTL is non-elementary
in the worst case, so this approach is not ideal from a complexity perspective.
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On the other hand, LTL is suitable for representing portions of content of
the regulation, and the model-checking problem (over deterministic models)
is polynomial [15]. In fact, the advantage of having such a general tool
available can be viewed as an argument to use ‘sugared’ versions of LTL (say,
with counting modalities) in the design of future and revision of current laws.

Indeed, we can consider a variant of §8.6 where the requirements are: (i)
in every two consecutive weeks, the driver must take two weekly rest periods,
at least one of which is regular, and (ii) in every four consecutive weeks, the
sum of the weekly rest periods must be of at least 180 hours. This version
of the article can be easily checked to be definable by a not-too-large LTL
formula and maintain the spirit of the original, as drivers are required to
compensate reduced rest periods within the following three weeks.
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