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Abstract. We see how Turing progressions are closely related to the
closed fragment of GLP, polymodal provability logic. Next we study nat-
ural well-orders in GLP that characterize certain aspects of these Turing
progressions.
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1 Turing progressions and modal logic

Gödel’s Second Incompleteness Theorem tells us that any sound recursive the-
ory that is strong enough to code syntax will not prove its own consistency.
Thus, adding Con(T ) to such a theory T will yield a strictly stronger theory.
Turing took up this idea in his seminal paper [6] to consider recursive ordinal
progressions of some recursive sound base theory T :

T0 := T ;
Tα+1 := Tα + Con(Tα);
Tλ :=

⋃
α<λ Tα for limit λ.

As we shall see, poly-modal provability logics turn out to be suitably well
equipped to talk about Turing progressions. These logics have modalities [n]
that shall be interpreted as “provable in EA using all true Πn sentences” ab-
breviated [n]EA. By EA we denote Elementary Arithmetic which is a formal
arithmetic theory axiomatized by the recursive equations for successor, addition
and multiplication, by open induction together with an axiom stating the total-
ity of exponentiation. Often we shall not distinguish a modal formula from its
arithmetical interpretation.

We recall ([5]) that the provability logic of any Σ1-sound theory extending
EA is Gödel Löb’s provability logic GL as defined below. Various mathematical
statements can be expressed within GL like Gödel’s Second Incompleteness The-
orem: 3> → 32>. It is also not hard to see that finite Turing progressions are
definable in GL as Tn is provably equivalent to T + 3n

T>. Transfinite progres-
sions are not expressible in the modal language with just one modal operator.
However, using stronger provability predicates provides a way out (see [3]):

Proposition 1. T + 〈n+ 1〉T> is a Πn+1 conservative extension of
T + {〈n〉kT> | k ∈ ω}.
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The provability behavior of these mixed modalities is fully described by what
we call GLPω. We give a more general definition GLPΛ for any ordinal Λ.

Definition 1. For Λ an ordinal, the logic GLPΛ is the propositional normal
modal logic that has for each α < Λ a modality [α] and is axiomatized by the
following schemata:

[α](χ→ ψ)→ ([α]χ→ [α]ψ)
[α]([α]χ→ χ)→ [α]χ
〈α〉ψ → [β]〈α〉ψ for α < β,
[α]ψ → [β]ψ for α ≤ β.

The rules of inference are Modus Ponens and necessitation for each modality:
ψ

[α]ψ . By GLP we denote the class-size logic that has a modality [α] for each
ordinal α and all the corresponding axioms and rules. GL refers to GLP1.

As suggested by Proposition 1, for the sake of Turing progressions a particular
interest lies in GLP0

Λ, the closed fragment – that is, the modal formulas that have
no propositional variables but rather just ⊥ and >– of these GLPΛ. We shall call
iterated consistency statements in this closed fragments worms in reference to
the heroic worm-battle, a variant of the Hydra battle (see [1]).

Definition 2 (Worms, S, Sα). By S we denote the set of worms of GLP which
is inductively defined as > ∈ S and A ∈ S ⇒ 〈α〉A ∈ S. Similarly, we inductively
define for each ordinal α the set of worms Sα where all ordinals are at least α
as > ∈ Sα and A ∈ Sα ∧ β ≥ α⇒ 〈β〉A ∈ S.

We shall denote worms by roman uppercase letters like A,B, . . . and often we
associate worms with the strings of ordinals occurring in them whence we can
concatenate worms. In denoting worms we might use any hybrid combination
between the formal definition and its associated string. For example, we might
equally well write ω0ω, as 〈ω〉0ω, or 〈ω〉〈0〉〈ω〉>.

The next easy lemma ([2], [4]) is the basis of most of our reasoning and we
shall use it often in the remainder of this paper without explicit mention.

Lemma 1.
1. GLP ` AB → A
2. For a closed formula φ and a worm B, if β < α, then

GLP ` (〈α〉φ ∧ 〈β〉B)↔ 〈α〉(φ ∧ 〈β〉B);
3. For a closed formula φ and a worm B, if β < α, then

GLP ` (〈α〉ϕ ∧ [β]B)↔ 〈α〉(ϕ ∧ [β]B);
4. If A ∈ Sα+1, then GLP ` A ∧ 〈α〉B ↔ AαB;
5. If A,B ∈ Sα and GLP ` A↔ B, then

GLP ` AαC ↔ BαC.

Worms can be conceived as the backbone of GLP0. It is known that each
closed formula of GLP is equivalent a Boolean combination of worms. Moreover,
a decision procedure for GLP0 proceeds via a reduction to worms. Also, there
are various important generalizations of Proposition 1 in terms of worms. In
particular (as in Prop. 1, there are some technical conditions on T , see [3] ):
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Proposition 2. For each ordinal α < ε0 there is some GLPω-worm A such that
T +A is Π1 equivalent to Tα.

To get generalizations of this lemma beyond ε0 one should consider more than ω
modalities. In particular [α] should be read as “provable in EA together with all
true hyperarithmetical sentences of level α”. This paper focusses on the modal
calculus involved in such generalizations.

2 Omega sequences

We define an order <α on Sα by A <α B :⇔ GLP ` B → 〈α〉A. In [2] and [4] it is
shown that <α defines a well-order on Sα modulo provably equivalence. We can
consider the ordering <α also on the full class S. As we shall see <α is no longer
linear on S. However, we shall see that it is still well-founded. Anticipating this,
we can define Ωα(A), the generalized <α order-type of a worm A.

Definition 3. Given an ordinal ξ and a worm A, we define a new ordinal Ωξ(A)
by induction on <ξ by Ωξ(A) = supB<ξA(Ωξ(B)+). Likewise, we define oξ(A) =
sup{oξ(B) + 1 | B ∈ Sξ ∧B <ξ A}.

With this, we can assign to each worm A a sequence of order-types Ω(A) for
the sequence (Ωξ(A))ξ∈On.

To link back to the Turing progressions we mention here that the Ω0(A)
corresponds to the α from Proposition 2 and the Ωξ(A) for ξ > 0 correspond
to further generalizations of Proposition 2. For worms that contain only natural
numbers this has been established as stated in Proposition 2 and it is conjectured
to hold also for worms containing larger ordinals. Thus, in the remainder of this
paper it is good to bear in mind that the omega sequences have important
proof-theoretic content.

In further sections we shall show how to calculate Ωξ(A) for given ξ and
A. In the current section we shall see how questions about Ωξ can be recur-
sively reduced to questions about oζ . For this reduction we need the syntactical
definitions of head and remainder.

Definition 4. Let A be a word. By hξ(A) we denote the ξ-head of A. Recur-
sively: hξ(ε) = ε, and hξ(ζ ? A) = ζ ? hξ(A) if ζ ≥ ξ and hξ(ζ ? A) = ε if
ζ < ξ. Likewise, by rξ(A) we denote the ξ-remainder of A: rξ(ε) = ε, and
rξ(ζ ? A) = rξ(A) if ζ ≥ ξ and rξ(ζ ? A) = ζ ? A if ζ < ξ.

We obviously have A = hξ(A) ? rξ(A) for all ξ and A and, clearly, over GLP,
hξ(A) ? rξ(A) and hξ(A) ∧ rξ(A) are equivalent as the first symbol of rξ(A) is
less than ξ and hξ(A) ∈ Sξ (see Lemma 1).

Lemma 2. (A→ 〈ξ〉B)⇔ [(hξ(A)→ 〈ξ〉hξ(B)) ∧ (A→ rξ(B))].
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Proof. “⇒” Clearly, B ↔ hξ(B) ∧ rξ(B) whence A → rξ(B). Likewise A ↔
hξ(A) ∧ rξ(A). As hξ(A), hξ(B) ∈ Sξ we know that either hξ(A) = hξ(B),
hξ(B) → 〈ξ〉hξ(A), or hξ(A) → 〈ξ〉hξ(B). By assumption A → 〈ξ〉B whence
A→ 〈ξ〉hξ(B) ∧ rξ(B).

Suppose now hξ(A) = hξ(B). Then, hξ(A) ∧ rξ(A) → 〈ξ〉hξ(A) ∧ rξ(A)
whence also

hξ(A) ∧ rξ(A)→ 〈ξ〉 (hξ(A) ∧ rξ(A)).

The latter is equivalent to A→ 〈ξ〉A which contradicts the ireflexivity of <ξ.
Likewise, the assumption that hξ(B)→ 〈ξ〉hξ(A) contradicts the reflexivity

of <ξ and we conclude that hξ(A)→ 〈ξ〉hξ(B).
“⇐” This is the easier direction.

A↔ hξ(A) ∧ rξ(A)
→ 〈ξ〉hξ(B) ∧ rξ(B)
→ 〈ξ〉 (hξ(B) ∧ rξ(B))
→ 〈ξ〉B.

Note that this lemma indeed recursively reduces the general <ξ question between
to words, to the <ξ questions between words in Sξ. Note that <ξ is not tree-like.
For example, we see that both 011 <1 10111 <1 1111 and 011 <1 11011 <1 1111
while 10111 and 11011 are <1 incomparable.

3 Basic properties of Omega sequences

In these final sections we give a full characterization of the sequences Ω(A). That
is, we shall determine for given A each of the values Ωξ(A) and shall classify at
what coordinates ξ the Ω(A) sequence changes value. Clearly, Ω(A) defines a
weakly decreasing sequence of ordinals.

Lemma 3. For ξ < ζ we have that Ωξ(A) ≥ Ωζ(A).

Proof. In general we have for ξ < ζ that A → 〈ζ〉B implies A → 〈ξ〉B. Thus,
any <ζ sequence is automatically also a <ξ sequence.

Lemma 4. Ωξ(A) = oξ(hξ(A))

Proof. Suppose A0 <ξ A1 <ξ . . . <ξ A, then

hξ(A0) <ξ hξ(A1) <ξ . . . <ξ hξ(A)

by Lemma 2 whence Ωξ(A) ≤ oξhξ(A).
On the other hand, if B <ξ hξ(A), then hξ(A)→ 〈ξ〉B. But as A↔ hξ(A)∧

rξ(A) we also have A→ 〈ξ〉B. Consequently oξhξ(A) ≤ Ωξ(A).

Corollary 1. The Ω(A) sequence has a maximal non-zero coordinate. In par-
ticular, the maximal non-zero coordinate is given by ΩFirst(A)(A), where First(A)
is the first element of the non-empty word A.
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Proof. Clearly, hFirst(A)(A) 6= ε whence by Lemma 4, ΩFirst(A)(A) 6= 0. On the
other hand, for ξ > First(A), clearly hξ(A) = ε whence Ωξ(A) = 0.

It is good to have reduced Ωξ(A) to oξ(A) as in [2], and [4] a full calculus for
it is given. Let e0α := −1 + ωα and let eα denote the Veblen progression based
on e0. That is, each eα enumerates the ordinals which are simultaneous fixed
points of all the eβ for β < α. We define e0α := α and eω

ξ+ζ = eξ ◦ eζ whenever
ζ < ωξ + ζ. Further, we define ξ↑ζ := ξ+ ζ and for ξ < ζ we define ξ↓ζ to be the
unique ordinal such that ξ↑(ξ↓ζ) = ζ. These operations are naturally extended
to worms by simultaneously applying them to all occurrences of ordinals.

Lemma 5.
1. o(0n) = n;
2. If A = A10 . . . 0An, then o(A) = ωo1(An) + . . .+ ωo1(A1);
3. For A ∈ Sξ we have oξ(A) = o(ξ ↓ A);
4. o(ξ ↑ A) = eξo(A).

4 Successor coordinates

First, let us compute Ωξ+1(A) in terms of Ωξ(A). By `α we denote the unique
β such that α = α′ + ωβ for α > 0. We define `0 := 0.

Lemma 6. Given an ordinal ξ and a worm A,

oξ+1hξ+1hξ(A) = `oξhξ(A).

Proof. We write hξ(A) as A0ξ . . . ξAn. Clearly, hξ+1(hξ(A)) = A0. We shall now
see that `(oξ(hξ(A))) = oξ+1(A0).

To this end, we observe that

oξhξ(A) = oξ(A0ξ . . . ξAn)
= o
(

(ξ↓A0)0 . . . 0(ξ↓An)
)

= ωo1(ξ↓An) + . . .+ ωo1(ξ↓A0)

= ωoξ+1(An) + . . .+ ωoξ+1(A0)

Consequently `oξhξ(A) = oξ+1(A0), as desired.

Now we are ready to describe the relation between successor coordinates of
the Ω(A) sequence.

Theorem 1. Ωξ+1(A) = `Ωξ(A)

Proof.
Ωξ+1(A) = oξ+1hξ+1(A) by Lemma 2

= oξ+1hξ+1hξ(A) by Lemma 6
= `oξhξ(A)
= `Ωξ(A) by Lemma 2.

Theorem 1 tells us what the relation between successor coordinates of Ω(A)
is. However, it does not directly tell us when successor coordinates are different.
If Ωξ(A) is a fixed point of ζ 7→ ωζ then Ωξ(A) = Ωξ+1(A).
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5 Equal coordinates

Theorem 2 below gives us a characterization of when different coordinates attain
different or equal values. Before we can state and prove this theorem we need
some notation and back-ground on Cantor Normal Forms (CNFs).

For α ∈ On we define Nα and the syntactic operation CNF(α) :=
∑Nα
i=1 ω

ξi

to be the unique CNF expression of α. Next, we define for an ordinal α the set
of its Cantor Normal Form Approximation as the set of partial sums of CNF(α),
that is, if CNF(α) =

∑Nα
i=1 ω

ξi , then

CNA(α) :=

{
k∑
i=1

ωξi : 0 ≤ k ≤ Nα

}
.

We also define the Cantor Normal Form Projection of some ordinal ζ on another
ordinal ξ as follows:

CNP(ζ, ξ) := max{ξ′∈CNA(ξ) | ξ′ ≤ ζ}.

Note that CNP(ζ, ξ) is defined for all ζ, ξ ∈ On by setting max ∅ = 0.
For α, β, γ ∈ On we define

α ∼γ β :⇔ CNP(α, γ) = CNP(β, γ).

In words, α ∼γ β whenever there is no partial sum of the CNF of γ that falls in
between α and β.

The just-defined notions of CNA(ξ), CNP(ζ, ξ) and α ∼γ β are needed to
characterize the ξ↓ζ operation.

Lemma 7.

1. ∀ζ≤ξ ζ↓ξ = CNP(ζ, ξ)↓ξ;

2. ∀ζ≤ξ∃!η∈CNA(ξ) ζ↓ξ = η↓ξ;

3. For ξ, ζ ≤ η, we have
ξ↓η = ζ↓η ⇔ ξ ∼η ζ.

Proof. (1.) We consider ζ ≤ ξ. Now let η be shorthand for max{η′ ∈ CNA(ξ) |
η′ ≤ ζ} = CNP(ζ, ξ). The claim is that ζ↓ξ = η↓ξ. Let CNF(ξ) =

∑Nξ
i=1 ω

ξi .
As η =

∑k
i=1 ω

ξi for some k ≤ Nξ, we see that

η↓ξ =
Nξ∑

i=k+1

ωξi

for k < Nξ and η↓ξ = 0 for k = Nξ. We now claim that ζ + (η↓ξ) = ξ so that
ζ↓ξ = η↓ξ follows from the fact that

∀ ζ<ξ ∃!δ ζ + δ = ξ.
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We may assume ζ > η otherwise ζ + (η↓ξ) = ξ is trivial.
Thus,

η =
k∑
i=1

ωξi < ζ ≤
k+1∑
i=1

ωξi .

As by the definition of η we see that ζ ≤
∑k+1
i=1 ω

ξi cannot be an equality whence

η =
k∑
i=1

ωξi < ζ <

k+1∑
i=1

ωξi .

Thus, η ∈ CNA(ζ) and ζ +
∑Nξ
i=k+1 ω

ξi = ξ, whence

Nξ∑
i=k+1

ωξi = ζ↓ξ =
k∑
i=1

ωξi = η↓ξ.

(2.) Follows from (1.) once we realize that for different η and η′ both in
CNA(ξ) we have η↓ξ 6= η′↓ξ.

(3). From the proof of (1.) we see that

ξ↓η = ζ↓η ⇔ max{η′∈CNA(η) | η′ ≤ ξ} = max{η′∈CNA(η) | η′ ≤ ζ}

where the latter is precisely the definition of ξ ∼η ζ.

Once we have this lemma to characterize the ξ↓ζ operation, we are armed to
prove a characterization for when two coordinates in Ω(A) are equal. But first
we need a definition of when a worm A is in Beklemishev Normal Form (BNF).
Recursively we say that the empty worm ε ∈ BNF, and if Ai ∈ Sξ+1∩BNF, with
Ai ≥ξ+1 Ai+1, then Anα . . . αA1 ∈BNF. It is easy to see that if a worm is in
BNF, then so are its head and remainder. From [2], and [4] we know that the
set S∩BNF is well-ordered by <0 and that o0 provides an isomorphism between
〈S,<0〉 and 〈On, <〉.

Theorem 2. For A ∈BNF, the following five conditions are equivalent.

1. Ωξ(A) = Ωζ(A)
2. oξhξ(A) = oζhζ(A)
3. ξ↓hξ(A) = ζ↓hζ(A)
4. hξ(A) = hζ(A) and ξ↓hξ(A) = ζ↓hζ(A)
5. hξ(A) = hζ(A) and ∀η ∈ hξ(A), ξ ∼η ζ

Proof. (1.)⇔ (2.) is just Lemma 4.
(2.)⇔ (3.): Observe that oξ(hξ(A)) = o(ξ↓hξ(A)) and oζ(hζ(A)) = o(ζ↓hζ(A)).

As o defines an isomorphism between S and On, we obtain

oξhξ(A) = oζhζ(A) ⇔ ξ↓hξ(A) = ζ↓hζ(A).
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(3.) ⇔ (4.): Suppose hξ(A) 6= hζ(A). W.l.o.g. we may assume that ζ < ξ
whence

Length(hξ(A)) < Length(hζ(A))

and also

Length(hξ(A)) = Length(ξ↓hξ(A)) < Length(ζ↓hζ(A)) = Length(hζ(A)).

As A ∈ BNF, also hξ(A) and hζ(A) are in BNF, whence also ξ↓hξ(A), ζ↓hζ(A)
are in BNF. We know that normal forms are graphically unique so that ξ↓hξ(A) 6=
ζ↓hζ(A) whence o(ξ↓hξ(A)) 6= o(ζ↓hζ(A)).

(4.)⇔ (5.):

hξ(A) = hζ(A) ∧ ξ↓hξ(A) = ζ↓hζ(A) ⇔
hξ(A) = hζ(A) ∧ ∀ η∈hξ(A) ξ↓η = ζ↓η ⇔ by Lemma 7.3
hξ(A) = hζ(A) ∧ ∀ η∈hξ(A) ξ ∼η ζ

6 Limit coordinates

The results so far have already provided us with quite some insight about what
the sequences Ω(A) look like. By Lemma 3 we know that the set of values that
occur in Ω(A) is finite. Moreover, by Theorem 1 we know exactly the values at
successor coordinates. In particular, we know that if the value of Ω(A) at ξ is
the same as at the successor coordinate, then it remains the same for all further
successors.

The question remains what happens at limit ordinals coordinates. In this
section we shall determine at what limit ordinals a new value can be attained
and how the new value relates to previous values. Let us start out the analysis
by formulating a negative version of Theorem 2.

Lemma 8. For ξ < ζ we have that

Ωξ(A) > Ωζ(A) ⇔ (∃ η∈hξ(A) ξ≤η<ζ) ∨ (∃ η∈hξ(A) CNP(ξ, η)<CNP(ζ, η)).

Proof. By contraposing equivalence (1.)⇔ (5.) of Theorem 2 we get

Ωζ(A) 6= Ωξ(A) ⇔ hξ(A) 6=hζ(A) ∨ ∃ η∈hζ(A) ξ 6∼η ζ.

But, as ζ < ξ we see

hξ(A)6=hζ(A) ⇔ ∃ η∈hζ(A) ζ ≤ η < ξ.

Likewise,

∃ η∈hζ(A) ξ 6∼η ζ ⇔ ∃ η∈hζ(A) CNP(ζ, η)6=CNP(ξ, η).

As ζ < ξ we have

CNP(ζ, η)6=CNP(ξ, η) ⇔ CNP(ζ, η)<CNP(ξ, η).
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The first question to ask is at which limit coordinates the sequence Ω(A)
can change. Let us first write precisely what it means for the sequence Ω(A) to
change at some coordinate ζ. We express this by the formula

Change(ζ,A) := ∃ ξ<ζ (Ωξ(A)>Ωζ(A) ∧ ∀η (ξ≤η<ζ → Ωξ(A)=Ωζ(A))).

The next lemma gives an alternative characterization of Change(ζ,A).

Lemma 9. Change(ζ,A) ⇔ ∀ ξ<ζ Ωξ(A)>Ωζ(A)

Proof. For ζ ∈ Succ this is clear. If ζ ∈ Lim, then {Ωξ(A) | ξ < ζ} is a finite
set as all the Ωξ(A) ∈ On and these are weakly decreasing. Thus, at some point
below ζ the sequence must stabilize.

We can now characterize at what limit ordinals the sequence Ω(A) can
change.

Theorem 3. For ζ ∈ Lim: Change(ζ,A) ⇔ ∃ ξ∈hζ(A) ζ∈CNA(ξ)

Proof. For ζ ∈ Lim we reason:

Change(ζ,A) ⇔ By Lemma 9
∀ ξ<ζ Ωξ(A)>Ωζ(A)⇔ By Lemma 8

∀ ξ<ζ (∃ η∈hξ(A) ξ≤η < ζ ∨ ∃ η∈hξ(A) CNP(ξ, η)<CNP(ζ, η))⇔
∀ξ (ξ0<ξ<ζ → ∃ η∈hζ(A) CNP(ξ, η)<CNP(ζ, η))

where ξ0 := sup{ξ′ ∈ A | ξ′ < ζ}. Note that for these ξ, indeed, we have hξ(A) =
hζ(A). We now claim that the latter is equivalent to ∃ η∈hζ(A) ζ∈CNA(η).
Clearly, if ζ ∈ CNA(η) for some η ∈ hζ(A), then ξ↓η < ζ↓η for each ξ < ζ.

For the converse direction, suppose ζ /∈ CNA(η) for all η ∈ hζ(A). Then, for
all ξ′ with

sup{ξ | ∃ η∈hζ(A) (ξ∈CNA(η) ∧ ξ < ζ)} < ξ′ < ζ

we have ξ′ ∼η ζ for all z ∈ hζ(A), whence by Theorem 2 Ωξ′(A) = Ωζ(A).

Now that we have fully determined at which limit coordinates a change can
occur the only thing left to establish is the size of the change. In other words,
if Change(ζ,A) for some ζ ∈ Lim, how does Ωζ(A) relate to Ωξ(A) for ξ < ζ. In
order to answer this question, we need a generalization of Lemma 5.4.

Lemma 10. oξ(ζ↑A) = eζoξ(A) for A ∈ Sξ.

Proof. We claim that for B ∈ Sξ we have that ξ↓(ζ↑B) = ζ↑(ξ↓B). From this
claim the statement follows easily from Lemma 5.4.

oξ(ζ↑A) = o(ξ↓(ζ↑A)) = o(ζ↑(ξ↓A)) = eζo(ξ↓A) = eζoξ(A).

Thus, we only need to prove our claim. Clearly, it suffices to show the claim for
any ordinal η ≥ ξ instead of for any word in Sξ. By definition, ξ↓(ζ↑z)=δ ⇔
ξ + δ = η + ζ. Likewise, ξ↓η = δ′ ⇔ ξ + δ′ = η. As ζ↑(ξ↓η) = ξ↓η + ζ = δ′ + ζ
we obtain ξ + δ′ = η ⇒ (ξ + δ′) + ζ = η + ζ and by associativity of ordinal
addition also ξ + (δ′ + ζ) = η + ζ. We conclude that δ′ + ζ = δ which translates
exactly to ζ↑(ξ↓η) = ξ↓(ζ↑η), quod erat demostrandum.
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With this technical lemma at hand we are ready to prove the concluding theorem
of this section.

Theorem 4. Let ζ∈Lim, and let ξ < ζ be such that, whenever ξ′ ∈ [ξ, ζ), it
follows that Ωξ(A) = Ωξ′(A). Then,

Ωξ(A) = e−ξ+ζΩζ(A) = e`ζΩζ(A).

Proof. As the values ofΩξ′(A) do not change for ξ ≤ ξ′ < ζ we know in particular
by Theorem 2 that

hξ(A) = hζ(A). (1)

Likewise by Theorem 2 we see that −ξ + ζ = ω`ζ . Let δ = −ξ + ζ.
Then,

Ωζ(A) = oζhζ(A) = oξ+(ξ↓ζ)(hζ(A)) = oξ+δ(hζ(A)) = oξ(δ↓hζ(A)). (2)

Thus,
Ωξ(A) =
oξ(hξ(A)) = By (1)
oξ(hζ(A)) =
oξ(δ↑(δ↓hζ(A))) = By Lemma 10
eδoξ(δ↓hζ(A)) = By (2)
eδΩζ(A) = By definition of eα

e`ζΩζ(A).

Note that this theorem establishes the size of limit coordinates both in case
a change does occur and in case no change occurs. The latter case can only be
so when Ωζ(A) is a fixed point of e`ζ .
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