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Abstract In this paper we carry out a comparative study of IΣ1 and PRA.
We will in a sense fully determine what these theories have to say about
each other in terms of provability and interpretability. Our study will
result in two arithmetically complete modal logics with simple uiversal
models. 1 Introduction

In this paper we provide a modal logic that can decide on simple ques-
tions involving provability and interpretability over PRA and IΣ1. One
should think of questions like IΣ1 ` Con(PRA), PRA + Con(PRA) ` IΣ1,
PRA + Con(PRA) ¤ PRA + Con(IΣ1) + ¬IΣ1, IΣ1 ¤ PRA + Con(PRA),
IΣ1 + Con(IΣ1) ¤ PRA + Con(Con(PRA)), etc. As we shall see, quite some
interesting questions can be formulated in the logics we give.

In Section 3 we shall first compute the closed fragment of the provability
logic of PRA with a constant for IΣ1. The full provability logic of PRA with
a constant for IΣ1 actually has already been determined in Beklemishev [1].
We give an elementary proof here so that we can extend it when computing
the closed fragment of the interpretability logic of PRA with a constant for
IΣ1 in Section 4.

1.1 Interpretations Interpretations in the form we will consider them have
been around for quite a while in common mathematical practice. A good ex-
ample is the interpretation of non-euclidean geometry in euclidean geometry.
As a meta-mathematical tool interpretations were first introduced by Tarski
in full generality in Tarski et al. [25] where they were used to show relative
consistency and undecidability of theories.

The notion of interpretability we will study is essentially the same as in
[25]. Thus, an interpretation K of a theory T in a theory S —we write
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K : S ¤ T— is nothing more but a translation of formulas of T to formulas
of S such that the translation of any theorem of T is provable in S. In case
such a translation exists we say that S interprets T or that T is interpretable
in S and write S ¤ T . As in [25] we are interested in relative interpretability.
This means that in S we have a domain function δ(x) to which all our quan-
tifiers are restricted/relativized. A precise and formal definition of relative
interpretability can be found in, for example, de Jongh and Japaridze [5] or
Visser [29]. In these references and especially in Visser [27] the formalization
of interpretability is studied. This gives rise to interpretability logics with a
binary modal operator ¤ for formalized interpretability.

1.2 Interpretability logics Just as in the case of provability logics we have
that a modal sentence A ¤ B is a valid principle for a theory T if for any
arithmetical realization ∗ holds T ` (T ∪ {A∗})¤ (T ∪ {B∗}). Often T + A∗

will be written instead of T ∪ {A∗}. Sometimes we will write A∗
¤T B∗

for (T + A∗) ¤ (T + B∗). We will denote both the modal operator and the
formalized notion of interpretability by the same symbol ¤ but this will hardly
lead to any confusion.

As the definition of interpretability invokes that of provability it does not
come as a surprise that interpretability and provability logics are closely re-
lated. As a matter of fact, provability logics are literally included in the
interpretability logics.

Definition 1.1 The logic IL is the smallest set of formulas being closed under
the rules of Necessitation and of Modus Ponens, that contains all tautological
formulas and all instantiations of the following axiom schemata.

L1 2(A→ B)→ (2A→ 2B)
L2 2A→ 22A

L3 2(2A→ A)→ 2A

J1 2(A→ B)→ A¤B

J2 (A¤B) ∧ (B ¤ C)→ A¤ C

J3 (A¤ C) ∧ (B ¤ C)→ A ∨B ¤ C
J4 A¤B → (3A→ 3B)
J5 3A¤A

The interpretability logic IL is a sort of basic interpretability logic. All other
interpretability logics we consider shall be extensions with other principles of
it. Principles we shall consider in this paper are amongst the following.

W := A¤B → A¤B ∧2¬A
M := A¤B → A ∧2C ¤B ∧2C
P := A¤B → 2(A¤B)
F := A¤3A→ 2¬A

If X is a set of axiom schemata we will denote by ILX the logic that arises
by adding the axiom schemata in X to IL. Thus, ILX is the smallest set of
formulas being closed under the rules of Modus Ponens and Necessitation and
containing all tautologies and all instantiations of the axiom schemata of IL
(L1-J5) and of the axiom schemata of X.
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The interpretability logic for essentially reflexive theories has been proved
to be ILM, independently in Berarducci [3] and Shavrukov [19]. Also the
situation is known for finitely axiomatized theories in which case the logic is
ILP, Visser [26].

No interpretability logic is known for a theory that is neither essentially
reflexive nor finitely axiomatizable. PRA is such a theory. Thus we find it
interesting to investigate the interpretability logic of this theory. More insight
in the interpretability logic of PRA, from now on IL(PRA), can also shed some
light on the question what interpretability principles hold in any reasonable
theory as studied in Joosten and Visser [12].

In this paper we constrain ourselves to the closed fragment of IL(PRA),
that is, modal formulas without propositional variables. It is shown in Hájek
and Švejdar [9], that the closed fragment of any interpretability logic extend-
ing1 ILF has the same characterization as the closed fragment of GL. It is
easily seen that IL(PRA) indeed does extend ILF.

1.3 A comparison to other papers We have chosen to add an extra constant
to our closed fragment that denotes the sentence axiomatizing IΣ1. By writing
IΣ1 we will refer both to the finitely axiomatizable theory and to the finite
axiom axiomatizing it. We can thus study what these theories have to say
about each others provability and interpretability behaviour.

In this respect our enterprise is rather akin to a certain part of Beklemi-
shev’s paper [1] on the classification of bimodal logics. As an example of his
results he gives the provability logic (not just the closed fragment) of PRA
with a constant for IΣ1. The closed fragment of this logic is just the logic
PGL we present in Section 3. We have chosen to give explicit proofs for the
correctness and completeness of PGL again, so that we can easily extend
them to the situation where interpretability is added to the vocabulary in
Section 4.

This paper also is reminiscent of Visser’s paper on exponentiation, Visser
[28]. In that paper the closed fragment of the interpretability logic of the
arithmetical theory Ω is presented with an additional constant exp in the lan-
guage denoting the Π2-formula stating the totality of the exponential function.
(The theory Ω is I∆0 +Ω1. We refer the reader to consult Hájek and Pudlák
[8] for definitions of the ωn functions, definable cuts and other basic notions.)

A fundamental difference between Visser’s [28] and our paper is that al-
though IΣ1 is a proper extension of PRA, no new recursive functions are
proved to be total, as IΣ1 is a Π2-conservative extension of PRA. In this
sense the gap between PRA and IΣ1 is smaller than the gap between Ω and
Ω+exp. This difference is also manifested in the corresponding logics already
when we just constrain ourselves to provability. For example we have that

PRA + Con(PRA) ` Con(IΣ1),

whereas

Ω + Con(Ω) 0 Con(Ω + exp).
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Actually even Ω + exp+Con(Ω) does not even prove Con(Ω + exp). It does
hold however that Ω + Con(Con(Ω)) ` Con(Ω + exp) and there are more sim-
ilarities. We have that Con(PRA) is not provable in IΣ1. Similarly Con(Ω) is
not provable in Ω + exp. In turn IΣ1 is not provable in PRA together with
any iteration of consistency statements and the same holds for exp and Ω.2

The interpretability logics have similarities and differences too. For
example we have that PRA ¤ PRA + ¬IΣ1 and Ω ¤ Ω + ¬ exp. Also
PRA + Con(PRA) ¤ IΣ1 and Ω + Con(Ω) ¤ Ω + exp. On the other hand
IΣ1 6 ¤PRA+Con(PRA) whereas Ω+exp¤Ω+Con(Ω). However we do have
that IΣ1 ¤ Ω+ Con(PRA). We have that IΣ1 6 ¤PRA+ Con(PRA) but PRA
itself cannot see this. PRA can only see that
IΣ1 ¤ PRA+ Con(PRA)→ ¬Con(PRA).

2 Preliminaries

In this section we descibe the central notions that we shall study in this paper.
Also do we agree on some notational conventions.

2.1 Arithmetics The base theory in this enterprise is PRA which is a sys-
tem of arithmetic that goes by by many different formulations. We will briefly
mention these formulations here and then stick to one of them. In a rudimen-
tary form PRA was first introduced in Skolem [21]. The emergence of PRA
is best understood in the light of Hilbert’s programme and finitism (see Tait
[24]) or instrumentalism as Ignjatovic calls it in Ignjatovic [10].

Since Π1-sentences or open formulas played a prominent role in Hilbert’s
programme, the first versions of PRA were formulated in a quasi-equational
setting without quantifiers but with a symbol for every primitive recursive
function. (See for example Goodstein [7], or Schwartz [17], Schwartz [18].)

Other formulations are in the full language of predicate logic and also
contain a function symbol for every primitive recursive function. The amount
of induction can either be for ∆0-formulas or for open formulas. Both choices
yield the same set of theorems. This definition of PRA has, for example, been
used in Smoryński [22].3

In this paper we will associate to each arithmetical theory T in a uniform
way a proof predicate 2T as is done in Feferman [6]. Thus, we will also have
the obvious properties of this predicate like 2T+ϕψ ↔ 2T (ϕ → ψ) available
in any theory of some reasonable minimal strength. We will also extensively
make use of reflection principles.

For a theory T and a class of formulas Γ we define the uniform reflec-
tion principle for Γ over T to be a set of formulas in the following way:
RFNΓ(T ) := {∀x (2T γ(ẋ) → γ(x)) | γ ∈ Γ}. This set of formulas is often
equivalent to a single formula also denoted by RFNΓ(T ). For ordinals α ≤ ω

we define (T )Γ0 := T , (T )Γα+1 := (T )Γα +RFNΓ((T )
Γ
α) and (T )Γω := ∪β<ω(T )Γβ .

This can be extended to transfinite ordinals, provided an elementary system
of ordinal notation is given. If Γ is just the class of Πn formulas we write (T )nα
instead of (T )Πn

α .
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For some purposes it is not convenient that these definitions of PRA are in a
language properly extending the language of PA. One can thus also take PRA
to be EA+Σ1−IR which is formulated in the language of PA and is obtained
by adding to EA the induction rule for Σ1 formulas. Thus, the Σ1 induction
rule allows you to conclude ∀x σ(x) from σ(0) and ∀x (σ(x)→ σ(x+1)). The
theories EA + Σn−IR are defined likewise and we denote them by IΣR

n . The
theory EA is just I∆0 + exp.

In Beklemishev [2] it is shown that IΣR
n can be axiomatized by reflection

principles in the following sense, IΣR
n ≡ (EA)nω. All the above definitions of

PRA give rise to the same theory and these equivalences are all provable in
PRA itself. In our approach we will take (EA)2ω to be the definition of PRA.
It turns out that this is a very convenient formulation for us. It is also nice
that this is an axiomatic formulation in the language of PA.

Moreover we will fix an enumeration of the axioms of PRA. It is known that
EA is finitely axiomatizable. Since we have partial truth definitions and we are
talking global reflection we have that {∀x (2EAπ(ẋ) → π(x)) | π ∈ Π2} can
be expressed by a single sentence RFNΠ2

(EA). Likewise we see that (EA)2α
can be expressed by a single sentence for any α < ω. In our enumeration of
PRA, the i-th axiom will be (EA)2i .

By taking this definition of PRA we get almost for free that every extension
of PRA with a Σ2 sentence σ is reflexive. For, reason in PRA+σ and suppose
2PRA¹n+σ⊥. Then 2PRA¹n¬σ, and as ¬σ is Π2 we get ¬σ by Π2-reflection.
But this contradicts σ whence ¬2PRA¹n+σ⊥.

2.2 Collection Many of the interesting properties of interpretability are
only provable in the presence of the Σ1-collection principle BΣ1. Our base
theory PRA lacks BΣ1 and thus, for example, A ¤ B → (3A → 3B) is
not provable in PRA by the standard argument. We will thus rather talk of
smooth interpretability as introduced in [27]. This notion of interpretability
can be seen as the notion where the needed collection has been built in by
defining it accordingly. When we speak of interpretablility we will in this
paper always mean the smooth version. In presence of BΣ1 the two versions
of interpretability coincide.

2.3 Reading Conventions When writing modal formulas we will omit su-
perfluous brackets. These omissions do not bring the unique readability of
formulas to danger due to our binding conventions. The strongest binding
connectives are negation and the modalities 2 and 3. The connectives
∨ and ∧ bind less strong but still stronger than the ¤ modality which in
its turn binds stronger than →. We will also omit outer brackets. Thus,
A¤B → A∧2¬C¤B∧2¬C is short for ((A¤B)→ ((A∧2(¬C))¤(B∧2(¬C)))).
Often we will use A ¤ B ¤ C as short for (A ¤ B) ∧ (B ¤ C) and we do the
same for implication.

3 The closed fragment of the provability logic of PRA with a constant for

IΣ1.

In this section we will calculate the closed fragment of the provability logic
of PRA with a constant for IΣ1 and call it PGL. We shall prove it sound
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and complete with respect to its arithmetical reading. Also shall we give a
universal model for PGL.

3.1 The Logic PGL Inductively we define F , the formulas of PGL.

F := ⊥ | > | S | F ∧ F | F ∨ F | F → F | ¬F | 2F.

The symbol S is a constant in our language just as ⊥ is a constant. There are
no propositional variables. As always we will use 3A as an abbreviation for
¬2¬A. We define 20⊥ := ⊥ and 2n+1⊥ := 2(2n⊥). We also define 2γ⊥ to
be > for limit ordinals γ.

Throughout this section we shall reserve B,B0, B1, . . . to denote boolean
combinations of formulas of the form 2

n⊥ with n ∈ ω + 1.

Definition 3.1 (The logic PGL) The formulas of the logic PGL are given by
F . The logic PGL is the smallest normal extension of GL in this language
that contains the following two axiom schemes.

S1 : 2(S→ B)→ 2B

S2 : 2(¬S→ B)→ 2B

So, by our notational convention both in S1 and in S2 the B is a boolean com-
bination of formulas of the form 2

n⊥ with n ∈ ω. Immediate consequences
of S1 and S2 are that both 3(S ∧ B) and 3(¬S ∧ B) are equivalent in PGL
to 3B.

Every sentence in F can also be seen as an arithmetical statement as follows:
we translate S to the canonical sentence IΣ1 (the single sentence axiomatizing
the theory IΣ1), ⊥ to, for example, 0=1 and > to 1=1. As usual we in-
ductively extend this translation to what is sometimes called an arithmetical
interpretation by taking for the translation of 2 the canonical proof predicate
for PRA.

If there is no chance of confusion we will use the same letter to indicate
both a formal sentence of PGL and the arithmetical statement expressed by
it. With this convention we can formulate the main theorem of this subsection.

Theorem 3.2 For all sentences A ∈ F we have

PRA ` A⇔ PGL ` A.

Proof The implication “⇐” is proved in Subsection 3.2 in Corollary 3.3 and
Lemma 3.4. The other direction is proved in Subsection 3.3, in Lemma 3.5. ¤

3.2 Arithmetical Soundness of PGL To see the arithmetical soundness of
PGL, we only should check the validity of S1 and S2. Axiom S1 can be seen
as a direct consequence of the formalization of Parsons’ theorem (Parsons
[14],Parsons [15]). As is pointed out for example in the first proof of Joosten
[11], the proof of Parsons’ theorem essentially relies on Cut-elimination. The
proof can thus be formalized as soon as the totality of the superexponential
function is provable.

Corollary 3.3 PRA ` 2PRA(IΣ1 → B) → 2PRAB for B ∈ Π2 and thus

certainly whenever B is as in S1.

Lemma 3.4 EA ` ∀Π3 (2PRA(¬IΣ1 → B)→ 2PRAB)
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Proof It is well-known that IΣn ` RFNΠn+2
(EA). (See for example Leivant

[13] or [8].) consequently, the formalization of IΣ1 ` RFNΠ3
(EA) is a true

Σ1-sentence and thus provable in EA. As EA ` 2IΣ1
(RFNΠ3

(EA)) we also
have

EA ` 2EA(IΣ1 → RFNΠ3
(EA)). (∗)

Now we reason in EA, fix some B and assume 2PRA(¬IΣ1 → B). We get

2PRA(¬IΣ1 → B) →
2PRA(¬B → IΣ1) →

∃π∈Π2 2EA(¬B ∧ π → IΣ1) → by (∗)
∃π∈Π2 2EA(¬B ∧ π → RFNΠ3

(EA)) → as B ∨ ¬π ∈ Π3
∃π∈Π2 2EA(¬B ∧ π → (2EA(B ∨ ¬π)→ B ∨ ¬π)) (∗∗)

But, by simple propositional logic, we also have

2EA(¬(¬B ∧ π)→ (2EA(B ∨ ¬π)→ B ∨ ¬π))

which combined with (∗∗) yields 2EA(2EA(B ∨ ¬π) → (B ∨ ¬π)). By Löb’s
axiom we get 2EA(B∨¬π) which is the same as 2EA(π → B). Thus certainly
we have 2PRAB, as π was just a part of PRA. ¤

We note that Lemma 3.4 actually holds for a wider class of formulas than just
boolean combinations of 2α⊥ formulas. For example ¬(A¤B) is always Π3.
One can also isolate a set of sentences that is always Π2 in PRA. (See for
example [29].) When we study the logic PIL it will become clear why we only
need to include these low instantiations of the above arithmetical facts in our
axiomatic systems: In the closed fragment we have simple normal forms.

3.3 Arithmetical completeness of PGL

Lemma 3.5 For all A in F we have that if PRA ` A then

PGL ` A.

Proof The completeness of PGL actually boils down to an exercise in normal
forms in modal logic. The only arithmetical ingredients are the soundness
of PGL, the fact that PRA ` 2A whenever PRA ` A, and the fact that
PRA 0 2α⊥ for α ∈ ω.

In Lemma 3.7 we will show that 2A is always equivalent in PGL to 2α⊥
for some α ∈ ω+1. Then, in Lemma 3.8 we show that if PGL ` 2A then
PGL ` A. So, if PGL 0 A then PGL 0 2A. As PGL ` 2A ↔ 2

α⊥ for
some α ∈ ω (not ω+1 as we assumed PGL 0 2A!) and PGL is sound we
also have PRA ` 2A↔ 2

α⊥. Hence PRA 0 2A and also PRA 0 A. ¤

We work out the exercise in modal normal forms. Although this is already
carried out in the literature (see e.g. Boolos [4], or [28]) we repeat it here to
obtain some subsidiary information which we shall need later on.

Recall that we will in this subsection reserve the letters B,B0, B1, . . . for
boolean combinations of 2α⊥-formulas. Thus, a sentence B can be written
in conjunctive normal form, that is,

∧∧

i(
∨∨

j ¬2
aij⊥ ∨

∨∨

k 2
bik⊥).

Each conjunct
∨∨

j ¬2
aij⊥∨

∨∨

k 2
bik⊥ can be written as 2αi⊥ → 2

βi⊥ where

αi:=min({aij}) and βi:=max({bik}).
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By convention the empty conjunction is just > and the empty disjunction is
just ⊥. In order to have this convention in concordance with our normal forms
we define min(∅)=0 and max(∅)=ω. In

∧∧

i(2
αi⊥ → 2

βi⊥) we can leave out
the conjuncts whenever αi ≤ βi, for, in that case, PGL ` 2αi⊥ → 2

βi⊥.
So, if we say that some formula B is in conjunctive normal form we will

in the sequel assume that B is written as
∧∧

i(2
αi⊥ → 2

βi⊥) with αi > βi.
The empty conjunction gives > and if we take α0=ω > 0=β0, we get with
one conjunct just ⊥.

Lemma 3.6 If a formula B can be written in the form
∧∧

i(2
αi⊥ → 2

βi⊥)
with αi>βi, then we have that PGL ` 2B ↔ 2

β+1⊥ where β=min({βi}).

Proof The proof is actually carried out in GL. We have that

2(
∧∧

i

(2αi⊥ → 2
βi⊥))↔

∧∧

i

2(2αi⊥ → 2
βi⊥).

We will see that 2(2αi⊥ → 2
βi⊥) is equivalent to 2βi+1⊥.

So, we assume 2B. As βi < αi we know that βi + 1 ≤ αi and thus
2
βi+1⊥ → 2

αi⊥. Now 2(2αi⊥ → 2
βi⊥) → 2(2βi+1⊥ → 2

βi⊥). One
application of L3 yields 2(2βi⊥) i.e. 2βi+1⊥.

On the other hand we easily see that 2(2βi⊥)→ 2(2αi⊥ → 2
βi⊥) hence

we have shown the equivalence. Finally we remark that (
∧∧

i2
βi+1⊥)↔ 2

β+1⊥
where β = min({βi}). ¤

Lemma 3.7 For any formula A in F we have that A is equivalent in PGL

to a boolean combination of formulas of the form S or 2β⊥, and that 2A is

equivalent in PGL to 2α⊥ for some α ∈ ω + 1.

Proof By induction on the complexity of formulas in F . The base cases are
trivial. The only interesting case in the induction is where we consider the
case that A = 2C. Note that C, by induction being a boolean combination
of 2α⊥ formulas and S, can be written as (S → B0) ∧ (¬S → B1). So, by
Lemma 3.6 we have that for suitable indices β, β ′, β′′:

2C ↔
2((S→ B0) ∧ (¬S→ B1)) ↔
2(S→ B0) ∧2(¬S→ B1) ↔

2B0 ∧2B1 ↔

2
β′+1⊥ ∧2β

′′+1⊥ ↔
2
β⊥.

¤

Lemma 3.8 If PGL ` 2A then PGL ` A.

Proof By Lemma 3.7 we can write A as a boolean combination of formulas
of the form S or 2β⊥. Thus let A ↔ (S → B0) ∧ (¬S → B1) with B0 and
B1 in conjunctive normal form and assume ` 2A. For appropriate indices

we have B0 =
∧∧

i(2
αi⊥ → 2

βi⊥) and B1 =
∧∧

j(2
α′

j⊥ → 2
β′

j⊥). Using S1,

S2 and Lemma 3.6 we get that 2A ↔ 2
β+1⊥ with β = min({βi, β

′
j}). By

assumption β = ω, thus all the βi and β
′
j were ω and hence ` A. ¤
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Figure 1 Modal semantics

3.4 Modal Semantics for PGL, Decidability In this subsection we will pro-
vide a modal semantics for PGL. Actually we will give a modelM as depicted
in Figure 1 which in some sense displays all there is to know about closed sen-
tences with a constant for IΣ1 in PGL.

Definition 3.9 We define the model M as follows, M := 〈M,R,°〉. Here
M := {〈n, i〉 | n ∈ ω, i ∈ {0, 1}} and 〈n, i〉R〈m, j〉 ⇔ m < n. Furthermore
〈n, i〉 ° S⇔ i = 1.

〈3, 0〉

〈1, 0〉

〈0, 0〉

〈1, 1〉 ° S

〈2, 1〉 ° S

〈3, 1〉 ° S

〈2, 0〉

...

〈0, 1〉 ° S

Theorem 3.10 ∀mM,m ° A⇔ PGL ` A

Proof

⇐ This direction is obtained by induction on the complexity of proofs
in PGL. As M is a transitive and upwards well-founded model, it is
indeed a model of all instantiations of the axioms L1, L2 and L3. Thus,
consider S1.

So, suppose at some worldm (= 〈m, i〉), we have that 〈m, i〉 ° 2(S→ B).
Then 〈n, 1〉 ° B for n < m. Recall that B does not contain S. It
is well-known that the forcing of B depends solely on the depth of
the world, so, we also have 〈n, 0〉 ° B. Thus mRn yields n ° B.
Consequently m ° 2B, which gives us the validity of S1.

The S2-case is treated completely similarly. It is also clear that
this direction of the theorem remains valid under applications of both
modus ponens and the necessitation rule.

⇒ Suppose PGL 6` A. By Lemma 3.8 PGL 6` 2A, thus
PGL ` 2A↔ 2

α⊥ for a certain α ∈ ω. By the first part of this proof
we may conclude that m ° 2A ↔ 2

α⊥ for any m. As 〈α, i〉 6° 2α⊥,
we automatically get 〈α, i〉 6° 2A. So, for some 〈β, j〉 with 〈α, i〉R〈β, j〉
we have 〈β, j〉 ° ¬A showing the “non-validity” of A.
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¤

The set of theorems of PGL is clearly recursively enumerable. If a formula is
not provable in PGL, then, by Theorem 3.10, in some node of the model M
it is refuted. Thus the theoremhood of PGL is actually decidable.

4 The closed fragment of the interpretability logic of PRA with a constant

for IΣ1.

In this section we calculate the the closed fragment of the interpretability logic
of PRA with a constant for IΣ1 and call it PIL. We shall give two different
arithmetical soundness proofs. In one of these proofs we need that IΣ1 proves
the consistency of PRA on a definable cut. This itself will also be proven in
a more general theorem.

The logic PIL contains PGL as a sublogic and also the universal model for
PIL, that we shall give in this section, is an extension of the model we defined
in Subsection 3.4. We conclude this section by characterizing the allways true
sentences of our language I.

4.1 The Logic PIL Inductively we define I, the formulas of PIL.

I := ⊥ | > | S | I ∧ I | I ∨ I | I → I | ¬I | 2I | I ¤ I.

Again, the constants of the language are ⊥,> and S, and we will reserve
the symbols B,B0, B1, . . . to denote boolean combinations of 2α⊥ formulas.
We will write C ≡ D as short for (C ¤ D) ∧ (D ¤ C) and we say that they
are equi-interpretable.

Definition 4.1 (The logic PIL) The formulas of the logic PIL are given by
I. The logic PIL is the smallest normal extension of ILW in this language
that contains the following four axiom schemes.

S1 : 2(S→ B)→ 2B

S2 : 2(¬S→ B)→ 2B

S3 : ¬S ∧B ≡ B

S4 : (B ¤ S ∧B)→ 2¬B

As the interpretability logic ILW is a part of PIL we have access to all known
reasoning in IL and ILW. In this section, unless mentioned otherwise ` refers
to provability in PIL.

Fact 4.2

(1.) ` 2A↔ ¬A¤⊥
(2.) ` 2α+1⊥ → 3

β>¤A if α ≤ β

(3.) ` A ≡ A ∨3A
(4.) ` A¤3A→ 2¬A

As an example we prove (2.). We reason in PIL and use our notational
conventions. It is sufficient to prove the case when α = β. Thus,
2
α+1⊥ → 2(2α⊥)→ 2(¬A→ 2

α⊥)→ 2(3α> → A)→ 3
α>¤A.

Fact (4.) is Feferman’s principle and can be seen as a “coordinate free”
version of Gödel’s second incompleteness theorem. It follows immediately
from W realizing that A¤⊥ is by (1.) nothing but 2¬A.
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Again we can see any sentence in I as an arithmetical statement translating
¤ as the intended arithmetization of interpretability over PRA and 2 as an
arithmetization of provability in PRA and propagating this inductively along
the structure of the formulas as usual. With this convention we can formulate
the arithmetical completeness theorem for PIL.

Theorem 4.3 For all sentences A ∈ I we have PRA ` A⇔ PIL ` A.

Proof The implication “⇐” is proved in the next subsection in Lemma 4.4
and Lemma 4.5. The other direction is proved in Subsection 4.4, in Lemma
4.10. ¤

4.2 Arithmetical soundness of PIL In [27] it has been shown that ILW

is sound for any reasonably formulated theory extending I∆0 + Ω1. So, to
check for soundness of PIL with respect to PRA we only need to see that all
translations of S3 and S4 are provable in PRA.

We shall give two soundness proofs for S3 and S4. The first proof, consisting
of Lemma 4.4 and 4.5 uses finite approximations of theories. The second proof
makes use of reflection principles and definable cuts.

Lemma 4.4 PRA ` B ¤PRA B ∧ ¬IΣ1 for B∈Σ2, so, certainly for B as in

S3.

Proof We want to show that PRA + B ¤ PRA + B + ¬IΣ1. As we know
that every finite Σ2-extension of PRA is reflexive, we are by the Orey-Hájek
characterization for interpretability done if we can prove4

PRA ` ∀n 2PRA+B(3PRA[n]+B+¬IΣ1
>). (1)

We will set out to prove that

(i) EA ` ∀n 2PRA+B(2PRA[n]+B+¬IΣ1
⊥ → 2PRA[n]+B⊥),

(ii) EA ` ∀n 2PRA+B(2PRA[n]+B⊥ → ⊥),

from which 1 immediately follows.

The proof of (i) is just a slight modification of the proof of Lemma 3.4. We
reason in EA and fix some n:

2PRA+B ( 2PRA[n]+B+¬IΣ1
⊥

→ 2PRA[n]+BIΣ1
→ 2PRA[n]+BRFNΠ3

(EA)
→ 2EA(PRA[n] ∧B → RFNΠ3

(EA))
→ 2EA(PRA[n] ∧B → (2EA¬(PRA[n] ∧B)→ ¬(PRA[n] ∧B)))
→ 2EA(2EA¬(PRA[n] ∧B)→ ¬(PRA[n] ∧B))
→ 2EA¬(PRA[n] ∧B)
→ 2EA(PRA[n]→ ¬B)
→ 2PRA[n]¬B
→ 2PRA[n]+B⊥ ).

The proof of (ii) is just a formalization of the fact that every finite Σ2-
extension of PRA is reflexive. Recall that we fixed our axiomatization of
PRA PRA[n] = (EA)2n. Thus, by definition, PRA[n+1] ` 2PRA[n]π → π for
π∈Π2.
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If we fix some ¬B∈Π2, PRA[n+1] ` 2PRA[n]¬B → ¬B becomes a true
Σ1-sentence, and thus is verifiable in EA:

EA ` 2PRA[n+1](2PRA[n]¬B → ¬B).

Obviously we also have EA ` 2PRA[n+1]+BB. Combining, this yields a
proof of (ii) in EA:

2PRA[n+1]+B ( 2PRA[n]+B⊥
→ 2PRA[n]¬B
→ ¬B
→ ⊥ ).

¤

Lemma 4.5 PRA ` B ¤PRA B ∧ IΣ1 → 2PRA¬B for B∈Σ2, so, certainly
for B as in S4

Proof The theory PRA+B + IΣ1 is just IΣ1 +B and hence finitely axiom-
atizable and this is verifiable in PRA. Now we will reason in PRA.

We suppose that PRA+B¤PRA+B+IΣ1. As PRA+B+IΣ1 is finitely
axiomatizable we have that PRA[k] + B ¤ PRA + B + IΣ1 for some natural
number k. PRA+B is reflexive as it is a finite Σ2-extension of PRA and thus
PRA +B ` Con(PRA[k] +B).

So, certainly PRA +B + IΣ1 ` Con(PRA[k] +B) and thus

PRA +B + IΣ1 ¤ PRA[k] +B + Con(PRA[k] +B).

Consequently,

PRA[k] +B ¤ PRA[k] +B + Con(PRA[k] +B)

and by Feferman’s principle we get that 2PRA[k]+B⊥. Thus 2PRA+B⊥ and
also 2PRA(B → ⊥), i.e., 2PRA¬B. ¤

Lemma 4.5 certainly proves the correctness of axiom scheme S4. The proof
also yields the following insights.

Corollary 4.6 A consistent reflexive theory U does not interpret any finitely

axiomatized theory extending it. In particular PRA does not interpret IΣ1 nor
any other finitely axiomatized theory extending it.

Corollary 4.7 PRA+ ¬IΣ1 is not finitely axiomatizable.

We now give alternative proofs of Lemma 4.4 and 4.5.

Second Proof of Lemma 4.4. We have B∈Σ2 and we want to show in EA
that PRA +B ¤ PRA+B + ¬IΣ1. Clearly

PRA +B ¤ (PRA +B + (IΣ1 ∨ ¬IΣ1)).

So, we are done if we can show that PRA+B + IΣ1 ¤ PRA+B + ¬IΣ1. By
Corollary 4.9 we get that for a certain IΣ1-cut J , IΣ1+B ` ConJ (PRA+B).
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Using this cut J to relativize the identity translation, we find an interpre-
tation that witnesses IΣ1 +B ¤ I∆0 +Ω1 +3PRAB. We now get

IΣ1 +B ¤

I∆0 +Ω1 +3PRAB ¤ by W

I∆0 +Ω1 +3PRAB +2IΣ1+B⊥ ¤

I∆0 +Ω1 +3PRAB +2PRA(B → ¬IΣ1) ¤

I∆0 +Ω1 +3PRA(B + ¬IΣ1) ¤

PRA+B + ¬IΣ1.

¤

Second Proof of Lemma 4.5. We have B∈Σ2 and assume in EA that
PRA + B ¤ PRA + B + IΣ1. We have already seen in the above proof
that PRA +B + IΣ1 ¤ I∆0 +Ω1 +3PRAB.

Thus, by transitivity PRA +B ¤ I∆0 +Ω1 +3PRAB, and

PRA+B ¤

I∆0 +Ω1 +3PRAB +2PRA+B⊥ ¤

⊥.

This is the same as 2PRA+B⊥, i.e., 2PRA¬B. ¤

4.3 IΣ1 Proves the Consistency of PRA on a Cut

Theorem 4.8 For each n∈ω there exists some IΣn-cut Jn such that for all

Σn+1-sentences σ, IΣn + σ ` ConJn(IΣR
n + σ).

Proof From [2] it is known that IΣR
n ≡ (EA)n+1ω . Let ε be the arithmetical

sentence axiomatizing EA. We fix the following axiomatization {inm}m∈ω of
IΣR

n :

in0 := ε,
inm+1 := inm ∧ ∀

Πn+1π (2inmπ → TrueΠn+1
(π)).

The map that sends m to the code of inm is clearly primitive recursive. We
will assume that the context makes clear if we are talking about the formula
or its code when writing inm. Similarly for other formulas. An IΣn-cut Jn is
defined in the following way.

J ′n(x) := ∀ y≤x TrueΠn+1
(iny ).

We will now see that J ′n defines an initial segment in IΣn. Clearly IΣn ` J
′
n(0).

It remains to show that IΣn ` J
′
n(m)→ J ′n(m+1).

So, we reason in IΣn and assume J ′n(m). We need to show that
TrueΠn+1

(inm+1), that is,

TrueΠn+1
(inm ∧ ∀

Πn+1π (2inmπ → TrueΠn+1
(π))).

Our assumption gives us TrueΠn+1
(inm) thus we need to show

TrueΠn+1
(∀Πn+1π (2inmπ → TrueΠn+1

(π))) or equivalently

∀Πn+1π (2inmπ → TrueΠn+1
(π)). The latter is equivalent to

∀Πn+1π 2EA(TrueΠn+1
(inm)→ TrueΠn+1

(π))→ TrueΠn+1
(π). (2)

But as TrueΠn+1
(inm) → TrueΠn+1

(π) ∈ Πn+2, and as IΣn ≡ RFNΠn+2
(EA),

we get that

∀Πn+1π 2EA(TrueΠn+1
(inm)→ TrueΠn+1

(π))→ (TrueΠn+1
(inm)→ TrueΠn+1

(π)).
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We again use our assumption TrueΠn+1
(inm) to obtain 2. Thus indeed, J ′n(x)

defines in initial segment. By well known techniques, J ′n can be shortened to
a definable cut.

To finish the proof, we reason in IΣn + σ and suppose 2Jn

IΣR
n+σ

⊥. Thus

for some m∈Jn we have 2inm∧σ⊥ whence also 2inm¬σ. Now m∈Jn, so

also m+1∈Jn and thus TrueΠn+1
(inm ∧ ∀Πn+1π (2inmπ → TrueΠn+1

(π))).

As ∀Πn+1π (2inmπ → TrueΠn+1
(π)) is a standard Πn+1-formula (with pos-

sibly non-standard parameters) we see that we have the required Πn+1-
reflection whence 2inm¬σ yields us ¬σ. This contradicts with σ. Thus we get

ConJn(IΣR
n + σ).

¤

Corollary 4.9 There exists an IΣ1-cut J such that for any Σ2 sentence σ we

have IΣ1 + σ ` ConPRA+σ(J).

Proof Immediate from Theorem 4.8 as PRA = IΣR
1 . ¤

Ignjatovic has shown that IΣ1 proves the consistency of PRA on a cut in his
dissertation [10]. He used this result to show that the length of PRA-proofs
can be roughly superexponentially larger than the length of the corresponding
IΣ1 proofs.

His reasoning was based on Pudlák [16]. Pudlák showed in this paper by
model-theoretic means that GB proves the consistency of ZF on a cut. The cut
that Ignjatovic exposes is actually an RCA0-cut. (See for example Simpson
[20] for a definition of RCA0.)

4.4 Arithmetical Completeness of PIL This subsection is mainly dedicated
to prove the next lemma.

Lemma 4.10 For all A in I we have that if PRA ` A then PIL ` A.

Proof The reasoning is completely analogous to that in the proof of Lemma
3.5. We thus need to prove a Lemma 4.17 stating that for any formula A in I
we have that 2A is equivalent over PIL to a formula of the form 2

α⊥, and
a Lemma 4.18 which tells us that PIL ` A whenever PIL ` 2A. ¤

In a series of rather technical lemmas we will work up to the required lemmata.

Lemma 4.11 S ∧B ≡ (S ∧3β>) ∨3β+1> for some β ∈ ω + 1.

Proof S ∧B ≡ (S ∧B) ∨3(S ∧B) ≡ ¬(¬(S ∧B) ∧2¬(S ∧B)), but
¬(S ∧ B) ∧ 2¬(S ∧ B) ↔ (S → ¬B) ∧ 2(S → ¬B) ↔ (S → ¬B) ∧ 2¬B.
Now we consider a conjunctive normal form of ¬B. Thus, ¬B is equivalent to
∧∧

i(2
αi⊥ → 2

βi⊥) for certain αi > βi (possibly none). So, by Lemma 3.6,
2¬B ↔

∧∧

i2
βi+1⊥ ↔ 2

β+1⊥ for β = min({βi}). So,

(S→ ¬B) ∧2¬B ↔
(S→ ¬B) ∧2β+1⊥ ↔
(S→ ¬B) ∧ (S→ 2

β+1⊥) ∧2β+1⊥ ↔
(S→ (

∧∧

i(2
αi⊥ → 2

βi⊥) ∧2β+1⊥)) ∧2β+1⊥ (1)
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As αi > βi ≥ β we have β + 1 ≤ αi whence 2
β+1⊥ → 2

αi⊥. Thus,
∧∧

i

(2αi⊥ → 2
βi⊥) ∧2β+1⊥ ↔

∧∧

i

2
βi⊥ ↔ 2

β⊥,

and (1) reduces to (S→ 2
β⊥) ∧2β+1⊥. Consequently,

(S ∧B) ∨3(S ∧B) ↔
¬(¬(S ∧B) ∧2¬(S ∧B)) ↔
¬((S→ 2

β⊥) ∧2β+1⊥) ↔
(S ∧3β>) ∨3β+1>.

¤

By a proof similar to that of Lemma 4.11 we get the following lemma.

Lemma 4.12 B ≡ 3γ′

> for certain γ′ ∈ ω + 1.

In PIL we have a substitution lemma in the sense that ` F (C)↔ F (D) when-
ever ` C ↔ D. We do not have a substitution lemma for equi-interpretable
formulas5 but we do have a restricted form of it.

Lemma 4.13 If C ≡ C ′, D ≡ D′, E ≡ E′ and F ≡ F ′, then

` C ∨D ¤E ∨ F ↔ C ′ ∨D′
¤E′ ∨ F ′.

We reason in PIL. Suppose that C ∨ D ¤ E ∨ F . We have for any G that
C ′∨D′

¤G↔ (C ′
¤G)∧ (D′

¤G). As C ′
¤C¤ (C∨D) and D′

¤D¤ (C∨D)
we have that C ′ ∨ D′

¤ C ∨ D. Likewise we obtain E ∨ F ¤ E ′ ∨ F ′ thus
C ′ ∨ D′

¤ C ∨ D ¤ E ∨ F ¤ E′ ∨ F ′. The other direction is completely
analogous.

Lemma 4.14 S ∧3α>¤ (S ∧3β>) ∨3γ> is provably equivalent to
{

2
ω⊥ if α ≥ min({β, γ})
2
α+1⊥ if α < β, γ

Proof The case when α ≥ min({β, γ}) is trivial. The identity interpretation
always works as 3α> → 3

δ> whenever α ≥ δ. So, we consider the case when
¬(α ≥ min({β, γ})), that is, α < β, γ.

Then we have 3β>¤3α+1>¤3(3α>)¤3(S∧3α>) and likewise for 3γ>.
Thus, together with our assumption, we get S∧3α>¤(S∧3β>)∨3γ>¤3(S∧3α>).
By Feferman’s principle we get 2¬(S∧3α>) whence 2α+1⊥. The implication
in the other direction is immediate by Fact 4.2. ¤

Lemma 4.15 3
α>¤ (S ∧3β>) ∨3γ> is provably equivalent to
{

2
ω⊥ if α ≥ min({β + 1, γ})
2
α+1⊥ if α < β + 1, γ

Proof The proof is completely analogous to that of Lemma 4.14 with the
sole exception in the case that α = β < γ. In this case

3
γ>¤3α+1>¤3(3α>)¤3(S ∧3α>)¤ S ∧3α>

and thus (S ∧ 3α>) ∨ 3γ> ¤ S ∧ 3α>. An application of S4 yields the
desired result, i.e. 2α+1⊥.
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In case α ≥ β + 1 it is useful to realize that

3
α>¤3β+1>¤3(3β>)¤3(S ∧3β>)¤ S ∧3β>.

¤

Lemma 4.16 If C and D are both boolean combinations of S and sentences of

the form 2
γ⊥ then we have that PIL ` (C ¤D)↔ 2

δ⊥ for some δ ∈ ω + 1.

Proof So, let C and D meet the requirements of the lemma and reason in
PIL. We get that

C ¤D ↔ (S ∧B0) ∨ (¬S ∧B1)¤ (S ∧B2) ∨ (¬S ∧B3)

for some B0, B1, B2 and B3. The righthand side of this bi-implication is
equivalent to

((S ∧B0)¤ (S ∧B2) ∨ (¬S ∧B3)) ∧ ((¬S ∧B1)¤ (S ∧B2) ∨ (¬S ∧B3)). (∗)

We will show that each conjunct of (∗) is equivalent to a formula of the form
2
ε⊥. Starting with the left conjunct we get by repeatedly applying Lemma

4.13 that

S ∧B0 ¤ (S ∧B2) ∨ (¬S ∧B3) ↔ Lemma 4.11
(S ∧3α>) ∨3α+1>¤ (S ∧B2) ∨ (¬S ∧B3) ↔ S3

(S ∧3α>) ∨3α+1>¤ (S ∧B2) ∨B3 ↔ Lemma 4.12

(S ∧3α>) ∨3α+1>¤ (S ∧B2) ∨3γ′

> ↔ Lemma 4.11

(S ∧3α>) ∨3α+1>¤ (S ∧3β>) ∨3β+1> ∨3γ′

> ↔
(S ∧3α>) ∨3α+1>¤ (S ∧3β>) ∨3γ> ↔
(S ∧3α>¤ (S ∧3β>) ∨3γ>) ∧
(3α+1>¤ (S ∧3β>) ∨3γ>) ↔ Lemma 4.14
2
µ⊥ ∧ (3α+1>¤ (S ∧3β>) ∨3γ>) ↔ Lemma 4.15
2
µ⊥ ∧2λ⊥ ↔
2
δ⊥

for suitable indices α, β, . . . . For the right conjunct of (∗) we get a similar
reasoning. ¤

Lemma 4.16 is the only new ingredient needed to prove the next two lemmas
in complete analogy to their counterparts 3.7 and 3.8 in PGL.

Lemma 4.17 For any formula A in I we have that A is equivalent in PIL

to a boolean combination of formulas of the form S or 2β⊥, and that 2A is

equivalent in PIL to 2α⊥ for some α ∈ ω + 1.

Lemma 4.18 For all A in I we have that PIL ` A whenever PIL ` 2A.

4.5 Modal Semantics for PIL, Decidability As in the case of PGL, we shall
define a universal model for the logic PIL. We shall use the well known
notion of Veltman semantics for interpretability logic. A Veltman model is a
pair 〈M,S〉. Here M is just a GL-model. The S is a ternary relation on M .
We shall write S as a set of indexed binary relations. On Veltman models,
for all x, the Sx is a binary relation on all the worlds that lie above (w.r.t.
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the R-relation) x. It is reflexive, transitive and extends R on the domain it
is defined on. The forcing of formulas is extended to interpretability by the
following clause.

x ° A¤B ⇔ ∀y (xRy ° A⇒ ∃z (ySxz ° B))

Definition 4.19 (Universal model for PIL) The model N =
〈M,R, {Sm}m∈M ,°〉 is obtained from the modelM = 〈M,R,°〉 as defined in
Definition 3.9 as follows. We define 〈m, 1〉Sn〈m, 0〉 for nR〈m, 1〉 and close off
as to have the Sn relations reflexive, transitive and containing R the amount
it should.

Theorem 4.20 ∀n N , n ° A⇔ PIL ` A

Proof The proof is completely analogous to that of Theorem 3.10. We only
should check that all the instantiations of S3 and S4 hold in all the nodes of
N .

We first show that S3 holds at any point n. So, for anyB, consider any point
〈m, i〉 such that nR〈m, i〉°B. As 〈m, i〉Sn〈m, 0〉, we see that n ° B¤B∧¬S.

To see that any instantiation of S4 holds at any world n we reason as
follows. If n ° 3B we can pick the minimal m ∈ ω such that (m, 0) ° B.
It is clear that no Sn-transition goes to a world where B ∧ S holds, hence
n ° ¬(B ¤B ∧ S). ¤

The modal semantics gives us the decidability of the logic PIL.

4.6 Adding reflection Just as always, if we want to go from all provable
statements to all true statements, we have to only add reflection. As we are
in the closed fragment and as we have good normal forms, this reflection will
amount to iterated consistency statements.

The logics PGLS and PILS are defined as follows. The axioms of PGLS
(resp. PILS) are all the theorems of PGL (resp. PILS) together with S and
{3α> | α ∈ ω}. It’s sole rule of inference is modus ponens.

Theorem 4.21 PGLS ` A⇔ N |= A

Proof By induction on the length ofPGLS ` A we see thatPGLS ` A⇒ N |= A.
To see the converse, we reason as follows. Consider A ∈ F such that N |= A.

By Lemma 3.7 we can find an A′ which is a boolean combination of S and
3
α> (α ∈ ω + 1), such that PGL ` A↔ A′. Thus PRA ` A↔ A′ and also

N |= A↔ A′. Consequently N |= A′.
Moreover, as A′ is a boolean combination of S and 3α> (α ∈ ω + 1), for

some m ∈ ω, S ∧
∧∧m

i=13
i> → A′ is a propositional logical tautology whence

A′ is provable in PGLS. Also PGLS ` A↔ A′ whence PGLS ` A. ¤

Clearly the theorems of PGLS are recursively enumerable. As PGLS is a
complete logic in the sense that it either refutes a formula or proves it, we see
that theoremhood of PGLS is actually decidable.

Theorem 4.22 PILS ` A⇔ N |= A

Proof As the proof of Theorem 4.21 ¤
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Clearly, PILS is a decidable logic too.

Notes

1. The logics and other notions mentioned in the introduction will be defined later
on in the paper. Alternatively a reference is provided.

2. It is well known that IΣ1 ≡ RFNΠ3(EA) and that IΣ1 is not contained in any
Σ3-extension of EA. Consistency statements are all Π1-sentences. For the case
of Ω and exp reason as follows. Take any non-standard model of true arithmetic
together with the set {2c

>ω
k

2 (c) | k∈ω}. Take the smallest set containing c

being closed under the ω2 function. Consider the initial segment generated by
this set. This initial segment is a model of Ω and of all true Π1 sentences but
clearly not closed under exp.

3. Confusingly enough Smoryńsky later defines in Smoryński [23] a version of PRA
which is equivalent to IΣ1.

4. PRA[n] will denote the conjunction of the first n axioms of PRA. First refers
to the order fixed in Subsection 2.1.

5. We have that ¬S ≡ >. If the substitution lemma were to hold for equi-
interpretable formulas then S ≡ ¬(¬S) ≡ ⊥ which will turn out not to be
the case.
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[9] Hájek, P., and V. Švejdar, “A note on the normal form of closed formulas of
interpretability logic,” Studia Logica, vol. 50 (1991), pp. 25–38. 3

[10] Ignjatovic, A., Fragments of first and Second Order Arithmetic and Length of

Proofs, PhD thesis, University of California, Berkeley, 1990. 4, 14

[11] Joosten, J., “Two proofs of Parsons’ theorem,” Logic Group Preprint Se-
ries 127, University of Utrecht, November 2002. 6

[12] Joosten, J., and A. Visser, “The interpretability logic of all reasonable arith-
metical theories,” Erkenntnis, vol. 53 (2000), pp. 3–26. 3

[13] Leivant, D., “The optimality of induction as an axiomatization of arithmetic,”
Journal of Symbolic Logic, vol. 48 (1983), pp. 182–184. 7

[14] Parsons, C., “On a number-theoretic choice schema and its relation to induc-
tion,” pp. 459–473 in Intuitionism and Proof Theory, edited by K.A., M. J.,
and V.R.E.,North Holland, Amsterdam, 1970. 6

[15] Parsons, C., “On n-quantifier induction,” Journal of Symbolic Logic, vol. 37
(1972), pp. 466–482. 6

[16] Pudlák, P., “On the length of proofs of finitistic consistency statements in
first-order theories,” in Logic Colloquium ’84, edited by 14

[17] Schwartz, D. G., “A free-variable theory of primitive recursive arithmetic,”
Zeitschrift f. math. Logik und Grundlagen d. Math., vol. 33 (1987), pp. 147–
157. 4

[18] Schwartz, D. G., “On the equivalence between logic-free and logic-bearing sys-
tems of primitive recursive arithmetic,” Zeitschrift f. math. Logik und Grund-

lagen d. Math., vol. 33 (1987), pp. 245–253. 4

[19] Shavrukov, V., “The logic of relative interpretability over Peano arithmetic
(in Russian),” Technical Report Report No.5, Steklov Mathematical Institute,
Moscow, 1988. 3

[20] Simpson, S. G., Subsystems of Second Order Arithmetic, Springer-Verlag, 1999.
14

[21] Skolem, T., “The foundations of elementary arithmetic established by means
of the recursive mode of thought, without the use of apparent variables ranging
over infinite domains,” pp. 302–333 in From Frege to Godel, edited by Iuniverse,
Harvard, 1967. 4
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