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1 Lecture 1 (15-6-2001)

1.1 Fragments of Peano Arithmetic

In this lecture we fixed our subject of study which will be PA and fragments
of PA. The language of PA will be {0, 1, +,-,=}. Fragments T of arithmetic
are subtheories of PA in the sense that all theorems of T' are also theorems
of PA. The language of 7" might be richer though than the language of PA.
Some notions that are easily definable in PA (and their properties provable)
might not be sufficiently definable in a weaker theory. So, typically, the
richer language of the weaker theory contains a special symbol for a function
and contains as axioms the defining properties of that function. We will
encounter many such examples.

Roughly speaking fragments of arithmetics can be seen as divided into
three categories of increasing strength.

e The strongest class is the class of the so-called strong fragments, like
1¥,, and BX,,. Their classes of provably recursive total functions is less
than the full class of recursive functions. These fragments are more
or less characterized by their methods of proof employed like classical
model theory and proof theory.

e The class of arithmetics below the strong arithmetics is referred to as
weak, or bounded arithmetics. A typical example is Buss’ S5 where
you only allow for induction over N P-predicates. (N P-predicates are
represented by ¥¢-formula’s which are built up from strictly bounded
formulas by means of conjunction, disjunction, strictly bounded uni-
versal quantifiers and bounded existential quantifiers. Bounded quan-
tifiers are quantifiers of the form Iz < ¢ with 2 not occuring in ¢



and strictly bounded quantifiers are of the form Jx < |¢|, with ¢
denoting the length of the binairy representation of (the value of) ¢.
(lz] = [logy(x + 1)], but normally | - | is a primitive symbol in the
language.)) It is proved that the X% definable sets are precisely the
NP sets. So, the methods used in the field of bounded arithmetic are
closely related to those of computational complexity. The provably
total recursive functions of S% are precisely the P-time computable
functions. Note that in order to get the P-time computable functions
provably total one needs induction over NP predicates.

e The weakest possible fragments are referred to as systems of open
induction like I(open). The proof methods here are purely algebraic.
First considerable results in this field are those by Shepherdson.

Tennenbaum’s theorem could be seen as a borderline between systems
of open induction and of bounded arithmetic. So, the systems of open
induction can have recursive nonstandard (countable) models whereas the
stronger theories do not. A borderline between weak and strong fragments
is more artificial and in our case will be laid at Elemantary Arithmetic, EA.

EA can be axiomatized in many ways. One can take ) (Robinson’s
arithmetic) plus function symbols for all the Kalmar elementary functions
together with their defining axioms. The Kalmar elementary functions are
those which are defined by bounded primitive recursion (just the regular
recursion scheme where the function f(x) should at any entry be mayorized
by 2 (see definition 5.4) for some fixed (standard) n). One could also
define the Kalmar elementary functions as those obtained by adding to the
language a bounded p-operator and allow for definitions like g(y) := px <
a.f(z,y) = 0. (Here the g(y) returns as value the smallest x not bigger
than a such that f(z,y) =0.) Alternatively one could say that the Kalmar
elementary funcions are those which are computable by a Turing machine
with a multiexponential time bound. We will often call upon EA by its
equivalent formulation of IAg + EXP. EXP is the one axiom expressing the
totality of the exponential function and IA( can be taken to be @ plus the
induction axioms for all bounded (4Ag) formulas.

Work in the area of bounded arithmetic is very difficult. In especially
the problem of separation of classes of sets is extremely hard. Whereas it
is relatively easy to see that the classes of 3,, A, and II, definable sets
are all distinct, this analogous problem is far from being solved in the field
of bounded arithmetic. Especially the question of P # NP is still left
unanswered.



Our basic theory will be EA. The language of EA is richer than that of
PA and consists of 0,1, 4, -, =, <, and 2¥. Over PA, the latter two symbols
are of course definable. z <y <> 3z z+ 2 = y and 2% is definable making
use of coding techniques. (Actually the graph of 2* can be defined by a Ag
formula, but this is not at all trivial.) Furthermore EA includes the defining
axioms for these symbols:

1. < is a discrete linear order, with x + 1 the successor of z and 0 the
least element and plus and times respect the order.

2. 20 =1,
20F1 = 2% 4 2%,

Our notation will be as in the literture where it comes to the quantifier
complexity of formulas (see for example Mendelsohn’s book). One word
of caution is in order here. Sometimes one finds in the literature that X,
formulas are closed under bounded quantification. We will not adhere to
this convention because in the weaker systems one might not have enough
collection principles to prove this closure properties. So, instead we will
consider them as new axiom schemes, giving rise to the systems BY,, where
the collection axioms By: VaVt(Vz < t Jy o(z,y,a) = FzVz < ty <
z ¢(x,y,a)) are restricted to the case where ¢ is a ¥,-formula. In our
notation I¥,, will stand for EA plus all the induction axioms for ¥, formulas.
Later we will see that EA is actually finitely axiomatizable. Note that we
do allow extra parameters in all these axiom schemes. Over PA the extra
parameters could be dispensed with but in weaker systems this is definitely
not the case explaining why we distinguish between parameter free induction
systems I¥_°, and normal induction systems I3, with parameters. It will
turn out that IX,, is finitely axiomatizable whereas I¥_ is not. (The strength
of induction rules is less dependent on the presence of parameters.)

1.2 Truth predicates

Church’s thesis and the close relation between X 1-formulas and R.E. sets is
used to make the arithmetical analogous of the universal Turing machine:
a universal Yi-formula, a so-called ¥i-truth predicate. We want to have
a formula Try, (z) which is true if and only if z is the code of a true ¥,
sentence. We recall the following well known theorem relating 3; formulas
and R.E. sets.

Theorem 1.1 A set of natural numbers X is R.E. iff there is ¢(z) € X4
such that [n € X <> N = ¢(n)]



So, we can consider R.E. sets as being indexed by the code of a 3
formula in the sense that X = Wr;n = {n | N = 0(n)}. Now we know of
the existence of a universal Turing machine and a coding of this protocol in
arithmetic such that N = W (e, z) <> ‘x € W,.’. By Church’s thesis and the
above theorem we may assume that this W(e, z) is actually a ¥; formula.
A better inspection of the way W (e, z) actually works reveals that it makes
use of effective constructions only (and bounded (multi) exponential space
and time), so that the validity of the equivalence is actually provable in EA.
(This is merely a heuristics rather than a proof.) Wi(e,z) is not yet our
pursued truth-predicate. It is merely a satisfaction relation for ¥, formula’s
with one free variable. We want a truth predicate for sentences however. To
get our predicate we employ the following elementary transformation

g: "o'mToANx =217,

to define
Trs, (y) := W(g(y),0).

Indeed, now we have N = 0 & N EF 0 A0 =0 & 0 € Wyrp) &
N E Try,("o™)(= W(g("0™),0)). (Working out all the details and not
using Church’s thesis is done in Kaye’s book “Models of Peano Arithmetic”
([Kay91, Kaye 1991]) where actually a A; satisfaction predicate for A for-
mula’s is designed. From this one also obtains a ¥ truth predicate for >4
formula’s.)

Note that we have EA F p(z) <> Try, (Tp(2)7) for all ¢ € £;. Once we
have a ¥; truth predicate, truth predicates for higher complexities are read-

ily concocted. For example if g is a function sending a code z = "Vop(v)™
to g(z) = "p(v)7, then Tri, (z) := VwTry, (9(z)[w/v]).

Once we have the truth predicates it is not too hard to see that we can
replace all of our induction axioms by one single instantiation. In other
words we have the following.

Theorem 1.2 Most of our strong fragments are finitely aziomatizable.

PROOF OF FINITE AXIOMATIZABILITY. While running through the argu-
ment we see why it is necessary to allow for parameters in the induction
formula. We can restrict ourselves though to just one parameter as we know
that for every n there exists a Ay and 1-1 coding. We see that every induc-
tion axiom of a Xi-sentence can be obtained from the single instantiation of
the formula Try, (é(x)) which says:

Ve(Trs, (6(0)) AVa[Trs, (6(£)) — Trs, (6(E + 1))] — YaTrs, ((&))).



¢(0) stands here for the code of 0 subtituted in the formula coded by e, et
cetera. (Notice that this is highly ambiguish. Does the dot also applies to
free variables occuring in the formula after the substitution has had taken
place? We will not worry so much as for our purposes it is clear what we
mean.) A priori EA could be infinite (we shall later on see that it is not)
but all the induction axioms for ¥; sentences are derivable from that very
specific instance by using only a fixed finite part of EA. So, indeed, I3
is finitely axiomatizable. For the other systems the proof of their finite
axiomatizability is very similar. QED

2 Lecture 2 (20-6-2001)

2.1 Arithmetization of Metamathematics

In the previous lecture we already saw some arithmetization in process.
A truth-predicate was made in the language of arithmetic such that N |=
o< NE Try, (To7) for ¥; sentences 0. We now want to arithmetize the
notion of ”provable” rather than that of "true”. So, we would like to have a
predicate Prp(x) or alternatively denoted by O7(z) which is to hold (in the
standard model) precisely whenever the formula with code z is provable in
T.

In the developement of our provability predicate we will closely follow
the influential article of [Fef60, Feferman]. We will thus use a provability
predicate which is uniformly associated to an arithmetical theory. We will
assume that the languages of our theories are simple in the sense that they
are Ag definable. Oftern we will assume that we have some fixed A( pred-
icates stating that “ x is a logical axiom” and “z is obtained from y and
z by means of an application of Modus Ponens”. By the second we mean
that y is the code of some formula ¢, z of some formula of the form ¢ — 1)
and x of the formula . Of course we need certain strength of our theories
to perform these codings and to prove certain properties of it like unique
readability and the like but as we have induction over A( formulas in EA we
have no worries. In the logical axioms we also include the equality axioms.

Now we want to be able to talk of a certain theory T inside another
theory U. So certainly this theory 7" should be definable by some formula
a in the sense that N = a(n) if and only if n is the code of an axiom of
T. Definability however is not enough if the logical complexity of a is more
than 3; because U also has to “see” this that a(n). Therefore the following
notion is introduced.



Definition 2.1 A formula a(x) is said to be a numeration of a theory T
in a theory U if we have

e v is an aziom of T iff U F a("¢")

A formula a(z) is said to be a binumeration of a theory T in a theory U if
«a is a numeration of T in U and

o If v is not an azxiom of T then U F —a("¢")

Here the theory U will be EA in most of the cases. Notice that if T
is R.E. then the set of axioms is ¥; definable in the standard model. But
EA proves all and only all true 3; sentences so in this case numerabilty
coincides with definability. If 7" is binumerable in U, and U is a sound R.FE.
theory, this implies that the axiom set of T is decidable. This does not
necessarily imply that we can binumerate T in U with a A;(U) predicate.
The binumeration will externally be equivalent to a A;(N) formula but the
theory U need not necessarily be able to see this.!

Once we have fixed a numeration « of a theory T in U we can form an
intensional proof predicate stating that there is some sequence of formula’s
where each formula is either an axiom (logical or non-logical, so this is where
a comes into play) or is obtained from some rule using only formula’s that
occured earlier on in the sequence. We will denote this by JyPrf,(y,x)
or simply Pr,. Two observations are noteworthy. Firstly we see that the
occurence of « is positive in Pr,. You can see this either by inspecting the
way Prqo is constructed and conclude that Prf, is Ag(a). Alternetatively
one can remark that taking a weaker a can only yield more theorems (or
just as many). This can not happen if a occurs somewhere (essentially)
negatively in Prf,. Secondly we observe that different numerations yield
different non-equivalent proof predicates. (cf. Feferman’s proof predicate
for which we don’t have Goédel’s second incompleteness theorem versus the
regular proof predicate.) This non equivalence of different proof predicates

! Actually being a A;(N)-formula is a non-arithmetical notion, but the theory need
also not necessarily see the A;(U)-ness. An example is given in the proof of Orey-Hajek’s
criterium for interpretability over a reflexive theory. Here 3 is some (say A1 (U)) binumer-
ation of a theory 7" in U. If you assume that U - Con(T" | n) for all n € N you can make a
Feferman-like binumeration a such that U F Con,. This is a binumeration of higher com-
plexity, say Az, of T in U. Using this binumeration in performing the Henkin construction
in a formalized setting one obtains U I>7T. (This « is defined as a(z) := B(x) ACon(T | n).
To see that U F Con, we reason in U and suppose —Con,. So, we also have -Cong, so
there is a least no such that ~Conr}n,. By the minimality of no we have that Cong(z)re<no
which is by the choice of ng just Con,. This contradicts our initial assumption.)



already is manifestated in 31 or even Ay numerations. We already knew
that strange things can happen when it comes to numerations. For example
Craig’s trick states that every R.FE. theory is equivalent to one with a Ag
numeration.

In the paper of Feferman [Fef60, Feferman] one finds that if a is ¥;, then
Pr, satisfies the derivability conditions. Actually this was already more or
less known before. Let T be a theory containing EA that is numerated by
a with « € ¥1. (When we use the O notation we automaically read that we
have to take the code of the formula as the argument.)

1. THo < EAF Oy

2. EAF Ou(p = ¢) = (Dalp) = Oal¥))
3. EAF+ Da(P — DaDa(P
4. THOup—peThy

The first condition from left to right just expresses the numerability of
theorems. The other direction follows from the 3; soundness of EA plus
the fact that O, is an intensional coding of the concept of provability. The
second one reflects that the provability predicate is closed under logical con-
sequence. In the third clause it is essential that « is a X1 numeration so that
O, is a Y, predicate. Then the condition is a corrolary of a formalization
of ¥; completeness which states that whenever N |= o(n) for certain n € N
and o € ¥; that then EAF o(14+ 1+ ...+ 1). (n times addition.) The
size of this proof can be elementary constructed from o and n so that we
actually have a formalization of this:

EAFVz (o(z) = Ou(o(2))).

This fact does actually hold for a larger class of formula’s namely the small-
est class containing 31 and being closed under bounded quantifications con-
junctions and disjunctions. This class is really bigger if you don’t have ¥
collection. Notice that EA+BY; = EA+BAj. The fourth condition can be
viewed as a generalization of Gédel’s second incompleteness theorem. Tak-
ing contraposition we obtain T + —¢ is consistent = T ¥ —p — -0, So,
by the deduction theorem, 7'+ —¢ ¥ =0, (—¢ — L). If we set U := T+ —p,
we can conceive the latter as U ¥ Cong. As a natural numeration of U one
could take ay(x) := a(x) Vo ="-p". Now F Cony < —Oy——p.



2.2 Reflection priciples

Reflection principles are a strong tool in studying systems of arithmetic.
They quite naturally generalize consistency statements. Either way one
intends to generalize the notion of so to say, the principle of “everything
that is provable, is true”, one is more or less bound to end up with one of
the two following notions.

e Local Reflection. This consists of the scheme O,¢ — ¢ for sentences
@ and is denoted by Rfn, or by Rfn whenever o« numerates 7'.

e Uniform reflection. This is the same scheme as local reflection
except that we now allow for formulas. It is denoted by RFN(T') or
RFN,. So, a reflection principle is one of the form Vz(O,p(z) —
¢(x)). Here we assume that F'V(¢) = {z}. Possible other variables
can be dispensed with by means of encoding.

Often one considers restrictions on the formulas or sentences that occur
in the reflection principles giving rise to the so-called restricted reflection
schemes (RFNy, , et cetera). For II; reflection we have the following easy
but interesting result over EA.

Lemma 2.2 (EA+F) RFNp, (T) < Rfnn, (T) < Con(T)

PROOF OF LEMMA. We always have the arrows from left to right, that is
to say for any nonempty formula class. Thus it suffices to show Con(T) =
RFNy, . So, assume O,9(2) A—¢(z). By provable ¥; completeness we have,
as - is Xy, that O,—p(z) and hence O,(p(2) A —p(E)), i.e. OyL, which
contradicts the assumption of consistency. QED

Another easy fact is that RFNp
the fact that

»+1 = RFNg, which follows directly from

OuVup(u, ) = YuOep(d, ).

We also have the following.

Fact 2.3 T+Rfny, is not contained in any finite consistent ¥, extension of
T, and dually we have that T+Rfny,  is not contained in any finite consistent
II,, extension of T'.

PROOF OF FACT 2.3. Take any finite extension of T by ¥,, sentences. (The
other case goes completely the same.) By taking conjunctions we may as-
sume we have only one sentence . We see that T 4+ ¢ does not prove



the reflection principle for ~¢ (€ II,). For suppose it did, i.e., T + ¢ F
Oa—¢ — —p. Thus, T F ¢ — (O4—¢ — —p) which amounts to the same as
T + O,-¢ — —p. By the fourth provability condition (LSb’s rule) we obtain
T+ —p. So, indeed T+ ¢ can not prove all local 11, reflection axioms. QED

This fact can even be extended to one where the condition on finiteness
is replaced by a condition of ¥,-numerability to obtain the following.

Proposition 2.4 Let T be an R.E. theory containing EA. No %, numer-
able set of I1,, sentences U such that T+ U is consistent, contains T + Rfny

PROOF OF PROPOSITION 2.4. The trick is done by the fact that one can
include every 3, numerable II,, extension of T" in some T + ¢ for some
IT,,-formula ¢. For this you consider a fixed point ¢ with a built in Rosser
trick

@ < Vr[Axy (m) AVy < m=Prfryo(y,"L7) = Tro, (7)].

There are two important observations:
(1.) T + ¢ is consistent,
(2) UCT+ .

We have that (1.) = (2.). If T+ ¢ is consistent and 7 is an element
of U then (7 is standard) Vy < @ —Prfr,,(y,"L") is true and this is also
provable, so we have T+ ¢  Trp, (7) hence T + ¢ F 7. So, it remains to
show that T + ¢ is consistent. Suppose it were not. Let m be the smallest
(standard!) proof of L in T+ ¢. Then Prfr ,(m, L") is true and also
provable (and also provably the smallest). So, ¢ is provably equivalent to
Vr[Axy (m) Am <m — T, (7)), i€, Areaxgpm T, (7). But certainly this
is provable in 7'+ U but this contradicts the consistency of 7'+ U. Now we
can proceed as before to arrive a contradiction assuming that 7"+ ¢ proves
all ¥, instances of the reflection principle. QED

The dual of proposition 2.4 is somewhat harder and one needs another
fix point.
We also have the following uniform version of the above fact.

Fact 2.5 T+ RFNy, is not contained in any consistent ¥, extension of T,
and dually we have that T + RFNy_ is not contained in any consistent 11,
extension of T.



PROOF OF FACT. Let S be some collection of ¥, sentences such that T'+.S
extends 7'+ RFNy . We also have T'+ S F Vz(Oy(Try, (2)) — Tri, (z)).
By compactness we have for some single ¥.,,-sentence o that

T+oFVe(Ou(Trm, () — Tro, (x)). We conclude that 7'+ .S can not prove
the reflection axiom for Try, (—o), for if it would then by an application of
Lo6b’s rule and the fact that Tri, (o) <> o we would be able to prove —o
in T + S which can not be so. QED

3 Lecture 3 (27-06-2001)

3.1 Provably total recursive functions

An important proof theoretic question about arithmetical theories is about
the recursive functions that they prove to be total. This is also closely re-
lated to proof theoretic ordinal analysis of theories. We know that recursive
functions are represented on the standard model by 3; formulas so we can
say what it means for a function f(Z) to be provably recursive and total in
some theory 7" namely

1. For some ¥ formula ¢(Z,y) : f(¥) =y < N E ¢(Z,v),
2. T HYZ3yp(Z,y).

This ¢ need not be unique. It might be the case that for some ¢ you
have 1 and 2 and for some other ¢’ you only have 1. Or even if you have
both 1 and 2 for two different formulas representing the same function, they
need not be provably equivalent. If we have 2 for some formula ¢, we can
switch to some formula ¢’ so that we actually have

2. T EVZ3lyy'(Z,y).

This is done as follows. What we would like to do is to take as our unique ¥y
the minimal y such that ¢(Z,y). But we do not want to use LY. To avoid
that we use coding. As ¢ is ¥; we have that ¢ = Jupy(Z,y,u) for some @y
in Ag. So, we have that T F VZ3yJuyo(Z, y,u). By means of coding we now
take the minimum pair y,u. This takes LAy which we have as we assumed
that EA C T.

We denote the set of p.t.c.f.’s (provably total computable (=recursive)
functions) of some theory T by F(T). If T is some RE theory F(T) is
properly contained in the set of all total recursive functions. Intuitively this
is clear as checking totality is a [Iy-complete task and the set F(T') is RE if T

10



is. A more formal demonstration of this fact is by means of a diagonalization
argument. Constrain the attention to unary functions and let f;(x) be the
recursive function for which we have found a proof in T of its totality after
having found precisely ¢ such proofs before in some cannonical enumeration
of all possible proofs in T'. Clearly the function g(z) := fy(z) + 42 is total
and recursive. However this is impossible to prove in 7. (Behold! A proof of
Godel’s first incompleteness theorem without making use of the fixed point
theorem.) Sometimes one can hear erroneous remarks like ZFC proves all
the recursive functions to be total. (Recall that per definition all recursive
functions are total!)

The set F(T') is always closed under composition but need not be closed
under primitive recursion. F(EA) is not closed under primitive recursion.
Clearly one also has F(T') = F(T | II3). So, if one would like to prove the
apartness of two theories which are IIy equivalent their respective classes
of p.t.c.f.’s will not help. In bounded arithmetics the F operator yields
classes of functions of different complexity, so, F(S3) is the class of P-time
computable functions et cetera.

3.2 The p.t.c.f’s of 13,

In this part it will be shown that F(I3¥;) consists of precisely the primitive
recursive functions. In order to do so we will actually switch to another
arithmetic namely EA + 31-IR. This is the logic consisting of EA plus the
induction rule for ¥; sentences, that is, from ¢(0) and Vz(p(z) — p(z +
1)) conclude Vz ¢(z) whenever p(z) is a ¥; formula. Note that this is
really different from the induction axiom. For example we do not have the
deduction theorem for EA + ¥,-IR. EA + ¥;-IR has in a certain way, as
we shall see, nicer properties than I3;. One thing is that from Il premises
one obtains a Iy consequence using this rule. When using a ¥; induction
axiom you actually use a II3 formula.

The arithmetic EA + X1-IR is IIs equivalent to I¥1 so it has the same
class of p.t.c.f’s. To see this equivalence we need to do some work. It is easy
to see that we have EA + ¥;-IR C I¥;. But we also have the following.

Theorem 3.1 1X; is Iy conservative over EA + X1-IR.

PROOF OF Ily CONSERVATIVITY. In this proof we will use a Tait sequent
caculus of first order logic which is exposed in Swichtenberg’s contribution

to the Handbook of Mathematical Logic. (See [Sch77, Schwichtenberg]). It
works with sequents which are sets and should be read disjunctively in the

11



sense that I' = {¢1,...,¢n} stands for p1 V...V p,. All formulas are written
in a form that uses only A, V,V, 3 and literals, that is, atoms or negations
of atoms. Negation of composed formulas is defined by the de Morgan laws.
The axioms are:

I, ¢,—¢@  for atomic ¢ ,

L Ty 9% L,
TyoAep Loovy’  Topvey’
T, ¢(a) I, o(t)
I Vop(z)” T, 3zp(z)’
plus the cut rule
P, ' Pa '
e

In the axiom of the universal quantifier introduction it is necessary that
the a does not occur free somewhere else in I'. And in the axiom for the
introduction of the existential quantifier one requires ¢ to be substitutable
for  in . This Tait calculus is sound and complete and serves us well in
providing a proof of our theorem.

So, we need to prove that if ¥ F 7 then EA + 31-IR F 7 whenever 7 is
a I, sentence. We reason as follows. If I3, F 7, we have by the compactness
and deduction theorem that - 0 — 7 where o is the conjunction of a finite
number of axioms of I¥;. Or equivalently - —o V 7. As the Tait calculus
is complete this amounts to the same as saying that the sequent —o, 7 is
derivable within the calculus. By the cut elimination theorem for this Tait
calculus we know that there exists a cut free derivation of the sequent. Cut
free proofs have all sorts of pleasant properties like the subformula property
(modulo substitution of terms). The proof is concluded by showing by in-
duction on the length of cut free derivations that if a sequent of the form
Y, 11 is derivable then EA + X;-IR  \/II. Where X is a finite set of nega-
tions of induction axioms of 31 formulas and II is a finite set of IT5 formulas.

So, suppose we have a cut free proof of ¥,II. What can be above this
sequent? Either the last rule yielded something in the II part of the sequent
or in the 3 part of it. In the first case nothing interesting happens and we
almost automatically obtain the desired result by the induction hypothesis.
So, suppose something had happened in the ¥ part. We can assume that
the ¥ part only contains formulas of the form Ja[p(0) A Vz(p(z) = o(x +
1)) A—p(a)], whith ¢ € ;. The last deduction step thus must have been the

12



introduction of the existential quantifier and we can by a one step shorter
proof derive the following sequent

3, 0(0) AVz(p(z) = @z 4+ 1)) A —p(t), T

By the inversion property of the Tait calulus (for a proof and precise formu-
lation of the statement consult [Sch77, Schwichtenber| page 873) we obtain
proofs of the same length of the following sequents

L0(0),I, X Va(p(z) = ¢(z+1)),IT and ', —p(t),II.

As all of ¢(0),Vz(p(z) = ¢(z+1)) and —¢(t) are II5 formulas, we can apply
the induction hypothesis to conclude that we have

EA+5-IR F o(0) v VII,
EA+31-IR F Vz(p(z) = ¢(z+ 1)) v VII,
EA +S-IR b —p(t) vV IL

Recall that IT consists of Iy statements. So, IT is of the form Vu3vIIy(u,v).
In our context we can omit the outer quantifier. If we now define ¢'(z,u) :=
o(x) vV \ Fvlly(u,v), we obtain a ¥; formula to which we can apply the
induction rule to obtain Vzy'(z) and thus also ¢’(t). Combining this with
EA+3-IR F —p(t) VV Fvllp(u, v) yields EA+X;-IR F \/ Fvlly(u, v) by one
application of the cut rule and thus the desired EA + ¥;-IR F\/II. QED

The above proof is actually proving a somewhat stronger statement.

Corollary 3.2 Let T be some collection of II3 sentences in the language of
arithmetic and let IT be some Il sentence.
We have that T +131 F 11 = T + EA + 3-IR - II.

Corollary 3.3 I is ¥3-conservative over I¥] .

PROOF OF COROLLARY 3.3. So, suppose 131 F o for some X3 sentence o.
Then we also have 131 + —o F L. L is a II5 sentence, so we may apply the
above corollary to conclude -0 + EA + ¥1-IR I L As shall be proved later
we have that ¥1-IR = ¥;-IR™ whence = + EA + ¥1-IR™ F L. We don’t
have a deduction theorem but we do have ~o +I¥] = L. Now we may apply
the deduction theorem to obtain I¥] F o. QED

We will now determine the provably total recursive functions of EA. The
strategy in doing so is as follows. First we enrich our language in such a
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way that we can axiomatize an equivalent variant of EA by open formulas.
Proving a recursive function to be total amounts to proving some II, state-
ment. But as our theory is open we can apply Herbrand’s theorem to obtain
terms expressing the possible function values. Our language will turn out to
be rich enough as to reduce this to a single term. Thus the provably total
recursive functions will be precisely all the terms of the enriched language
that was employed to “openize” EA. A central ingredient thus is Herbrand’s
theorem.

Theorem 3.4 Herbrand’s Theorem for Predicate Logic

Let T be an open set of azioms, that is, no quantifiers occuring in it.
If T + Jzp(x,a) with p(z,a) some open formula, then there are terms
ti(a),...,tx(a) of the language of T such that T + szl o(ti(z),a).

Theorem 3.5 The provably total recursive functions of EA are precisely
the Kalmar elementary functions.

PROOF OF THEOREM 3.5. We will start defining a new theory EA’. The
language of EA’ is the language of EA plus two new binary funtion symbols
for the characteristic functions of the order and equality.

So, LEA!) = {0,1,4,=,<,2" x= (), x< (), u(,,)}. Let A be a
countable infinite set of individual variables. The terms of EA’ are defined
inductively.

T:= AO[1][2"|T+T|T -T|x=(T,T) | x<(T,T) | p(A,A,T) .

To the logical symbols we add one new symbol called a bounded p-operator.
So, formulas in EA’ are formed just as usual exept that we now also can
have things like (uz < y.t(z) = 0) = z. The defining axioms will tell us that
px < y.t(z) = 0 gives us the least z such that ¢'(z) = 0 if such an z exists,
if not it will return us the value of y + 1. The axioms of EA’ comprise the
following; All the open versions of the axioms of @) leaving out the axiom
—(z = 0) - Jy y + 1 = = which is actually a theorem having induction over
bounded formulas; The open axioms defining 2% and the open axioms stating
that < is a discrete linear order respected by + and -; axioms defining the
characteristic functions like x—(z,y) = 0 <> x = y; open axioms explaining
the behavior of the bounded u operator to the effect of adding for all terms
t of EA’ an axiom
(e <yt(z)=0)=z—
2<yAt(z) =0AN(u<z—=tlu)£0)Viz=y+1A(v<yt) #0)).
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To each bounded formula ¢ in the language of EA we will assign a
characteristic function x, inductively.

tlztg — X:(tl,tZ),
t1§t2 — XS(tl,tQ),
OANY — Xpt+ Xy
o — 1 =Xy,
Ve <yp(z) +— x=(uz <y.x-p(z) =0,y +1).

Having done all this it is easy to see that EA’ is at least as strong
as EA for EA’ proves the least number principle for bounded formulas.
For suppose ¢(a) for a bounded formula ¢. Thus x,(a) = 0. But then
we get the existence of a least element satisfying ¢(z) almost for free as
px < a.xp(z) =0.

If EA proves the totality of some recursive function we have that for
some bounded ¢(z,y) we have EA F Jyp(z,y). So, EA' - Jyx,(z,y) = 0.
Herbrand’s theorem now tells us that there are ti(x),...,#(z) such that
EA" F xp(z,t1(z)) = 0V ...V xp(z,tk(z)) = 0. It is not hard to convince
oneself that the language is actually strong enough to give one single term
t(z) incorperating this disjunction such that EA’ - x,(z,t(z)) = 0. Thus
the function is a term in our extended language. The collection of all these
possible terms is called the set of Kalmar Elementary functions. One can
prove that this formulation is equivalent to any of the previous descriptions
of the Kalmar Elementary functions.

QED

Theorem 3.6 F(EA+X-IR) = p.r., where p.r. is the class of primitive
recursive functions.

PROOF OF THEOREM 3.6. It is not so hard to see that any primitive re-
cursive function is indeed provably total in EA + ¥;-IR. (See for example
[HP93, Héjek and Pudldk].) The other inclusion is proved by induction on
the number of nested applications of the ¥1-IR. If this number is zero we
have that the function was already provably total in EA and thus by theo-
rem 3.5 was Kalmar Elementery and thus primitive recursive. So, suppose
that we have some occurence of the ¥;-IR. By the induction hypothesis we
get primitive recursive functions ¢ and h such that N |= ¢(g(a),0,a) and
N E o(y,z,a) = ¢(h(z,y,a),z + 1,a). Thus we define

f0,a) = g(a),
flx+1,a) = h(z, f(z,a),a).



By induction on z in the standard model we now see that N |= ¢(z, f(z, a), a).
QED

In this proof we see a very close relation between an application of
the induction rule and an application of primitive recursion. Now that
we have classified the provably total recursive functions of EA + X:-IR
we have also classified the provably total recursive functions 13); because
these two systems are Il; equivalent. In a certain way we also have that
PRA = EA + ¥;-IR. We actually mean here that there exist interpretations
in both directions. (Recall that PRA has for every primitive recursive func-
tion a symbol plus the defining axioms. These symbols will be interpreted in
the canonical way.) So, we also know the provably total recursive functions
of PRA. One could consider F as an arrow going from fragments to classes
of functions. It has some interesting behavior though. For example F does
not remain constant under taking unions e.g. F(III; ) = F(IX;) = p.r. but
III; + I3, proves the totality of the Ackerman function which is known to
be not primitive recursive.

4 Lecture 4

4.1 Reflection principles relating fragments

Reflection principles provide us with a powerful tool in comparing fragments
of arithmetic. It turns out that many fragments are characterizable by the
amount of reflection they poses. The bulk of table 1 will be proved in this
lecture.

Arithmetic ‘ Axiomatized by EA plus the indicated reflection

PA | REN(EA)
IS, 1 | RF N, (EA)
ISy (= IM,) | RFNp .,
2[MT; | ¢ — RFNL () with ¢ € it
IET_L p — RFNHn_H (QO) with ¢ € I, 41
EA +%,-TR | RFN¥

nga

Table 1: Characterizing fragments using reflection

The parameter-free induction scheme systems are characterized in so-
called relativized reflection. RFN(yp) thus stands for O(¢ — ) — .

2For n = 1 one needs to add an axiom stating the totality of the superexponentiation
function.
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RFNy ., stands for omega times iteration of the I, reflection principle.
This is defined by recursion over the ordinals.3

RFNY(T) = T
RFN®tY(T) = RFN(RFN%(T))
RFN(T) = U, REN*(T)

We will not prove the axiomatization of the systems based on rules but
all the other systems will be treated here. A good treatment of the axiomati-
zation of the induction rules is found in [Bek97] Beklemishev. A good indica-
tion for what reflection is needed to axiomatize a certain system is the logical
complexity of the axioms. Let us consider for example the system 13,,. The
induction axioms have the form ¢(0) A Vz(p(z) — ¢z + 1)) — Vap(z)
where ¢ is a ¥, formula. So, the axiom has the complexity (slightly abus-
ing notation) 31 A Il,41 — II,41, that is, a Boolean combination of II,;
sentences. In the system IX,, we allow free variables so the complexity
is V [IIp41 — 1] that is II,49. In the table indeed we see that IX,
corresponds to II,, o reflection. (Recall that our base system EA is IIy ax-
iomatizable.)

The table will be used to obtain an overview of the arithmetics and their
interaction as depicted in picture 1.

It is known that I3, = III,. Later it will also be proved that EA +
Yn-IR = EA 4+ ¥,-IR™ = II,41-IR = II,41-IR7. One remark is in order
here on how to compare rules. We consider a rule R to be a set of instances,
i.e. a set of expressions of the form

The effect of a rule is of course dependent on the base theory. A rule R; is
said to be derivable from another rule Ry in some theory 7' if any deriva-
tion in 7" containing occurences of R; can be replaced by a derivation in 7'
possibly containing occurences of Ry rather than R;. We call two rules, Ry
and Ro, equivalent with respect to some theory 1" if Ry is derivable from
Ry in T and Ry derivable from Ry in T. We write T+ Ri = T + Rs. A
refinement of this notion of equivalence arises when attention is being paid
to the number of nested occurences. A rule R; is said to reduce to a rule
Ry over some theory T if any instance of the rule Ry in a derivation in T

3 A natural question seems to be what is going on with this progression of theories if it
is propagated through all the ordinals. It turns out that.... stay tuned!
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IS, + I3 by
T,

I, +10;, IS,

I
2 I,

b

Iy So- TR
I3,

EA El-IR

Figure 1: The fragments related.

can be replaced by a subderivation in 7" without nested applications of R.
We write R; < Ry or Ry <7 Ry if necessary. If both R; is reducible to Ry
over T and Ry reducible to R;, we call them congruent with respect to T’
and write Ry 2 Ry or R; 27 R, if necessary. The notion of congruence is
more informative than that of equivalence. For example it is known that

~Y EHTL . . EHn
II,-IR =g ﬁéNin:(;)). Also it is known that X,-IR <ga %,
(€Mnt1)

. . . (p _ .
but it is unknown if 7RFNHR+1 @ <gA Yn-IR. Tt is only known that n

nestings of the rule %
n+1

tions of 33,-IR in EA. Hence the two rules are equivalent with respect to EA.

can be simulated by n + 1 nested applica-

4.2 Re-axiomatizing PA and some subsystems

Most of the entries of table 1 will be proved in this section.
Theorem 4.1 PA = EA + RFN

PROOF OF THEOREM 4.1. The easiest direction is to show that PA C RFN.

18
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It is a formalisation of how children in Russian primary (nursery) school are
persuaded to accept the principle of induction. Informally we see the cor-
rectness of induction as follows. Let n be an arbitrary number and suppose
we know that

1. ¢(m) = ¢(m +1)

for any m. If we moreover know that ¢(0) holds, we can conclude ¢(n) after
n applications of different instantiations of 1. So, we deduce ¢(0), (1), ¢(2),...
till we reach the conclusion ¢(n). Let P be the formula ¢(0) A Vz [p(x) —
o(x +1)]. It is easy to see that

EA - VaOg A (P — o))

as the proof of P — ¢(x) grows linearly in the size of z. Applying reflection
now yields the required Vz(P — ¢(z)). By looking a bit closer we see that
actually the same proof gives us

Corollary 4.2 II1,,C RFNy,, .

Corollary 4.3 I¥;C EA+ ¢ — RFNm,_,(p) (¢ € In11) and
II,C EA+ ¢ — RFNp, () (¢ € Hpi1)

Now we prove EA + RFN C PA. We thus have to prove that PA +
Vx[Op(x) — ¢(x)]. The sketch of the proof goes as follows. Consider a
proof object for p(z) in EA. Tt is easy to obtain (we have superexponen-
tiation!) from this a cut free proof object in the Tait calculus where the
final sequent is =EA, ¢(x). This proofobject has the subformula. As EA
is finitely axiomatized, there is a standard & (here we see that this proof
could not be used to proof reflection of PA) which majorizes the quantor
rank of all subformulas. By induction on the length of the proof one can
show that for all subsequents I' we have that PA - Trp, (\/T). We also thus
have Trr, (FEAV ¢(2)). As PAF EA and PAF Trp (EA) we conclude that
Trm, (¢(2)) and thus ¢(z). QED

This proof also serves to obtain that REN, o C III,, 1 but that is not
sufficient for us. It is possible though to better analize the structure of the
cut free proof in the Tait calculus to obtain the following.

Corollary 4.4 RFN,, o C III,, and thus RFN, 9 = III,
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The axiomatization of the parameter free fragments by means of reflec-
tion principles goes through the results on the systems based on the induc-
tion rules. As said before these results are more difficult and will not be
proved here. The following is not so hard.

Proposition 4.5 EA + I1,-IR = EA + I1,,-IR™ and
EA 4+ X,-IR = EA + ¥,-IR™

PROOF OF PROPOSITION 4.5. The parameter free rule is just a special case
of the normal rule so, we are to prove two inclusions. The II,-IR case
is the simplest and is obtained by “pushing a universal quatifier inside”.
So, suppose we have that EA + II,,-IR™ F ¢(0,y) and EA + II,-IR™ +
Vz[p(z,y) = o(x + 1,y9)]. We also thus have EA + TI,-IR™ F Vyy(0,)
and EA + IT,-IR™ F Vz,y[e(z,y) — ¢(z + 1,y)]. Hence we also have
EA + II,-IR™ F Vz,yp(z,y) = Vz,ye(x + 1,y)]. We thus have all the pre-
misses for the parameterfree induction rule, so we get that EA - Vz, yp(z,y),
ie., EA FVzp(z,y).

The proof of EA + ¥,,-IR C EA + ¥,-IR™ is a bit more subtle. Again
suppose that EA + £,-IR™ F ¢(0,y) and EA + £,-IR™ F Vz[p(z,y) —
ol +1,y)]- ¢(z,y) is a X, formula and can thus be written as ¢(z,y) =
Az9(x, 2,y), with ¢ € II,_1. We now consider the ¥, sentence JuvVv <
wp({v}o, (u)y,{v}1). (We need II,_; collection here!) Here {v}; is the
primitive recursive function giving the ¢-th coordinate when considering v
as the code of a pair of numbers. (u), is just the v-th coordinate of the
sequence of numbers coded by u. Recall that the pairing function enumerates
the pairs of numbers by “walking over consecutive diagonals” as depicted in

Figure 2: The pairing function
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figure 4.2. The properties that we will need from the pairing function
are understood well by looking at the picture but they are all provable in
EA. As {0}p = 0 and EA + X,-IR™ F ¢(0,y) we have that EA + 3,,-IR™
FuVv < 0y ({v}o, (u)y,{v}1). Now reason in EA + 3,,-IR™ and assume that
FuVv < wp({v}o, (w)y,{v}1). Let b be such that Yo < wip({v}o, (b)y, {v}1)-
We would like to have JuVv < w+ 1¢({v}o, (u)y,{v}1). For some a < w we
have that {a}¢o +1 = w + 1. Now we can use ¢({a}o,y) = ¢({a}o + 1,9)
to get some ¢ such that ¢ ({w + 1}o,c,{w + 1}1). Let b * (c) denote the
code of ¢ concatenated to the string coded by b. We thus have Vv < w +
19 ({v}o, (b * (¢))y,{v}1). Now we can apply the induction rule to obtain
VwIuVv < wip({v}o, (u)y, {v}1). From the latter we obtain Vz, y3z¢(z, 2, y)
and thus also Vzp(z,y). QED

We now want to see that Il - ¢ — RFNyy, (¢) or equivalently that
I, + ¢ F RENy, (¢). By theorem 4.5 and some elementary logic we know
that EA+¢II,-IR = EA+¢Il,-IR™ C IIT +¢. From the work of [Bek97] we
know that EA + ¢II,-IR™ F RFNy, (¢). * Combining this with corrolories
4.2 and 4.3 results to the following.

Theorem 4.6 I1¥,;= EA+ ¢ — RFNy,_,(¢) (¢ € I41) and
;= BA+p - RFNy (p) (¢ € Thupt)

4.3 Comparing subsystems

We can now apply the results from table 1 to compare different arithmetics.
For example we know that EA+3, 1-IRequivRFN{y, 5. Also we know that
RFNp, ., F Cons(IX,,). But IX,, ¥ Cons(IX,,) so we have the following,.

n+2

Fact 4.7 IS, ¥ $,,1-IR

We know that I¥, is axiomatizable by X, o sentences. We have just
seen that I3, = RFN, ;2. combining this with 2.5 we get

Fact 4.8 13X, ¥ 1%,.

It is clear that reformulating two theories in terms of reflection gives a
good means to compare. Another application yields the following.

“We use a result here that says that if T is a finite II,4; axiomatized theorem then
T +II,-IR = RFNy,. Combining this with EA 4 II,:-IR = EA + X,-IR also gives us
an axiomatisation for EA + ¥,,-IR.
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Theorem 4.9 III;, s Il conservative over EA + 3¢-IR

PROOF OF THEOREM 4.9. It can be shown that GL - 0" T — O(AL, (P —
oP;)). This will be proved semantically here. (For a good treatment of GL
and its semantics see for example [Bo093].) So, suppose that at some world
z in a GL model O™ 1T holds. We can thus find a path of length n+1 going
up from this world. We easily see that along this path at most at one world
P; — OP; can fail to be true. For that would mean that P; A O-F; would
hold at such a world, excluding the possibility that P; AO—P; is true at some
world below or above it. As we have only n sentences P; — < F; we have by
the pigeon hole principle that for some world along the path we have that
(Aiz; Pi = ©F;) holds. We thus know that at « we have O(A;, P; — OF;)
and we are done.

We will need to consider generalized provability predicate now. Let
therefore [n] denote the provability predicate that uses as axioms apart
from the axioms of some theory T also all true II,, sentences. So, if « is
a numeration of T the new predicate [n] would just be Oo(a)vTrm, (z)- AS a
generalization of provable 3, completeness we have in the new formalism
provable 39 completeness, that is, EA - o0 — [l]o whenever o € ¥,. We
also have an analogon of 2.2 stating RFNyy, (7') <> (1)T. Where as always
(1)%) is to be read as —[1]—.

The theory III, is axiomatized by making use of Ily reflection. In the
new language we can thus express this as follows

I, = EA+{¢ = (1)¢ | ¢ € II3}.
Tt is not hard to see that GL is sound if we interpred the modal O operator

as [1]. By the above we thus know that

n

EA F ()" T > <1>(/\(¢,- = (1))

for any choice of the ;.

Now suppose IIl; - 7 for some 7 € II;. By our result on the axiomati-
sation of III, , compactness and the deduction theorem we get that for some
II3 formulas ¢; we have that

n

EAF (N\(gi = (D) > @
i=1
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and thus also "

EA E (L)(A (0 = (D)) = ().
i=1
By the above we may conclude that EA + (1)"™'T  (1)&r. By provable &,
completeness we may thus also conclude EA + (1)""'T 7. As we know
that EA + $1-IR + RENH - (1)™'T we have EA + 51-IR F 7 as we
wanted. QED

Theorem 4.10 III, s not finitely aziomatizable.

PROOF OF THEOREM 4.10. So, suppose it were. Then for finitely many I3
formulas ¢; we have that ITl; = A", (p; — (1)¢;). Thus, EA + (1)""' T
(1)IM; . But ITT; F (1)™*T, so this would imply that IIT; would prove its
own consistnecy, which it does not. QED

5 Lecture 5, 15-10-2001

5.1 Bounded Induction

Weak systems are weak in the sense that they do not prove very much.
When it comes to interpreting (this will be defined later) weak theories are
already quite strong in the sense that strong theories can be interpreted in
them. IAg has a special place among the weaker fragments. This special
status was obtained from model theoretic considerations. In model theory it
is very natural to look at initial segments of some model of an arithmetical
theory. If now I C, M and M = PA (I C. M is read as “M is an end
extension of I” and implies that if y € I and M |= z < y then z € I) we can
not draw the conclusion that I = PA. We do know however that I = IAg
whenever M |= IA(. This is due to the fact that 1A is II; axiomatizable.
Alternative induction axioms are

Vz[p(0) AVy < z(p(y) = ¢y + 1)) — ¢()]

which are all TI; formulas if ¢ is Ag. The language of 1A is basically that
of EA leaving out the special symbol for exponentiation. The terms in this
language are precisely the polynomials. A somewhat weaker theorem than
3.5 for IA( goes by the name of Parikh’s theorem.

Theorem 5.1 (Parikh) Let ¢ € Ay and IAg - VzIyp(z,y). Under these
conditions there exists a term t(x) in the language of 1Ay such that IAg
Vzdy < t(z)p(z,y).
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PROOF OF THEOREM 5.1. The proof is a model theoretic one and goes by
compactness. So, suppose that for any term ¢(z) there is some model M;
of IA¢ such that M; = JaVy < t(z)-p(z,y). Now consider the theory
T :=1A¢ U {Vy < t(c)~¢(z,c)}. Every finite subset of T is satisfiable. For
let t1(z),...,tn(x) be terms of IAg. to(z) := t1(x) + ... + tp(z) is also a
term and thus by our assumption there is a model My, . of IAg such that
My, . =Yy < t(c)mp(c,y). As T is finitely satisfiable it is satisfiable. Let M,
therefore be some model of 7. Let I be the initial segment in M, generated
by the interpretation of this non-standard element ¢ (which we will call ¢
too). So, basically I consists of all the elements of M, that are smaller
than t(c) for some term ¢. Actually it has to be verified that I is indeed
an initial segment. Let therefore a < ti(c) and b < t2(c). We would like
to also have a + b < t; + t3. But fortunately we can prove monotonicity
of the order, so, that for example IAg F z <aAy <b—oz+y<a-+b
So, indeed [ is an initial segment of M, and thus a model of IAj too. But
Vz3yyp(z,y) is not valid in I because every element in I is below some t(c)
and M c = Vy < t(c)-¢(c,y)- QED

As in the proof of 3.5 on could proceed the same here by first openizing
IAg by enriching the language. The result thus obtained does not yield such
a nicely defined class of functions ...............

Parikh’s theorem says quite a lot on the strength of IAg. Or better, it
says a lot about it’s weakness. We know that every polynomial is eventually
majorized by the exponential function. By Parikh’s theorem we get

Corollary 5.2 There does not exist a Ay formula x(x,y) that defines the
exponential function such that 1Ag F VzIyx(z,y).

On the other hand we know that there does exist a Ay formula that de-
fines the exponential function. It might be the case that some other formula
of some higher complexity also defines the exponential function and that for
this very formula IAy does prove the totality. However this seems rather
unlikely. Another consequence of 5.1 is for example that 1Ay can never
prove a Ils formulation of Ramsey’s theorem. That is because the bounds
in Ramsey’s theorem are exponentially. (Again it might be formulated in
a more complex but provable way but this seems rather unlikely.) Another
implication concerns the prime numbers. There many proofs of the infini-
tude of primes (at least 5). All of these proofs make use of some exponential
bounds though. For example Euclid’s proof employs the factorial function.
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These bounds are of course not (in it’s easiest formulation) available in IAg.
But a-priori this does not exclude that the infinitude of primes is provable
in IAg. It is an open question whether the infinitude of primes is provable
in IAg or not. In some sense the question boils down to the essentialness of
the occurence of exponential bounds in a proof of the infinitude of primes.
This is one of the three big open questions on [Ag. The others are if the
MRDP theorem is provable in IAg and if 1A is finitely axiomatizable. A
result by Paris, Wilkie and Woods tells us that the infinitude of primes is
provable in Ay + Q.

5.2 Definable cuts and their shortenings

In model theory initial segments play an important role. The counterpart
of this concept in proof theory is the notion of a definable cut.

Definition 5.3 A formula I(x) is a T-cut if
1. THI0) AVz(I(z) = I(x + 1)),
2. Vz,y(I(z) Ny <z — I(y)).

Notice that we do not demand here that I is closed under plus and times.
As it will turn out, for our purposes this is not necessary as we can always
find a smaller cut that is closed under plus and times. (And many more
functions!) If we have full induction at our disposal clause 1 tells us that
the only cut is the trivial one, that is, I(z) <+ (x = z). 3 Cuts are closely
related to the notion of relative interpretability as we shall see later on. In
some sense they will compensate for a lack of induction. If some argument
can’t be executed in the theory due to a lack of sufficient induction we can
switch to a cut where the argument can be proceded.

Definition 5.4
1. 2§ = «x,
2. 28, =25,

By |z| we mean the length of the binary representation of z, that is,
|z = [ *log(z + 1)].

5 A question from Jaap at this moment was if there exixts a non-standard model of IAg
such that the natural numbers are definable. The general feel is that this is very unlikely.
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Definition 5.5

1. wo(z) =2z,

2. wni1(z) = 29n(2=1),

We see that wy(z) ~ 22, wa(z) ~ 27, w3(z) ~ :c'””'”mu, et cetera. The
limit of these functions is in a certain way 2%. In IA, we can verify a great
deal of the properties of the w,’s. We have to bare in mind here that we
don’t actually have 2% at present in IA( but of course you have to read all

the properties with a bit more care using the Ay relation that we mentioned
before. We have that

Fact 5.6

1. wp(z) < 2%,

n(27wz+1) = bei%’
(

n 1‘) < wn—}-l(x)

™ e

wn(z) < wp(z+1)

The proofs are easy and go by induction. We now come to a famous
theorem concerning the shortening of cuts.

Theorem 5.7 Let I be a T-cut and k a natural number, then there is a
T-cut Jy such that

o T+ V[Jg(z) — I(Q%)],
o T+ Va[Jy(z) = Jp(wi(z))].

The proof can be found, modulo the usual missprints, in [HP93, Hajek
and Pudldk] page 173. The axiom that states the totality of the function
wp+1 is abbreviated by €Q,,.

Corollary 5.8 IAg > IAg + Q,

This will be treated later in more detail when also a formal definition of
interpretability is given but the idea is simple. If we just restrict our domain
to the definable cut of sufficient size we get the required interpretation.
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