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Abstract

In this paper we characterize the closed fragment of the enriched
provability logic of PRA and call the logic characterizing it PGL.
These logics are enriched in the sense that they contain a constant
symbol S which denotes the arithmetical sentence axiomatizing I¥;.
We also determine the closed fragment of the interpretability logic of
PRA with a constant for I¥; which we baptize PIL. We show that IX;
proves the consistency of PRA on a cut. By restricting the possible
substitutions in Solovay’s theorem we obtain a rough upperbound for
the full interpretability logic of PRA.

1 Introduction

In this section we provide a plan of this paper, and a motivation of
our study. We also fix some notation. The reader is suggested to skip
Subsections 1.3 and 1.4 and only consult them if necessary in the rest
of the paper.

1.1 Plan of this paper

The paper consists, apart from the introduction, of four sections. In
the beginning of each section we give a brief summary of what is done
in that section.

Section 2 fully characterizes the closed fragment of the provability
logic of PRA with a constant for I¥;, with and without reflection. A
modal semantics is provided and questions concerning decidability are
dealt with.

In Section 3 these results are generalized to the setting of inter-
pretability. We give two proofs of the arithmetical soundness of our
logic PIL.



In Section 4 we make some remarks on the full interpretability logic
(so, not just the closed fragment) of PRA and related systems. By a
technique of restricting the possible substitutions in Solovay’s theorem
we obtain two “new” logics. One of them yields a rough upperbound
for the full interpretability logic of PRA.

The final section, Section 5, is an appendix and gives a proof of
the fact that I¥; proves the consistency of PRA on a cut. This fact
was already proved in Section 3 but the second proof employs entirely
different methods.

1.2 Why do we think our study is interesting?

Interpretations in the form we will consider them have been around
for quite a while in common mathematical practice. A good example
is the interpretation of non-euclidean geometry in euclidean geometry.
As a meta-mathematical tool interpretations were first introduced by
Tarski in full generality in [TMR53] where they were used to show
relative consistency and undecidability of theories.

The notion of interpretability we will study is essentially the same
as in [TMR53]. Thus, an interpretation K of a theory T' in a theory S
—we write K : S > T— is nothing more but a translation of formulas
of T to formulas of S such that the translation of any theorem of
T is provable in S. In case such a translation exists we say that S
interprets T or that T is interpretable in S and write S > T. As
in [TMR53] we are interested in relative interpretability. This means
that in S we have a domain function d(z) to which all our quantifiers
are restricted/relativized. A precise and formal definition of relative
interpretability can be found in, for example, [dJJ98] or [Vis97].

In these references and especially in [Vis91] the formalization of
interpretability is studied. This gives rise to interpretability logics with
a binary modal operator > for formalized interpretability. Just as in
the case of provability logics we have that a modal sentence A > B is a
valid principle for a theory T if for any arithmetical realization * holds
TH(TU{A*}) > (TU{B*}). Often T + A* will be written instead of
TU{A*}. Sometimes we will write A* >7 B* for (T + A*) > (T + B*).
We will denote both the modal operator and the formalized notion of
interpretability by the same symbol > but this will hardly lead to any
confusion.

As the definition of interpretability invokes that of provability it
does not come as a surprise that interpretability and provability logics
are closely related. As a matter of fact, provability logics are literally
included in the interpretability logics.

The interpretability logic for essentially reflexive theories has been
determined independently by Berarducci ([Ber90]), and Shavrukov ([Sha88])



and is called ILM. Also the situation is known for finitely axiomatized
theories in which case the logic is called ILP as was studied in [Vis90a].

No interpretability logic is known for a theory that is neither essen-
tially reflexive nor finitely axiomatizable. PRA is such a theory. Thus
we find it interesting to investigate the interpretability logic of this
theory. More insight in the interpretability logic of PRA, from now on
IL(PRA), can also shed some light on the question what interpretabil-
ity principles hold in any reasonable theory as studied in Joosten and
Visser, [JV00].

In this paper we constrain ourselves to the closed fragment of
IL(PRA), that is, modal formulas without propositional variables. It
is shown in an article by Héjek and Svejdar, [Hv91], that the closed
fragment of any interpretability logic extending! ILF has the same
characterization as the closed fragment of GL. It is easily seen that
IL(PRA) indeed does extend ILF.

We have chosen to add an extra constant to our closed fragment
that denotes the sentence axiomatizing I¥;. By writing I¥; we will
refer both to the finitely axiomatizable theory and to the finite axiom
axiomatizing it. We can thus study what these theories have to say
about each others provability and interpretability behaviour.

In this respect our enterprise is rather akin to a certain part of
Beklemishev’s paper [Bek96] on the classification of bimodal logics.
As an example of his results he gives the provability logic (not just the
closed fragment) of PRA with a constant for I¥;. The closed fragment
of this logic is just the logic PGL we present in Section 2. We have
chosen to give explicit proofs for the correctness and completeness of
PGL again, so that we can easily extend them to the situation where
interpretability is added to the vocabulary in Section 3.

This paper also is reminiscent of Visser’s paper on exponentiation
[Vis92]. In that paper the closed fragment of the interpretability logic
of the arithmetical theory € is presented with an additional constant
exp in the language denoting the II,-formula stating the totality of the
exponential function. (The theory Q is IAg + Q;. We refer the reader
to consult [HP93] for definitions of the wy, functions, definable cuts and
other basic notions.)

A fundamental difference between Visser’s [Vis92] and our paper
is that although I¥; is a proper extension of PRA, no new recursive
functions are proved to be total, as I¥; is a IIs-conservative extension
of PRA. In this sense the gap between PRA and IY; is smaller than
the gap between Q and Q + exp. This difference is also manifested in
the corresponding logics already when we just constrain ourselves to

!The logics and other notions mentioned in the introduction will be defined later on in
the paper. Alternatively a reference is provided.



provability. For example we have that
PRA + Con(PRA) F Con(1X%,),

whereas
Q + Con(R2) ¥ Con(Q2 + exp).

Actually even Q + exp + Con(€2) does not even prove Con(€2 + exp). It
does hold however that © + Con(Con(€2)) F Con(€2 + exp) and there
are more similarities. We have that Con(PRA) is not provable in I¥;.
Similarly Con(2) is not provable in Q+exp. In turn I¥; is not provable
in PRA together with any iteration of consistency statements and the
same holds for exp and .2

The interpretability logics have similarities and differences too. For
example we have that PRA > PRA + —I¥; and Q > Q + —exp. Also
PRA +Con(PRA)>1I%; and 2+ Con(Q2) > Q2 +exp. On the other hand
I¥; APRA + Con(PRA) whereas © + exp > Q + Con(2). However
we do have that I¥; > @ + Con(PRA). We have that I¥; ASPRA +
Con(PRA) but PRA itself cannot see this. PRA can only see that
I¥; > PRA + Con(PRA) — —Con(PRA).

I would like to thank Lev Beklemishev, Volodya Shavrukov and
Albert Visser for their multitude of good suggestions and discussions.
Also a word of gratitude is due to Vincent van Oostrom, Dimitri Hen-
driks, Sander Bruggink, Dick de Jongh, Evan Goris, Rosalie Iemhoff,
Nick Bezhanishvili, Panikovsky, Clemens, Herr Kupke, Yoav Seginer,
Maarten Janssen, and probably many others too.

1.3 What is Primitive Recursive Arithmetic?

The base theory in this enterprise is PRA which is a system of arith-
metic that goes by by many different formulations. We will briefly men-
tion these formulations here and then stick to one of them. In a rudi-
mentary form PRA was first introduced by Skolem in 1923 ([Sko67]).
The emergence of PRA is best understood in the light of Hilbert’s
programme and finitism (see [Tai81]) or instrumentalism as Ignjatovic
calls it in [Ign90].

Since II;-sentences or open formulas played a prominent role in
Hilbert’s programme, the first versions of PRA were formulated in a

*1t is known that I¥X; = RFN, (EA) and by Fact 2.3 this schema is not contained in
any Xz-extension of EA. Consistency statements are all II;-sentences. For the case of €2
and exp reason as follows. Take any non-standard model of true arithmetic together with
the set {2°>w5(c) | k€Ew}. Take the smallest set containing ¢ being closed under the ws
function. Consider the initial segment generated by this set. This initial segment is a
model of ©Q and of all true II; sentences but clearly not closed under exp.



quasi-equational setting without quantifiers but with a symbol for ev-
ery primitive recursive function. (See for example Goodstein [Goo57],
or Schwartz [Sch87a], [Sch87b].)

Other formulations are in the full language of predicate logic and
also contain a function symbol for every primitive recursive function.
The amount of induction can either be for Ag-formulas or for open
formulas. Both choices yield the same set of theorems. This definition
of PRA has, for example, been used in [Smo77).3

In this paper we will associate to each arithmetical theory T in a
uniform way a proof predicate Oy as is done by Feferman in [Fef60].
Thus, we will also have the obvious properties of this predicate like
Or44% ¢ Op(p — ) available in any theory of some reasonable
minimal strength. We will also extensively make use of reflection prin-
ciples.

For a theory T and a class of formulas I' we define the uniform
reflection principle for ' over T to be a set of formulas in the following
way: RENp(T) := {Vz (Ory(&) — v(x)) | v € T'}. This set of formulas
is often equivalent to a single formula also denoted by RFENr(T'). For
ordinals a < w we define (T)§ := T, (T)%,, := (T)5 + RENp((T)L)
and (T)L := Uﬂ<w(T)g. This can be extended to transfinite ordinals,
provided an elementary system of ordinal notation is given. If T is just
the class of II,, formulas we write (7')? instead of (7).

For some purposes it is not convenient that these definitions of
PRA are in a language properly extending the language of PA. One
can thus also take PRA to be EA 4+ ¥; —IR which is formulated in the
language of PA and is obtained by adding to EA the induction rule
for ¥ formulas. Thus, the ¥; induction rule allows you to conclude
Vz o(z) from 0(0) and Vz (o(x) — o(xz+1)). The theories EA+3%,—IR
are defined likewise and we denote them by IXf. The theory EA is
just IAg + exp.

In [Bek97] it is shown that IX2 can be axiomatized by reflection
principles in the following sense, IS = (EA)". All the above def-
initions of PRA give rise to the same theory and these equivalences
are all provable in PRA itself. In our approach we will take (EA)2 to
be the definition of PRA. It turns out that this is a very convenient
formulation for us. It is also nice that this is an axiomatic formulation
in the language of PA.

Moreover we will fix an enumeration of the axioms of PRA. It
is known that EA is finitely axiomatizable. Since we have partial
truth definitions and we are talking global reflection we have that
{Vz (Oga7 (&) — w(z)) | # € II2} can be expressed by a single sentence

3Confusingly enough Smorytisky later defines in [Smo85] a version of PRA which is
equivalent to 13;.



RFNp, (EA). Likewise we see that (EA)? can be expressed by a single
sentence for any o < w. In our enumeration of PRA, the i-th axiom
will be (EA)?.

By taking this definition of PRA we get almost for free that ev-
ery extension of PRA with a ¥, sentence o is reflexive. For, rea-
son in PRA 4 ¢ and suppose OpgrantoLl. Then Opran—o, and as
-0 is IIs we get —o by Ils-reflection. But this contradicts o whence
—0OprantoL.

1.4 Notational Conventions and Basic Notions

Many of the interesting properties of interpretability are only provable
in the presence of the Xi-collection principle BX;. Our base theory
PRA lacks BX; and thus, for example, A> B — (¢A — ©B) is not
provable in PRA by the standard argument. We will thus rather talk
of smooth interpretability as introduced in [Vis91]. This notion of in-
terpretability can be seen as the notion where the needed collection
has been built in by defining it accordingly. When we speak of inter-
pretablility we will in this paper always mean the smooth version. In
presence of BY; the two versions of interpretability coincide.

The interpretability logics we will use in our study often have dif-
ferent names depending on how they are defined. A short word on our
convention on the systematic nomenclature is thus in order. A logic
usually comes with three names:

e The arithmetically motivated name. For some arithmetical the-
ory T we will denote by IL(T) its interpretability logic, which is
the collection of modal sentences that are provable in T under any
arithmetical realization. In other words IL(T) := {A |V* T F
A*} where as usual the * ranges over realizations. Likewise we
write PL(T) for the provability logic of some theory T'.
Sometimes it will be useful to restrict the possible realizations.
If T is some set of arithmetical sentences we write * € Sub(T)
to indicate that all propositional variables will be mapped to
some sentence in I' by . The I' interpretability logic of T is the
collection of modal sentences that are provable in T under any
arithmetical realization “in I'. In other words ILp(T) := {A |
V % €Sub(T") T + A*}.

Let 01,...,0, be some designated arithmetical sentences. The
interpretability logic that arises by adding constants si,...,s,
to our modal language and mapping these constants under any
realization to their corresponding arithmetical sentence, that is,
(si)*=0;, is denoted by IL(T)[o1,...,0,]. The closed fragment
of any of the above logics is indicated with a superscript cl. The
logic PIL presented in Section 3 is thus the same as ILY (PRA)[IZ4].



e The modally motivated name. When we consider a modal inter-
pretability logic we will always assume that it contains the basic
interpretability logic IL. A logic is then fully determined if we
just indicate which modal axioms (axiom schemes) are added to
IL. This is indicated by just postfixing the names of the addi-
tional axioms to “IL”. Again the closed fragment of any such
logic is indicated with a superscript cl. The logic PIL presented
in Section 3 is thus the same as IL9S;5553S,W.

e The convenient name. Rather than using the complete and sys-
tematic name of a logic we often prefer to introduce a new and
shorter name for it.

When writing modal formulas we will omit superfluous brackets.
These omissions do not bring the unique readability of formulas to
danger due to our binding conventions. The strongest binding con-
nectives are negation and the modalities O and <. The connectives V
and A bind less strong but still stronger than the > modality which
in its turn binds stronger than —. We will also omit outer brack-
ets. Thus, A>B — AAO-C > B AO-C is short for (4> B) —
(AAO(-C)) > (BAO(=C)))). Often we will use A> B> C as short
for (A> B) A (B > C) and we do the same for implication.

2 The Closed Fragment of the Provability
Logic of PRA with a Constant for I¥;.

In this section we will introduce a modal logic that generates the closed
fragment of the provability logic of PRA with a constant for I¥;. We
call this logic PGL (the P in PGL stands for PRA) and discuss its
most important properties.

In Subsection 2.1 the logic is introduced and the main theorem,
the arithmetical completeness, is formulated. In 2.2 the arithmetical
soundness of the logic is proved. The arithmetical completeness is dealt
with in 2.3. Also the logic PGLS is treated there. This is the logic
PGL plus reflection. The S stands for Solovay. In the last subsection,
2.4, a modal semantics is provided for PGL and the decidability of
the logic is discussed.

2.1 The Logic PGL.

We will introduce here the logic PGL. Inductively we define F, the
formulas of PGL.

F:= L|T|S|FAF|FVF|F—F|~F|OF.



The symbol S is a constant in our language just as L is a constant.
There are no propositional variables. As always we will use ¢ A as an
abbreviation for ~0-A4. We define 0°1 := | and O™ 1 :=0O(0"1).
We also define 07 L to be T for limit ordinals +.

Throughout this paper we shall reserve B, By, Bi,... to denote
boolean combinations of formulas of the form 0”1 with n € w + 1.
The axioms of PGL are all propositional tautologies in the language
of F' and all instantiations in F' of the following schemes.

L;: O(C —D)— (OC —OD)
L2 : 04 —- O0OA

L3: O(0OA— A)—»DOA

Sl : D(S—)B)—)DB

S,: O(-s— B)— OB

So, by our notational convention both in S; and in S, the B is a
boolean combination of formulas of the form O 1 with n € w. The
rules of PGL are necessitation and modus ponens. Immediate con-
sequences of S; and S, are that both G(S A B) and &(—S A B) are
equivalent in PGL to ¢B. The logic PGL without S; and S, but
with propositional variables is just the provability logic GL.

Every sentence in F' can also be seen as an arithmetical statement
as follows: we translate S to the canonical sentence I¥; (the single
sentence axiomatizing the theory I¥;), L to, for example, 0=1 and
T to 1=1. As usual we inductively extend this translation to what
is sometimes called an arithmetical interpretation by taking for the
translation of O the proof predicate for PRA as fixed in Section 1.3.

If there is no chance of confusion we will use the same letter to
indicate both a formal sentence of PGL and the arithmetical state-
ment expressed by it. With this convention we can formulate the main
theorem of this section.

Theorem 2.1 For all sentences A € F' we have
PRAF A< PGL - A.

The implication “«<” is proved in the next subsection and more
specifically in Corollary 2.2 and Lemma 2.5. The other direction, the
completeness, is dealt with in 2.6 where it is reduced to some more
fundamental lemmas.

In [Bek96] it is shown that Theorem 2.1, in a slightly different for-
mulation, actually holds not only for the closed fragment of PRA with
a constant for I¥; but rather for the full language of the propositional
modal logic under consideration. His schemes B;-Cons’ and B;-NCons’



are just stronger versions of our schemes S; and S;. The result pre-
sented here is thus an instance of [Bek96] and as expected the methods
of proof are more elementary.

2.2 Arithmetical Soundness of PGL

This subsection is devoted to showing that everything that is proved
by PGL is also a theorem of PRA (the translation, that is). It is
known that the principles L; to L3 are provable under any translation
in all theories extending, say, IAg + ;.

So, certainly in our case we see that all instantiations of these
principles are indeed provable in PRA. We also see that PRA is closed
under the translation of the rules, so, the only case of interest is thus
reduced to proving that all instances of S; and S, are indeed provable
in PRA.

Axiom S; can be seen as a direct consequence of the formalization
of Parsons’ theorem ([Par70],[Par72]). As is pointed out for example
in the first proof of [Joo02], the proof of Parsons’ theorem essentially
relies on Cut-elimination. The proof can thus be formalized as soon as
the totality of the superexponential function is provable. Recall that
EAF Oy, C < Opgatix, C < Opra(I¥; — O).

Corollary 2.2 PRA + Opga(IX; — B) — OpraB for B € Iy and
thus certainly whenever B is as in Sy.

When we talk about a X,-extension of T" we shall mean some ex-
tension of T by X,-sentences and similarly for II,,. To show that all
instantiations of S, are also provable in PRA we reason as follows.

Fact 2.3 (Kreisel, Levy) T + RFNy, (T') is not contained in any con-
sistent ¥,,-extension of T, and dually we have that T + RFNy, (T) is
not contained in any consistent I, (and even X,y1) -extension of T'.

Proor or FAcT 2.3. Let S be some collection of ¥,,-sentences such
that T+ S extends T + RFNp, (7). We also have

T+ SFVz (DT(TI’H" (.’E)) — Trr[n (SL‘))

By compactness we have for some particular 3,-sentence o that
T+ o Ve (Op(Try, () = Tr, (z)). Consequently,
T+ o+ Ve (Op(Trg, (T—o™) = Tr, ("m0 7)) and thus
TkFo— (Or("—6™) — —o). But we also have
T+ -0 — (Or("—¢7) = —0o) hence
T+ Or("=67) = —o. Lob’s rule gives us T + —o in which case T+ S is
inconsistent. For the dual fact it suffices to see that T+ RFNy_(T) =
T + RFNy, ., (7).
QED



This fact is used to prove the following theorem. (See Beklemishev
[Bek96] for a somewhat weaker statement.)

Theorem 2.4 T + —IX, is II3-conservative over T whenever T is a
Y3-axiomatized theory containing EA.

PRrROOF OF THEOREM 2.4. It is well-known that I¥,, - RFNy, ., (EA).
(See [Lei83] or [HP93].) Let T be some Y3-axiomatized theory and sup-
pose that for some 7w € II3, T + —IX; - #. Then T + -« F I¥; and
thus T' + -7 + RFNp, (EA). By Fact 2.3 we get that T+ -7 can not
be consistent thus T F «. QED

The above reasoning can be carried out in a formalized setting.
We will do so in the proof of Lemma 2.5. Lemma 2.5 implies the
arithmetical correctness of axiom scheme S2.

Lemma 2.5 EA F Opga(—IX; — B) — Opra B whenever B € 1l
and thus certainly whenever B is as in S,.

ProoOF OF LEMMA 2.5. The formalization of the statement
I¥; F RFNp, (EA) is a true ¥;-sentence and thus provable in EA or
even Robinson’s Q. As EA + Oy, (RFNp, (EA)) we also have

EAF Oga(I¥; —» RFN, (EA)). (%)

Now reason in EA and assume Opga(—I¥; — B) where B is some
II3-sentence.* We get

DPRA(_‘IEI — B) —
DPRA(—LB — IEl) —
Arelly Ogp (WBAT = 1IX;) — by (x)
dmwelly, Ogpa(nB Am™ — RFNp,(EA)) — as BV 7w eIl
Amwelly Oga(wB A® — (Oga(BV —7) = BV —m)) (%)

But, by simple propositional logic, we also have
Opa(~(=B A ) = (Opa(BV =) = BV —m))

which combined with (x*) yields Oga (Oga (B V —7) — (B V —7)). By
Lob’s axiom we get Oga (B V —w) which is the same as Oga (7 — B).
Thus certainly we have Opga B, as m was just a part of PRA.  QED

Note that Corollary 2.2 and Lemma 2.5 actually hold for a wider
class of formulas than just boolean combinations of O0%1 formulas.
For example (A > B) is always II3. Beklemishev also isolated a class
of modal formulas which are always II2, see section 9.3 of [Vis97], or
Subsection 4.2 of this paper. In our axioms of PGL we do not need
the principles in full generality though.

“This B might be non-standard.

10



2.3 Arithmetical Completeness of PGL

Theorem 2.6 For all A in F we have that if PRAF A then
PGL + A.

PROOF OF THEOREM 2.6. The completeness of PGL actually boils
down to an exercise in normal forms in modal logic. The only arith-
metical ingredients are the soundness of PGL, the fact that PRA - OA
whenever PRA + A, and the fact that PRA ¥ 0“1 for a € w.

In Lemma 2.8 we will show that OA is always equivalent in PGL
to O*L for some o € w+1. Then, in Lemma 2.9 we show that if
PGL + OA then PGL + A. So, if PGL ¥ A then PGL ¥ OA.
As PGL + OA « O for some a € w (not w+1 as we assumed
PGL ¥ OA!) and PGL is sound we also have PRA + OA « O*1.
Hence PRA ¥ OA and also PRA ¥ A. QED

We work out the exercise in modal normal forms. Although this is
already carried out in the literature (see e.g. Boolos [Boo93], or Visser
[Vis92]) we repeat it here to obtain some subsidiary information which
we shall need later on.

Recall that we will in this subsection reserve the letters B, By, By, . - .
for boolean combinations of 0% L -formulas. Thus, a sentence B can be
written in conjunctive normal form, that is, A\, (\W/; ~O% LV\{/, O%* 1).
Each conjunct \Y/; —=0% LV\Y/, O%* L can be written as 0% 1 — 0P |
where o;:= min({Jaij}) and f;:=max({bi}).

By convention the empty conjunction is just T and the empty
disjunction is just L. In order to have this convention in concor-
dance with our normal forms we define min(@)=0 and max(&)=w. In
M\;(0% L — OPi 1) we can leave out the conjuncts whenever a; < 3;,
for, in that case, PGL F O% | — 0O |,

So, if we say that some formula B is in conjunctive normal form we
will in the sequel assume that B is written as /}\,(0% L — 0P 1) with
a; > [B;. The empty conjunction gives T and if we take ag=w > 0=y,
we get with one conjunct just L. Further restrictions on the o; and g;
yield strong normal forms. They will be introduced in Definition 4.11.

Lemma 2.7 If a formula B can be written in the form M\, (0% L —
05 1) with o;>p;, then we have that PGL - OB <« 0Pt 1 where

B=min({8:}).

Proor oF LEMMA 2.7. The proof is actually carried out in GL. We
have in PGL that O(/{\;(0% L — 0% 1)) + M\,0(0% L — OFi1).
We will see that O(0% 1 — 0P 1) is equivalent in PGL to Ofit+! 1.
So, reason in PGL and assume OB. As 3; < a; we know that
Bi+1 < a; and thus 0%+l 1 — O% 1. Now O(O% L — 0P 1) —
O(0A+11 — OPi 1). One application of L3 yields O(05 1)i.e. O+ 1.

11



On the other hand we easily see that O(0f 1) — O(O% 1 —
05 1) hence we have shown the equivalence. Finally we remark that
(M\; 0Pt 1) & OPHL L where 8 = min({8;}). QED

Lemma 2.8 For any formula A in F we have that A is equivalent in
PGL to a boolean combination of formulas of the form S or 0P 1, and
that OA is equivalent in PGL to O%L for some a € w+ 1.

Proor oF LEMMA 2.8. By induction on the complexity of formulas
in F'. The base cases are trivial. The only interesting case in the
induction is where we consider the case that A = OC. Note that C,
by induction being a boolean combination of O% L formulas and S, can
be written as (S — Bg) A (=S — B1). So, by Lemma 2.7 we have that
for suitable indices 3,8, 3"':

ac
D((S — B()) N (“S — Bl))
D(S — B(]) N D(—|S — Bl)
OBy A OB,
Of'+1 | AOf"+1 |
of 1.

rreee

QED
Lemma 2.9 If PGL I OA then PGL F A.

ProOF OF LEMMA 2.9. By Lemma 2.8 we can write A as a boolean
combination of formulas of the form S or O° L. Thus let A < (S —
By) A (=S — Bi) with By and B in conjunctive normal form and
assume F OA. For appropriate indices we have By = M\;(0% L —
0P 1) and By = /)(\j(DO‘;'L — 0% 1). Using Sy, S3 and Lemma 2.7
we get that OA & DPF' L with § = min({f;, 8;}). By assumption
B = w, thus all the §; and B} were w and hence - A. QED

We can also define a logic, say PGLS, that captures all the true
sentences of F'. The logic PGLS is defined as follows. The axioms of
PGLS are all the theorems of PGL together with S and {C°T | a €
w}. It’s sole rule of inference is modus ponens.

Theorem 2.10 PGLS+F A& NE A

PRrROOF OF THEOREM 2.10. By induction on the length of PGLS I
A we see that PGLS + A= N[E A.

To see the converse, we reason as follows. Consider A € F' such
that N = A. By Lemma 2.8 we can find an A’ which is a boolean
combination of S and ¢*T (a € w4+ 1), such that PGL - A « A'.
Thus PRAF A+ A" and also N A + A'. Consequently N |= A’

12



(0,00 @ ® (0,1) IFs
(1,0) (1,1) IFs
(2,0) (2,1) IFs
(3,0) 3,1) ks

NS

Figure 1: Modal semantics

Moreover, as A’ is a boolean combination of S and ¢°T (a € w+1),
for some m € w, SAM\i~, O'T — A’ is a propositional logical tautology
whence A’ is provable in PGLS. Also PGLS F A < A’ whence
PGLS + A. QED

Clearly the theorems of PGLS are recursively enumerable. As
PGLS is a complete logic in the sense that it either refutes a formula
or proves it, we see that theoremhood of PGLS is actually decidable.

2.4 Modal Semantics for PGL, Decidability

In this subsection we will provide a modal semantics for PGL. Actu-
ally we will give a model M as depicted in Figure 1 which in some sense
displays all there is to know about closed sentences with a constant for
I¥; in PGL.

Definition 2.11 We define the model M as follows, M := (M, R, IF}.
Here M := {(n,i) | n € w, 7 € {0,1}} and (n,i)R(m,j) & m < n.
Furthermore (n,i) IF S < i=1.

Theorem 2.12 Ym M,mlIF A& PGLF A

PRrROOF OrF THEOREM 2.12.

13



< This direction is obtained by induction on the complexity of
proofs in PGL. As M is a reflexive and upwards well-founded
model, it is indeed a model of all instantiations of the axioms
Ly, Ly and Lz. Thus, consider S;.
So, suppose at some world m (= (m,4)), we have that (m,1) IF
O(S — B). Then {(n,1) I+ B for n < m. Recall that B does not
contain S. It is well-known that the forcing of B depends solely
on the depth of the world, so, we also have (n,0) |- B. Thus
mPRn yields n IF B. Consequently m IF OB, which gives us the
validity of S;.
The Sy-case is treated completely similarly. It is also clear that
this direction of the theorem remains valid under applications of
both modus ponens and the necessitation rule.

= Suppose PGL I/ A. By Lemma 2.9 PGL I/ OA, thus
PGL F OA + 0Ol for a certain o € w. By the first part
of this proof we may conclude that m I+ OA « O%L for any
m. As {(a,i) If OYL, we automatically get («,7) ¥ OA. So, for
some {f,7) with {a,i)R(S3,j) we have (8,j) IF =A showing the
“non-validity” of A.

QED

The set of theorems of PGL is clearly recursively enumerable. If
a formula is not provable in PGL, then, by Theorem 2.12, in some
node of the model M it is refuted. Thus the theoremhood of PGL is
actually decidable.

3 The Closed Fragment of the Interpretabil-
ity Logic of PRA with a Constant for I3;.

In this section we will introduce a modal logic that generates the closed
fragment of the interpretability logic of PRA with a constant for I¥;.
We call this logic PIL and discuss its most important properties.

In Subsection 3.1 the logic is introduced and the main theorem,
comprising the arithmetical soundness and completeness, is formu-
lated. In 3.2 the arithmetical soundness of the logic is proved. Subsec-
tion 3.3 provides a proof of the fact that I¥; proves the consistency of
PRA on a definable cut. This is an interesting result on its own but
it also provides an alternative proof of the arithmetical soundness of
PIL. The arithmetical completeness is dealt with in 3.11.

Also the logic PILS is treated in this section. This is the logic
PIL plus reflection. It generates all true (on the standard model)
interpretability principles of PRA formulated in the closed fragment
together with a constant for I¥;. The S in PILS stands for Solovay.

14



In 3.5, the last subsection, a modal semantics is provided for PIL
which gives us the decidability of the logic.

3.1 The Logic PIL.

In this subsection we present the logic PIL. The set of formulas, I, of
this logic is defined inductively as

I:= L|T|S|IAI|IVI|I—T|-I|OI|I>].

The constants of the language are L, T and S. Again we will reserve in
this section the symbols B, By, Bi, ... to denote boolean combinations
of 0“1 (o € w+1) formulas. We will write C = D as short for (C >
D) A (D> C) and we say that they are equi-interpretable. The axioms
of PIL are all tautologies over I and all instances of the following
axiom schemes.?

L,: 0O(C —D)— (0C — 0OD)
L,: OA—0O0A4

L3: O(0A— A)—»DOA

S;: O(s— B)— OB

Sy : D(‘!S—)B)—)DB

J: O(C—-D)-Cp>D

J2: C>D)A(D>E)—-CB>E
J3: C>E)YA(D>E)—-CVDD>E
Ja: Cp>D— (¢C - OD)

J5: QAP A

W: CbD—->Cp>DAOSC
S3: -SAB=B

Ss: (B|>S/\B)—>|:|—|B

We recall that the B in S;-S4 are boolean combinations of O% 1 for-
mulas. The rules of PIL are modus ponens and necessitation.

Again we can see any sentence in I as an arithmetical statement
translating > as the intended arithmetization of interpretability over
PRA and O as an arithmetization of provability in PRA and propagat-
ing this inductively along the structure of the formulas as usual. With
this convention we can formulate the main result of this section.

Theorem 3.1 For all sentences A € I we have PRA+ A < PIL + A.

SPIL contains some redundancy. Our aim however is not to find an axiomatization
without redundancy. L, for example is doubly redundant as it can be deduced from L3 and
L: but also from J5 and J4. Also S; follows from S3. If B>>—SAB by J4, O=B — &(—SA-B)
from which S, follows. The axiom scheme W could actually be replaced by the somewhat

weaker scheme F: AP OA — O-A.
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The “«” direction, that is, the arithmetical soundness, is proved in
Subsection 3.2. In Subsection 3.3 the arithmetical soundness is proved
by completely different means. The “=" direction, the arithmetical
completeness, is proved in Subsection 3.4.

As the interpretability logic ILW is a part of PIL we have access to
all known reasoning in IL and ILW. In this section, unless mentioned
otherwise - refers to provability in PIL.

Fact 3.2

(1.) FO0A & —Ap> L

(2) PO 1 5 OPTB A ifa<p
(8.) FA=AVOA

(4.) FAD> OCA— O-A4

(1.) tells us that in our language the O could actually be dispensed
with or could be seen as an abbreviation. We choose not to do so for
the sake of readability.

As an example we prove (2.). We reason in PIL and use our nota-
tional conventions. It is sufficient to prove the case when o = 8. Thus,
gotl] —» 0(0%L) —» O(-A4 = 0%1L) - 0(0°T = A) = O°T > A.

Fact (4.) is Feferman’s principle and can be seen as a “coordinate
free” version of Gdédel’s second incompleteness theorem. It follows
immediately from W realizing that A > L is by (1.) nothing but O—A.

3.2 Arithmetical Soundness of PIL

This subsection is mainly dedicated to prove the following lemma.
Lemma 3.3 For all A in I we have that if PIL - A then PRAF A .

In [Vis91] it has been shown that ILW is sound for any reasonably
formulated theory extending IAg 4+ ;. So, to check for soundness of
PIL with respect to PRA we only need to see that all translations of
S3 and S4 are provable in PRA. As always we have that PRA is closed
under the rules of modus ponens and of necessitation.

In the proof of the following lemma we will use a characterization
for interpretability due to Orey and Héajek for reflexive theories. The
characterization says that in some basic theory, say EA, we have T >
S « V¥n OrpCon(S|n) whenever T is a reflexive theory. (Orey [Ore61],
Héjek [H4j71], [H4j72].) As we work in PRA, whence in the absence
of BX;, we use smooth interpretation. In [Vis91] it is shown that
IAg+ Q4 F Vo Or(Con(Sn)) — T > S, where the I>5 denotes smooth
interpretability (see Subsection 1.4), and this is what we use in the
reasoning below. Lemma 3.4 provides the arithmetical soundness of
axiom scheme Sg.
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Lemma 3.4 PRA F B>pra BA—IY; for BEX,, so, certainly for B
as in Ss.

PrOOF OF LEMMA 3.4. We want to show that PRA + B > PRA +
B + —I¥;. At the end of Section 1.3 we have shown that every finite
Yo-extension of PRA is reflexive. Thus, in the light of the Orey-Hajek
characterization, we are ready if we can prove

PRA F Vn Opra+B(OPRAIntB4—Ix; T). (@)

We will set out to prove that
(i) EAF Vn OprayB(OPRA n+B+-15; L = OprAnsBL),
(i) EAF Vn Oprass(Opramesl = L),

from which (a) immediately follows.

The proof of () is just a slight modification of the proof of Lemma
2.5. We reason in EA and fix some n:

OpRA n+B4+-Ix; L
OprAn+BIX1

Opra tnt+ BRFNp, (EA)

Opa (PRAn A B — RFNy, (EA))

UprA+B

Opa (Oga—~(PRAn A B) — —~(PRA|n A B))
Opa—(PRA[n A B)

Oga(PRA[n — —B)

Opran—B

OprAn+BL ).

N R A R N A

The proof of (i7) is just a formalization of the fact that every finite
Ys-extension of PRA is reflexive. Recall that we fixed our axiomati-
zation of PRA in Section 1.3 such that PRA[n = (EA)2. Thus, by
definition, PRA[(n+1) F Opganm — 7 for w€ll,.

If we fix some ~B€lly, PRA[(n+1) F Opgan—B — —B becomes
a true Xi-sentence, and thus is verifiable in EA:

EA F Oprat(n+1)(OprAI B = 2B).

Obviously we also have EA F Opga(nt1)+pB. Combining, this
yields a proof of (ii) in EA:

OprAntBL
Upran—B
-B

1).

UPRA [(n+1)+B

111~

QED
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As we will make ample use of the principle W in a more general
form, we find it convenient to explicitly state and prove it here. Below,
we will assume that U and V contain IAq + Q5.

Theorem 3.5 EAFUDV - UD>V +0yL

PROOF OF THEOREM 3.5. We reason in EA and assume j: UD V.
It is well-known (cf. Pudldk [Pud85], Lemma 3.3) that we can find,
corresponding to our interpretation j, a U-cut I and a mapping f that
is an isomorphism between I and its image f[I], where f[I]is an initial
segment of the V-numbers. We fix the interpretation j, the cut I and
the isomorphism f and set out to prove

UsU+0OLL (&)

Obviously U > (U + (Of, L v f,T)), so, we have proved (&) if we have
shown U + O} T>U + 0O L.

By Lob’s theorem relativized to I we get O T — Of (T AOfL).
Consequently U + Con}, T > U + Con;(T A 0L 1). By the formalized
model-existence lemma we get TAg+Q +Cong,(TADL L)>U+0O, L,
and thus we have showed (&). By our interpretation j we now get
j:U+0fLlpV.

But, as j comes with the isomorphism f on I and O, 1 is a ¥;-
formula, we actually get j : U+ 0O/ L >V + 0L 1. (Remember that
f[I] is an initial part of the V-numbers.) We resume and see that we
now have come to a proof of our theorem:

UbU+05Ll>V+0,L>V +0pl.
QED

In the following lemma we need to use the fact that Feferman’s
principle F, F A > OA — 0O-A, is provable for any reasonably for-
mulated arithmetical theory U of some minimal strength, in the sense
that

EAFUD (U +Con(U)) » Oy L.

This however, is a direct consequence of Theorem 3.5.5

5Here is a nice direct proof of Feferman’s principle in case U is a finite sequential theory.
It was told to me by Volodya Shavrukov. Consider in U the fixed point ¢ > (T >y ).
We show in U that ¢ <> Oy T. For the “—” direction we assume ¢ and Oy L. But
Oyl — T >u ¢ (see Fact 3.2.(2.)) whence —p. Together with our assumption ¢ we get
1, whence Gy T. To show the ¢ direction we assume Oy T and . The latter is nothing
but T >y ¢. As U is finite, this is a 3;-sentence, whence O(T >y ¢), that is, O(—p).
From T >y ¢ we get Oy T — Oy and under our assumption Oy T we get Opp. This
yields a contradiction with Oy - and thus we have Oy T — ¢. Substituting ¢ back in
the fixed point equation yields the required T >y Oy T — Oy L. Note that in the proof
of Lemma 3.6 we need Feferman’s principle for U = PRA[k + B which is finite (although

possibly non-standard).
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Lemma 3.6 PRA + B >pra B AIXy — Opra—B for BEY,, so,
certainly for B as in S,

PROOF OF LEMMA 3.6. The theory PRA + B + I¥; is just I¥; + B
and hence finitely axiomatizable and this is verifiable in PRA. Now
we will reason in PRA.

We suppose that PRA + B>>PRA + B +1X;. AsPRA+ B+1%,
is finitely axiomatizable we have that PRAk + B> PRA + B + 1%,
for some natural number k. PRA + B is reflexive as it is a finite
Yo-extension of PRA and thus PRA + B I Con(PRA[k + B).

So, certainly PRA + B + I%; F Con(PRA[k + B) and thus also
PRA+B+1¥>PRA[k+ B+ Con(PRA[k+ B). By transitivity we get
PRAJk+ Br>PRA[k+ B+ Con(PRA [k + B). By Feferman’s principle
we get that Opga kL and thus OpraypL and also Opga(B — L),
i.e., Opra—B. QED

Lemma 3.6 certainly proves the correctness of axiom scheme S;.
The proof also yields the following insights.

Corollary 3.7 A X;-sound reflexive theory U does mot interpret any
finitely axiomatized theory extending it. In particular PRA does not
interpret 131 nor any other finitely axiomatized theory extending it.

Corollary 3.8 PRA + —IX; is not finitely axiomatizable.

Corollary 3.9 (EA F) No consistent Xo-extension of PRA is finitely
axiomatizable.

PRrROOF OF COROLLARY 3.9. The proof is a slight modification of the
proof of Lemma, 3.6. Let o€3s. If PRA + ¢ is finitely axiomatizable
then PRA[k+ 0 >PRA+ 0 for some natural number k. Thus PRATk+
o > PRATk + o + Con(PRA Tk + o), whence Opga—o.” QED

3.3 [IX; Proves the Consistency of PRA on a Cut

The main result of this subsection is formulated in Theorem 3.10. As an
immediate consequence of this theorem we see that we can find an I%;-
cut J such that for every Y5-sentence B, I3, proves the consistency of
PRA + B on this cut J. We will denote Vz (J(z) — —Prfpra+p(z, 1))
by Con’ (PRA + B). As we will see, this gives us alternative proofs
of Lemmas 3.4 and 3.6. If the reader is mainly interested in the logic
PIL, this subsection can be skipped.

The phenomenon of two types of proofs of the soundness of inter-
pretability principles shows up time and again. We call the proof-style

"The corollary also follows directly from the fact that PRA + ¢ is reflexive and Gédel’s
second incompleteness theorem.
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that makes use of finite approximations of a theory P-style proofs as to
refer to the principle P that holds for any finitely axiomatized theory.
The other style of proofs considers the theory as one entity but makes
use of definable cuts. We call those sort of proofs M-style proofs as to
refer to the principle M that holds in any essentially reflexive theory.
In this subsection we thus present the M-style proofs of the soundness
of S5 and S,.

Theorem 3.10 For each n€w there exists some IX,,-cut J,, such that
for all £,,41-sentences o, 1L, + o F Con’» (IZE + o).

Before we will begin a proof of the theorem we first show how the
theorem provides alternative proofs of the arithmetical soundness of
S3 and S4.

PROOF OF LEMMA 3.4. We have BeX, and we want to show in EA
that PRA + B> PRA + B + —I%;. Clearly

PRA + B> (PRA + B + (IZ; V -I%1)).

So, we are done if we can show that PRA+ B+1¥X; >PRA+ B+ -1%;.
By Theorem 3.10 we get that PRA+B+1¥%; =13, +BF Con‘I(PRA+
B). By Solovay’s shortening techniques we can find a cut J' C J with
J' closed under the wy function.

Using this cut J' to relativize the identity translation, we find an
interpretation that witnesses IX; + B>I1Aq+Q; +Opra B. By Theorem
3.5 we see that

¥, + B >
IAg + Q1 + OpraB + Oz, 4L >
IAg + Q4 + OpraB + Opga (B — —I%y).

Thus IX; + B>>IAg+ Q1 + Opra(BA-IX;). By the formalized Henkin
construction we get I3, + B> PRA + B + —1%;. QED

PROOF OF LEMMA 3.6. We have BeY, and assume in EA that PRA+
B> PRA + B +1%;. We have already seen in the above proof that
PRA + B +1%; > 1Ay + O + OpraB.

Thus, by transitivity PRA + B> I1Ag + Q3 + OpraB. Theorem 3.5
now yields

PRA + B >
IAO + Q1 + OpraB + DPRA-}-BL >
1
which is the same as Opga4p-L, i.e., Opga—B. QED

PROOF OF THEOREM 3.10. From [Bek97] it is known that IXE =
(EA)™*L. Let € be the arithmetical sentence axiomatizing EA. We fix
the following axiomatization {i®,},ec, of ISE:

20



10 1= €

i1 = G AV (O Truer, ., (£) — Truem,,, (2)).
The map that sends m to the code of 7, is clearly primitive recursive.
We will assume that the context makes clear if we are talking about

the formula or its code when writing 4),. Similarly for other formulas.
An IX,,-cut J,, is defined as follows:

Jn(z) == Vy<z Truenn+1(z")

We will now see that J,, indeed is an I%,,-cut. Clearly 1%, F J,,(0). It
remains to show that I3, F J,(m) — J,(m+1).

So, we reason in I¥,, and assume J,(m). We need to show that
Truer, ., (i,,1), that is,

Truer, ., (i, A Ve (Qin Truen, ,, () = Truer,_, (z))).
The induction hypothesis gives us Truey, ., (i},) thus we need to show
Truer, ,, (Vo (Oin Truen, ., () — Truer,,, (2))). (%)

As I¥,, = RFNq,, _,(EA), we see that for arbitrary =

DEA(TrueHn+1( ) - TrueHn+1( )) - (TruenM_l( ) - Truenn+1( ))
Again by the induction hypothesis this simplifies to
Oga(Truen, ., (iy,) = Truen,,, (#)) = Truer, ., ()

which implies (%).

To finish the proof, we reason in I¥,, + ¢ and suppose DIE P
Thus for some me.J,, we have Oin noL and also Oin —o. Now me Jn, SO
also m+1€.J,, and thus Truer, ,, (Vo (Oin Truer, ., () — Truer, ., ())).
As Vz (Oin Truer, ., (#) — Truer, ., (z)) is a standard formula (with
possibly non-standard parameters) we see that we have the required
I, 41 reflection whence O;» —o yields us —o. This contradicts with o.
Thus we get Con”" (ISE + o).

QED

3.4 Arithmetical Completeness of PIL
This subsection is mainly dedicated to prove the next lemma.

Lemma 3.11 For all A in I we have that if PRAF A then PIL |- A.

The reasoning is completely analogous to that in the proof of The-
orem 2.6. We thus need to prove a Lemma 3.18 stating that for any
formula A in I we have that OA is equivalent over PIL to a formula
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of the form 0“1, and a Lemma 3.19 which tells us that PIL F A
whenever PIL F OA. In a series of rather technical lemmas we will
work up to these results.

Lemma 3.12 SA B = (SAOPT)V OPHLT for some B € w+ 1.

PRrROOF OF LEMMA 3.12.

SAB=(SAB)V<{O(SAB) =—(-(SAB)AO-(SA B)), but
“(SAB)YAO-(SAB) + (8= -B)AO(S — -B) & (S = =B) A
O-B. Now we consider a conjunctive normal form of =B. Thus, =B
is equivalent to J\,(0% L — O 1) for certain a; > f; (possibly none).
So, by Lemma 2.7, O-B < M\, 0%+ L < 0P+ 1 for B = min({3;}).
So,

(S— -B)AO-B
(S— -~B)ADOPFLL
(

(

Tre

S— -B)A(S— DOt 1)ADAH L
S— (MN\;(O%L > DfL)ADFHLL))ADSHL (1)

As a; > fB; > B we have f + 1 < a; whence 0P+ | — O0% | . Thus,

MO Lo APl e N\o% L ool
and (1) reduces to (S — 0P L) A OP*! 1. Consequently,
(SAB)VO(SAB) o
=(=(SAB)AO=(SAB)) <

—((S—=DOPL)ADPHL) &
(SAOPT) vV OPHLIT,

QED

By a proof similar to that of Lemma 3.12 we get the following
lemma.

Lemma 3.13 B =7 T for certain 7' € w + 1.

In PIL we have a substitution lemma in the sense that - F/(C) +
F (D) whenever - C + D. We do not have a substitution lemma for
equi-interpretable formulas® but we do have a restricted form of it.

Lemma 3.14 IfC =C',D=D', E=E' and F = F', then
FCVD>EVF«C' VD' >E'VE'.

8We have that =S = T. If the substitution lemma were to hold for equi-interpretable
formulas then S = —(=S) = L which will turn out not to be the case.
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We reason in PIL. Suppose that CV D > EV F. We have for any
Gthat C'VD' G (C'>GAND'>G). AsC'>C>(CV D) and
D'>D > (CV D) we have that C' v D' > C v D. Likewise we obtain
EVF>E VF thusC'VD'>CVDp>EVF>E'VF'. The other
direction is completely analogous.

Lemma 3.15 SAOYT > (SACPT) VOIT is provably equivalent to

Ov 1 if & > min({5,v})
ottt ifa< B,y

PROOF OF LEMMA 3.15. The case when a > min({3,~}) is trivial.
The identity interpretation always works as ¢°T — ST whenever
a > §. So, we consider the case when —(a > min({8,~})), that is,
a<fB,y.

Then we have OP T > O2FHLIT > O(OT) > O(SAOXT) and likewise
for OYT. Thus, together with our assumption, we get SA O*T > (S A
OPT)VOITO(SAOAT). By Feferman’s principle we get O-(SAOT)
whence 0%t 1. The implication in the other direction is immediate
by Fact 3.2. QED

Lemma 3.16 O°T > (SAOPT)V OYT s provably equivalent to

oYL if @ > min({3 + 1,7})
ootll  jfa<fB+1,y

PrROOF OF LEMMA 3.16. The proof is completely analogous to that
of Lemma 3.15 with the sole exception in the case that a = <. In
this case

OTT > OIT B O(OT) > O(SAO*T)>SACT

and thus (SAC*T)V OTT >SAOYT. An application of Sy yields
the desired result, i.e. O%t1 1,

In case @ > B+ 1 it is useful to realize that T > OFHT >
O(OPT) > O(SAOPT) > S A OPT. QED

Axiom S3 tells us that in our logic occurences of —S “under the
scope of a >” can easily be dispensed with. We don’t seem to be in
the luxurious position (as is the case in Visser [Vis92]) where we have
the same for S. For that reason some more modal work has to be
done to show that we can get rid of the occurences of S in compound
statements as is shown in the next lemma.

Lemma 3.17 If C' and D are both boolean combinations of S and
sentences of the form O L then we have that PIL - (C > D) «» 0% L
for some § € w+ 1.
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PROOF OF LEMMA 3.17. So, let C' and D meet the requirements of
the lemma and reason in PIL. We get that

Cr>D <+ (SABy) V(=SAB)>(SABs)V (=S A Bs)

for some By, By, By and Bs. The righthand side of this bi-implication
is equivalent to

((SABg)>(SAB3y)V(=SAB3))A((-SAB1)>(SABs)V (-=SAB3)). (%)

We will show that each conjunct of () is equivalent to a formula
of the form O°L. Starting with the left conjunct we get by repeatedly
applying Lemma 3.14 that

SA By > (S/\BQ) V(“S/\Bg) < Lemma 3.12
(SACAT) VOt IT > (SA By) V (=S A Bs) < S3
(SACT) VOt T > (SABs) V Bs + Lemma 3.13
(SACT)VOUtIT (SABy) VO T <+ Lemma 3.12
(SACAT)VOUHIT > (SACAT)VOPHT v OIT
(SACAT)VOHT > (SAOBT) v OIT (—)
(SAOXT > (SACPT)VOIT) A
(O T > (SAOAT)V OIT) + Lemma 3.15
Or LA (OIT > (SACPT) VOTIT) + Lemma 3.16
OrfLADML <
oL
for suitable indices a, 3,.... For the right conjunct of (x) we get a
similar reasoning. QED

Lemma 3.17 is the only new ingredient needed to prove the next
two lemmas in complete analogy to their counterparts 2.8 and 2.9 in
PGL.

Lemma 3.18 For any formula A in I we have that A is equivalent in
PIL to a boolean combination of formulas of the form S or 0P L, and
that OA is equivalent in PIL to O%L for some a € w+ 1.

Lemma 3.19 For all A in I we have that PIL - A whenever PIL +
OA.

The logic PILS is defined as follows. The axioms of PILS are all
the theorems of PIL together with S and {O®T | @ € w}. It’s sole rule
of inference is modus ponens.

Theorem 3.20 PILSFA&NEA

Clearly PILS is a decidable logic.
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3.5 Modal Semantics for PIL, Decidability

As in Section 2.4 we will define a model for PIL.

The model N' = (M, R, {Sm}mem,IF) is obtained from the model
M = (M,R,IF) as defined in Definition 2.11 as follows. We define
(m, 1)Sn{m,0) for nR{m,1) and close off as to have the S, relations
reflexive, transitive and containing R the amount it should.

Theorem 3.21 Vn N,nlF A< PILF A

PrOOF OF THEOREM 3.21. The proofis completely analogous to that
of Theorem 2.12. We only should check that all the instantiations of
Sz and S4 hold in all the nodes of A.

We first show that Sz holds at any point n. So, for any B, consider
any point (m, i) such that nR{m,i)IFB. As (m,i)Sn{m,0), we see that
nlkF B> BA-S.

To see that any instantiation of S, holds at any world n we reason
as follows. If n IF ©B we can pick the minimal m € w such that
(m,0) I+ B. Tt is clear that no Sy,-transition goes to a world where
B A S holds, hence n Il =(B > BAS). QED

The modal semantics gives us the decidability of the logic PIL.

4 Logics with Restricted Substitution.

In this section we prove some results concerning the full interpretability
logic of PRA and of related systems. Invoking results from the previous
sections we obtain upperbounds for our logics.

In Subsection 4.1 we restrict the possible substitutions in Solovay’s
theorem for the theories IX?, for n>2. This gives us upperbounds
for the interpretability logics IL(IZE). We also isolate some modal
principles and relate them to IL(IZE). These modal principles can be
considered in a lowerbound as is done in Corollary 4.3.

In Subsection 4.2 we make some general remarks on IL(PRA) and
provide a lowerbound. We also consider a new principle which we call
Zambella’s principle.

In Subsection 4.3 we isolate a class B of arithmetical sentences with
a “clear mathematical content”. We provide logics that generate all
provability respectively all interpretability principles of PA that are
provable in PA under all substitutions in B. This result yields a rough
upperbound for IL(PRA).

In Definition 4.11 we introduce the notion of a strong normal form
of a closed formula and in Lemma, 4.13 we give an application of it.
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4.1 Theories Strongly Related to PRA

The main interest of this subsection is in Theorem 4.2 where we show
that the interpretability logic of EA + %,,—IR, we will write ISE from
now on?, is strictly contained in ILM for n > 2. For PRA, which is
IXf the situation is still unsettled.

ILM is known to be the interpretability logic for any essentially
reflexive theory T in the sense that ILM = {A |V« T  A{}. Here
we identify ILM with the set of its theorems. The * ranges over real-
izations and the subscript > is adopted to emphasize that the binary
modal symbol D> is translated as formalized interpretability.

We also consider translations where [> is translated as formalized
I1;-conservativity. So, T >, S is a formalization of V7€ell; (S +
m = T F m). By a result of Hijek and Montagna ([HM90], [HM92])
it is known that ILM is the II;-conservativity logic of any theory S
containing I¥; in the sense that ILM = {A |V xS - Af }.

With our notation as fixed in Section 1.4 we can write ILM =
IL(T) for essentially reflexive T. The C inclusion is clear and the
D inclusion is the completeness result of Berarducci and Shavrukov
which says ILM ¥ A = Jx T ¥ A*. By inspection of the proofs of this
completeness result it follows that the specific translation is always a
disjunction of statements that a certain primitive recursive function
has a certain limit. Thus, the realization can always be chosen to be
¥, and we get ILM = IL(T') = ILyx, (7). Likewise, we see that ILM is
the II;-conservativity logic for realizations restricted to ¥o-sentences
over any theory S containing I¥;.

Beklemishev has shown in ([Bek97]) that IS is equivalent to (EA)Z»
and (EA)E"“, and it is easily seen that every X, 1-extension (an ex-
tension by X,41 sentences) of this theory is reflexive. If T is a re-
flexive theory we have a nice characterization of interpretability, the
Orey-Hajek characterization (already provable in EA): F T > S «
“T is II; conservative over S” or stated otherwise - T> S < Ty, S.
These ingredients combine in the following theorem.

Lemma 4.1 ILy, (ISR) = ILA,, (IZR) = ILM whenever n > 2.

n41

PrRoOF OF LEMMA 4.1. If, for two classes of sentences we have X C
Y, then ILy (T) C ILx (T). We will thus show that ILx, (IZR) C ILM
and ILM C IL4, ., (IZF).

First, we prove by induction on the complexity of a modal formula A
that V*€Sub(An41) ISE + Afy > AL and that the logical complexity
of Af;, is at most Apy1. The basis is trivial and the only interesting
induction step is whenever A = (B > C). We reason in IZE:

9We will in this section identify a theory with its set of theorems. So, for example, it
is not at all clear whether IS + C* satisfies the &, -induction rule.
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(B> C)g ©def.
IS+ BEDISE+CE o4
IS+ By, > IS + O, < Orey-Héjek
ISE 4 By b, ISE+Cf, ©gef,
(B> O)f,

Note that we have access to the Orey-Hajek characterization as
Bﬁl is at most of complexity A, 1 and thus IEf + Bﬁl is a reflexive
theory. Also note that (B > C)f, is a Il sentence and thus certainly
A, 1 whenever n > 2.

If now ILM + A then ISE - Ay and thus whenever * € Sub(A,11),
ISR b A% and TLM C TLa, ,, (IZR).

If ILM ¥ A then for some x € Sub(3) we have IZE F A7 whence
ISE ¢ Ar . We may conclude that ILy, (IZR) C ILM. QED

Theorem 4.2 Forn > 2, IL(ISY) C ILM.

PROOF OF THEOREM 4.2. From Lemma 4.1 we see that IL(IZE) C
ILM. To see that this inclusion is strict, we will expose a realization
such that ISE ¥ (p>q — pAOr>qAOr)*.

It is well-known that IS C IS, C ISR, | and that, for every n>1,
I3, is finitely axiomatized. Let o, be the single sentence axiomatizing
IY,,. It is also known that IL(IX,) = ILP and ILP ¥ p>q — pAOr >
g A Or. Thus, for any n>1 one can find a,, 8, and 7, such that

Izn%anbﬂn—)an/\l:h'nbﬂn/\l:h/n-

Note that EA F anD1s, fn ¢ 0nAanD>1sronAfn and F Oris, yn <
Oz (0n = Yn).'® Thus, we have

IZf ¥ onNan>onABn = 0n ANy ANO(0y = Yn) D> On ABn AO(0n = Tn)

and we can take p* = o, A an, ¢* = 0n A By and r* = 0, = Yn.
QED

Let A denote here the class of all modal interpretability formulas.
We define three sets of modal formulas. For example ESs will be the
set of so-called essentially ¥o-formulas for the theories INE, n>1. The

ES, formulas will be ¥, in ISE under any realization *.

107t seems that we ignore the fact here that IXE has no deduction theorem. It is good
to recall that in a formalized setting we will always take the axiomatic equivalent of IL®,
that is, (EA)L" 1.
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ES, = 0OA4 | -0A4 | ESy NES, | ESy; v ES, | —|(E52 > .A)
ES; = OA | -0A4 | A A | ES; N ES3 | ES;V ES; | —|(ESQ > .A)
ES, = 0OA4 | A> A | -FESy | ES;NES, | ES,;VES, | ESy; — ES,

Let MES» be the schema A> B —» AAOC > B AOC with A € ES,,.1!
If we combine the results from above, we obtain the following picture.

Corollary 4.3

ILB = ILMES: C IL(ISR) = IL(PRA)

n
ILMES: C IL(IZR) C TLM

n
ILMES: C ILASR)CILM, n>3

It is unknown if the converse of the left to right inclusions also
hold. The B in ILB stands for Beklemishev who first formulated the
principle MES2,

4.2 Back to PRA

We have just shown that the interpretability logic of IS is included in
ILM for every n>2. For n = 1, ¢.q. PRA, this inclusion is unknown.
The proof of Theorem 4.2 also shows that ILM Z IL(PRA).

Albert Visser has shown in [Vis97] that also ILP ¢ IL(PRA). He
provides a special instantiation of the principle P, namely A > OB —
O(A > ©B), and shows that this is not generally valid for PRA. The
main ingredient of the proof is a result on the ¥3-completeness of inter-
pretability of reflexive theories in finitely many axioms by Shavrukov
([Sha97]).

As A> OB — O(A > ©OB) is also provable in ILM we also see that
ILMNILP € IL(PRA).

We do have some positive results though. In the previous subsection
we have seen that ILB C IL(PRA). As PRA is definitely a reasonable
arithmetical theory we have access to all principles that are known to
hold in any reasonable arithmetical theory (see [JV00]). We thus see
that ILBMoPoW C IL(PRA) where with these letters we refer to the
corresponding schemata:

Mo: A>B — GAAOC > BADC,
W:A>B— A>BAT-A,
Po:A> OB - O(AD B).

"Note that M®' : A> B — AA (OCVOC') > B A (OC VOC') is also valid in ID? for
A € ES,. However over IL it is derivable from MFSn.
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It is easy to see that Mg follows from ILB: Reason in ILB and
suppose A > B. Then certainly ©A > B whence by Beklemishev’s
principle CA A OC > B A OC. Thus ILBMgWP, = ILBWP,.

It is up to now unclear what the semantic counterpart of B is.
Without proof we state such a semantic correspondence for one in-
stance of B. A frame F validates OA > B — O(A) AO(C) > BAOC
if and only if for all u,v,w,z in F' the following holds Vz (=End(z) —
Ju (zRu A End(u) A Vv (uSzv — End(v)))). In this formula End(z) is
an abbreviation of the formula that says that z is an R-end point, that
is, the formula -3y zRy.

The Orey-H&jek theorem tells us that for essentially reflexive the-
ories T three arithmetical notions do provably coincide:

-abrf
- V& Orqa(Con((T' + B)[))
- Vrell} (O pm = Opqan)

As PRA is not essentially reflexive these three different notions can
be studied independently and can (and probably will) yield different
logics. Interaction between these logics does exist whenever « is 3y
and consequently PRA + « reflexive. Zambella proved in his disser-
tation ([Zam94]) a fact that might be useful in the study of the II;-
conservativity logic (the third notion in our list) of PRA. His Lemma
14 on Page 55 reads as follows.

Lemma 4.4 (Zambella)'? Let T and S be two theories aziomatized by
II5-azioms. If T and S have the same II; consequences then T+ S has
no more II; consequences than T or S.

Zambella notes that the formalization of this theorem, which is
proven by model-theoretic means, seems non-trivial. Here we will show
that at first sight Zambella’s lemma does not add to our knowledge of
the interpretability logic of PRA in case it were formalizable.!

A translation of the formalized lemma reads (A >, B) A (B D>,
A) - Apm, AA B, where -A,-B € ES,. (Recall that PRA is Il
axiomatizable.) If, moreover, A and B are both also in ES> we have
that interpretability and II; conservativity coincide. This gives rise
to a new interpretability principle. Let ED,, the set of essentially
As-formulas be defined as

E.D2 = DA | _|ED2 | E.D2 A ED2 | E.D2 V E.D2 .

12\We have omitted the phrase “is consistent and” here for obvious reasons.
13GQ. Mints has sketched how such a formalization would proceed. Beklemishev has
worked out this sketch in an unpublished note [Bek02].
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The principle, which we call Zambella’s principle Z here, would thus
read

Z: (ApB)A(B>A) > A> AAB whenever A, B € ED;.

Thus, with a formalization of Lemma 4.4 we would get ILBWPyZ C
IL(PRA). Tt is noteworthy that B proves many instances of Z.'* As
an example we show that

ILB F (DAAOC D B)A (B> TOAAGC) = OAAOGC > BATOAASC.

if B e EDy. We reason in ILB.

As B>OAASOC and B € ESy we have BAO-C >0OAANOC A
O0-Cp> 1,ie , 0(B — (). Together with DA A OC > B this yields
OAASCC > BASC. One more application of B gives the desired result,
that is, DAA OC > BAOA A OC.

4.3 Two Logics with Restricted Substitution

We first present an easy example of a provability logic with restricted
substitution. Since Solovay ([Sol76]) we know that GL is the prov-
ability logic of PA. Also we know that GL is decidable. If some
provability logical principle is unprovable in GL, we can find an arith-
metical instantiation of it which is not provable in PA. In symbols:
GL ¥ A = 3% PA ¥ A*. This instantiation * is given by Solovay’s
proof of the arithmetical completeness of GL.

The arithmetical content of the instantiation * however is not at
all clear as Solovay’s proof works with limit statements of a primitive
recursive function which incorporates the modal countermodel and is
defined in terms of its own code. In this subsection we will deter-
mine when a non-derivable (in GL) provability principle does have a
non-provable (in PA) instantiation with a “clear (meta-)arithmetical
content”.

We first define the set B of arithmetical sentences with a “clear
arithmetical content”.

B:=L1|T|Bew(B)|Con(B)|B— B|BVB|BAB

Note that B is just the arithmetical counterpart of the closed frag-
ment of GL. We are thus interested in the following logic {A | Vx €
Sub(B) PA  A*} which we will denote, in accordance with the nota-
tion for interpretability /provability logics with restricted substitution,
by PLp(PA).

4 Certainly B proves all instances of Z where one formula contains either conjunctions
or disjunctions.
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Definition 4.5 The logic RGL is obtained by adding the linearity
aziom schema'®0(0A — B) vV O(EB — A) to GL. Here B is an
abbreviation of B A OB.

The logic RGL (the R stands here for restricted) has been consid-
ered before in the literature. It is system J in Chapter 13 of Boolos’
book [Bo093]. In the book of Chagrov and Zakhariaschev [CZ97], in
Exercise 5.4 of Chapter 5 an equivalent system GL.3 is treated.

Theorem 4.6 PLp(PA) = RGL

PROOF OF THEOREM 4.6. Let L, be the linear frame with n ele-
ments. For convenience we call the bottom world n—1 and the top
world 0. It is well known that RGL - A < Vn (L, = A). Our proof
will thus consist of showing that Vn (L, E A) & V*€Sub(B) PA - A*.

For the = direction we assume that 3 *x€Sub(B) PA ¥ A* and show
that for some mew, L, = A. So, fix a * for which PA ¥ A*. The
arithmetical formula A* can be seen as a formula in the closed fragment
of GL. By the completeness of GL we can find a GL-model such that
M,z - —A*. By p(y) we denote the rank of y, that is, the length of
the longest R-chain that starts in y. Let p(z) = n. As the valuation
of = A* at z solely depends on the rank of z,(see for example [Boo93],
Chapter 7, Lemma 3) we see that L,.1,n IF =A* for every possible
valuation on L, (this is also denoted by L, 1,n = —~A*). We define
Lot1,mIkp <& Ly, m = p*. It is clear that that L,4q,n IF —A.

An alternative proof of this direction consists of showing that ev-
erything provable in RGL is provable in PA under any translation in
Sub(B). The only novelty is the linearity axiom. Let A* = M}\,(0% L —
0% 1) and B* = M\;(27 L — 0% 1). Let 8 be the minimum of all
the 3; and let § be the minimum of the ;. By techniques from Sec-
tion 2 we see that O(O0A* — B*) v O(B* — A*) is equivalent to
O@EPH L — M;(@% L = 0%1)vOo@ L = M@ L = 081)).

15Equivalently we could add a trichotomy axiom scheme O(A < B) vV O(A — OB) V
O(B — ©A). We can also consider the logic RGLo that arises from adding for all mew
the following schema O(Fy, — A) V O(Fn — —A) to GL, where Fp, := O™ ' L A O™ T.
It is clear that RGLo and RGL have the same class of characteristic frames. Also,
we can not expect that RGLo - O(0A — B) v OB — A) due to incompactness
phenomena in modal logic. One way to circumvent this incompactness is to allow for
one occurrence of an existential quantifier ranging over the natural numbers. To make
RGL complete, we should thus add ¢A — Inew O(A A F,). We call this logic RGL'.
Indeed RGL' + O(OA — B) Vv OB — A). To see this, we reason in RGL’ and
assume O(0OA A -B) and O(B A -A). For some n,mew we get O(OAA-BA F,,,) and
O(EB A ~A A F,). Realizing that m<n = RGL' + F, — OF,, we see that none of the
(n=m) V (n<m) V (m>n) can hold. We conjecture RGL’ to be conservative over RGL.
It is not clear what a natural semantics for RGL should look like.
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The first disjunct is provable if 3<é and the second disjunct whenever

0<p.

For the < direction we fix some n€w such that L, = A and con-
struct a x in Sub(B) such that PA ¥ A*. Let L, be a model such that
L,,n—1IF -~A. Instead of applying the Solovay construction we can
assign to each world m the arithmetical sentence

Om := BewpiH (TL7) A Conly.

(The Bewpy ' ("L7) are defined in the obvious way being the arith-
metical counterpart of O™*! 1. Similarly for Conpy.) It is easy to see
that

1. PAFp, =, ifn#m

2. PAF on = O(Wmen ¥m)
3. PAFon = MNinen Om

We set p* := /1, mirp Pm- Notice that * is in Sub(B). Using 1, 2
and 3 we can prove a truth-lemma, that is,

L,,ml|F B= PAFl ¢, - B*.

As always, the truth-lemma is obtained by showing by induction on C'
that for all m

L, mltC=PAF o, »C* and
L,,mlfC=PAF ¢, - -C*.

For the basic case we need 1. The boolean connectives are trivial. We
treat the case when C' = 0OD.

If L,,m IF OD, then for any m'<m, we have L,,,m’ IF D, and by
the induction hypothesis PA + ¢, — D*. Thus also PA F Oy, —
OD* and by 2 we get PA + ¢,, — OD*.

If L,,,m If OD, then for some m'<m, we have L,,,m' IF =D. By the
induction hypothesis PA + ¢, — —=D*. Thus PA g,y — —OD*.
By 3 we get PA F ¢,,, - —-OD*.

So, by our truth-lemma, L,,n —11F =4 = PA + ¢, 1 — (mA)*
and consequently PA F Con("¢,—1") — —Bew("4*"). Thus N |
Con("¢n_1") — —Bew("A*™"). As ¢,_1 is consistent with PA we see
that N = Con("¢n—_1") whence N = -Bew("A4*™) and thus PA ¥ A*.

QED

Instead of giving the ¢, in the proof of the above theorem one
could also construct sentences 1, so that they satisfy 2 and 3. The
Y could be defined recursively top-down by 4, := Bew("\W/, ., ¥1")A
Micm Con(Teh; 7). As our model is linear we get 1 for free, so again we
obtain the truth-lemma. The thus obtained v,, are actually provably
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equivalent to the ¢, but it is interesting to see that the 1, are con-
structed without any application of the recursion theorem or not even
the fixed point theorem.

The recursive construction of the 1, can also be seen as a degen-
erate case of a method applied by de Jongh, Montagna and Jumulet
([JIMO1]) where they assign arithmetical statements to worlds in a
model not by means of limit statements but rather by a direct fixed
point construction. Their method will yield sentences equivalent to
our ¢,,’s on linear models.

Another provability logic with restricted substitution has been con-
sidered by Visser (see Boolos Chapter 9 Page 136, [Boo93], or Visser
[Vis81]) when he demanded the substitutions to be ¥;. His logic
PLy, (PA) (or GLV as Boolos calls it) is not a normal modal logic.

We define for a model M and a propositional variable p a set of
natural numbers Dys(p) as follows.

Du(p) :={n €w|IJzeM [p(z)=n & M,z I p|}

It is easy to see that any model M with Vp Dy (p) N Dy (—p) = 2,
is bisimilar to some L,, model. With Theorem 4.6 we can find “natu-
ral” counterexamples for non-provable provability principles A of PA
whenever RGL ¥ A. In this case we can thus find a countermodel M
with Vp Dpr(p) N Dpr(—p) = @. In practice this turns out to happen
quite often.

We see that all of the above discussion actually holds for any theory
T containing IAg + exp. So, certainly we have our next corollary.

Corollary 4.7 PLi(PRA) = RGL

We have thus singled out a class of not generally valid provability
principles that have “natural” counterexamples. The same enterprise
can be done for the not generally valid interpretability principles of
PA with “natural” counterexamples. This class of formulas will be
characterized by the complement of ILg(PA).

Definition 4.8 The logic RIL is obtained by adding the linearity ax-
iom schema O(OA — B) VvV O(EB — A) to ILM. The M in ILM is
Montagna’s principle: At> B - AANOC > BAOC.

Theorem 4.9 RIL = ILg(PA)

PRrOOF OF THEOREM 4.9. We will expose a translation from formu-
las ¢ in the language of RIL to formulas ¢ in the language of RGL

such that
RILF ¢ & RGL | @' (%)

and
RIL F ¢ < . (x%)
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If we moreover know (x % %) : RILF ¢ =V * €Sub(B) PA  ¢* we
would be done, for then we have

YV * €Sub(B) PA F ¢* &
Y * €Sub(B) PA F (¢)" &
RGL F ot &
RIL - .

We first see that (* % %) holds. It is clear that ILM C ILg(PA).
Thus it remains to show that PA + O(0A* — B*) Vv O(EIB* — A*)
for any ILM formulas A and B and any *€Sub(B). As any formula
in the closed fragment of ILM is equivalent to a formula in the closed
fragment of GL, Theorem 4.6 gives us that indeed the linearity axiom
holds for the closed fragment of GL.

Our translation will be the identity translation except for >. In
that case we define

(A B)Y := O(A" — (B¥ v OBY)).

We first see that we have (). It is sufficient to show that RIL +
p>q— O(p — (gV<q)). An instantiation of the linearity axiom gives
us O(0-qg — (-pV @) VE({(-pVq AO(=pV q) = —q). The first
disjunct would yield us immediately O(p — (¢ V <q)).

In case of the second disjunct we get by propositional logic O(q —
O(p A —q)) and thus also O(g — ©Op). Now we assume p > ¢g. By
W, which is provable in ILM, we get p > q¢ A O-p. Together with
O(g — O(p A —q)), this gives us p> L, that is O-p. Consequently we
have O(p — (g V <q)).

We now prove (x). By induction on RIL | ¢ we see that RGL +
. All the specific interpretability axioms turn out to be provable
under our translation in K4. The only axioms where the 0A — OOA
axiom scheme is really used is in J2, J4 and M. Alternatively one can

reason that
RILF ¢ =

V * €Sub(B) PA F ¢* =
YV * €Sub(B) PA I (o))" =
RGL | .

If RGL F ¢" then certainly RIL k- " and by (xx), RIL I ¢.
QED

Corollary 4.10 RIL = ILg(PRA). Consequently RIL is an upper-
bound for IL(PRA).

PrOOF OF COROLLARY 4.10. We know that ILW C ILg(PRA). Also
we know that the linearity axiom is contained in IL3(PRA). The proof
of Theorem 4.9 now can be copied as ¢ <> ¢" is provable in ILW to-
gether with the linearity axiom. Consequently also M can be proved.
QED
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In Lemma 4.13 we will give a direct proof of the fact that A >
B - O(A — (BV ©B)) € ILg(PA). We include this proof to give a
demonstration of how one can work with strong normal forms.

Definition 4.11 A formula A := M\I_,(0% L — OPi 1) is in strong
normal form, we write s.n.f., if 0<fi1<a1<...<fBp<an, with o, <w.
In this case we define B(A) := By (w in case of the empty conjunction)
and a(A) := ag (0 in case of the empty conjunction,).

As the trace (as defined in for example [Boo093], Chapter 7) of every
closed formula is a finite union of left-closed, right-open intervals, we
see that indeed every closed formula of GL is equivalent to a unique
formula in s.n.f. Thus, the a and the § functions can be uniquely de-
fined to all closed formulas of GL. We define the signum of a natural
number as follows: o(n) := 0 if n=0, and o(n) := 1 if n>0. Further-
more we define 7(n) := 1 — o(n).

If A:= M\, (0%L — 0P 1) is in s.n.f, then

n+1
d P )

where we define oy := 0 and B,41 := w. This equivalent of —A is
almost again in s.n.f.. Techniques from Section 2 can be applied to
yield the following fact.

Fact 4.12 In GL we can prove the following statements for any closed
formula A:
1. OFA) ] 5 A,
OA & O+
ANDOA & OFA |
B(~A) = a(A) -7(B(A)),
B(A) =0« B(-A4) #0,
ANTO-A & O a@EAN+H
AV OA & OHATEA) T,

NS St oo

Lemma 4.13 ILF - Ap> B — O(A — (BV ©OB)) for any closed
formulas A,B of ILF.

PRrOOF OF LEMMA 4.13. So, reason in ILF and suppose A > B. In
IL we have A = AV <A thus our assumption reduces, with Fact 4.12.7

to
&HUA)T(BA) T . oa(B)-T(B(B)) T (+)

If a(A) -5(B8(4)) > a(B) -5(B(B)), (+) is provable and we should
thus show O(A — (B V ©B)). Again Fact 4.12.7 reduces this to
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O(A — OxB)TBMBNT) or equivalently O(OB)TBE) | 5 —A4).
This immediately follows from Facts 4.12.1 and 4.12.4 and our as-
sumption that a(A4) - 7(8(A)) > a(B) -7(3(B)).

If a(A)-7(B(A)) < a(B)-7(B8(B)), (+) is actually equivalent (here
we use F) to O(A)@(B(A)+1 | Consequently (using Fact 4.12.1) we
have O(=A) and we are done. QED

5 Appendix, I3; Proves the Consistency of
PRA on a Cut

The result we present here has been known, be it in some different
formulation, for the last two decades, or so. In Subsection 3.3 we have
already provided a proof of a more general theorem. We have chosen
to also insert our other proof since it is based on different methods.
The present proof employs the method of formalized tableaux proofs
of inconsistency.

Ignjatovic has shown that I¥; proves the consistency of PRA on a
cut in his dissertation ([Ign90]). He used this result to show that the
length of PRA-proofs can be roughly superexponentially larger than
the length of the corresponding I¥; proofs.

His reasoning was based on a paper by Pudldk ([Pud86]). Pudlak
showed in this paper by model-theoretic means that GB proves the
consistency of ZF on a cut. The cut that Ignjatovic exposes is actually
an RCAg-cut. (See for example Simpson’s book [Sim99] for a definition
of RCAy.)

The elements of the cut correspond to complexities of formulas for
which a sort of truth-predicate is available. By an interpretability
argument it is shown that a corresponding cut can be defined in I3 .
It seems straight-forward to generalize his result to obtain Theorem
5.1.

The proof we present here is a simplification of an argument by
Visser. In an unpublished note [Vis90b], Visser adapted a proof of
Paris and Wilkie from [WP87] to obtain Theorem 5.1. Lemma 8.10
from the paper Induction for bounded arithmetic formulas, [WP87],
implies that for every r€w there is an IAg + exp-cut such that for
every 0€Y,, IAg + o + exp proves the consistency of IAg + o + 2, on
that cut.

Theorem 5.1 There exists an I1¥;-cut J such that for all BEY, we
have IS, + B + Con’ (PRA + B)

In our proof of Theorem 5.1 we find it convenient to work with a
different definition of PRA from the one we fixed in Section 1.3. We
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do not extend the language and will add totality statements to IAq for
an envelope of provably total recursive functions of PRA in a way that
is reminiscent of Definition 3.10 from [Joo002].

We define a sequence of functions on the natural numbers as follows

- Supg(x) =2-x
- Sup.4,(0) =1
- Sup.;4(z +1) = Sup_(Sup_,(z))

The functions Sup; describe on the standard model a well-known
hierarchy; Sup, is the doubling function, Sup; is the exponentiation
function, Sup, is superexponentiation, Sup, is superduperexponentia-
tion and so on. It is also known that the Sup, form an envelope for
PRA, that is, every provably total recursive function of PRA gets even-
tually majorized by some Sup,. (Essentially this is Parikh’s theorem.)

We see that Sup,(z) = y can be expressed by a X;-formula:1%

(Sup.(«) = y) = (3s Sup(s, 2, 2,y))
where %(s, z,x,y) is the following Ag-formula:

Finseq(s) A Ih(s)=z+1 A
lh(s.)=z+1 AVi<z (Finseq(s;) A [(i<z) — Ih(8:) = (8it1)in(si1)—2])
AV j<Ih(so) (s0); = 2:j A
Vi<lh(s)—1 ((sit1)o =1 /\VJ'(<|h)(8z'+1)—1 ((si+1)j41 = (8i)(si41);))
N(Sz)z =Y.

The intuition behind the formula %(s, z,x,y) is very clear. The
s is a sequence of sufficient large parts of the graphs of the Sup,,’s.
Thus,

8By close inspection of the defining formula we see that Sup,(x)=z can actually be
regarded as a Ag(exp)-formula. All the elements in the s;41 occur in the s;. The s is a very
easy sequence, namely [0,2,4,...,2:(lh(so)—1)]. The §GB(3, z,x,y) is defined in such a way
that s is the smallest sequence that builds up Sup,(x), thus, we see that 2-(lh(so) — 1) =
Sup,(z) = y. Consequently Ih(so) = yT""z < y(for y > 2). We can roughly estimate
(bound by above) s by [[y,...,yl,...s[¥,...,y]], that is, lh(s)=z + 1 AVi<z (lh(s;) =

y times
y AV j<y (si); =y). A bound on [7,...,y) is given by 22’ +¢ (of course this is dependent
on our specific coding protocol, but this bound is reasonable to have). A bound on
y times

[22y +c, ... ,22y +c] can also be given by some elementary function. Similar considerations
lead to the following “equality”: Sup,(z + 1) = Supy(Sup,(...Sup,_,(Sup,(z) —1)... —
1) —1). It is not clear if better bounds or “smart calculations” can lower the complexity
of a formula defining the graph of Sup,(z).
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[[Supg(0), Supg(1), - - -, Supy(lh(se) — 1)],
[Sup,(0), Sup, (1),...,Sup;(Ih(s1) — 1)],

[Sup. (0), Sup. (1), .., Sup. (Ih(s-) — ]I

Rather weak theories already prove the main properties of the Sup,
functions (without saying anything about the definedness) like

Sup,(1) =2,

Sup,(2) =4,

1 < Sup,,41 (),

z <y — Sup,(z) < Sup,(y),

(n<m A x<y) — Sup,,(x)<Sup,,(y),

and so on.

Definition 5.2 PRA is the first-order theory in the language {+,-, <
,0,1} using only the connectives =, — and V¥, with the following non-
logical axioms.

[A.] Finitely many defining 11, -azioms for +, -, <, 0 and 1.7

[B.] Finitely many I1; identity azioms.

[C] For every ¢(z,@)€A¢ a I1; induction aziom of the form:'8

Va Vz (9(0,2) AVy<z (o(y,2) = o(y+1,2)) = ¢(z, 2)).
[D.] For all z€w a 11y totality statement for the function Sup,(z) in
the following form: Yz 3s3y<s Sup(s,z,z,y). Here and in the

sequel Z denotes the numeral corresponding to z, that is, the string
z times

——N—
1+...4+1.

The logical axioms and rules are just as usual.

We shall need in our proof of Theorem 5.1 a formalization of a proof
system that has the sub-formula property. Like Paris and Wilkie we
shall use a notion of tableaux proofs rather than some sequent calculus.
In our discussion below we consider theories T that are formulated
using only the connectives —, = and V. The other connectives will still
be used as abbreviations.

1"We can take for example Kaye’s system PA~ from [Kay91] where in Ax 13 we replace

the unbounded existential quantifier by a bounded one.

induction axioms, is no real restriction.

8We mean of course a II;-formula using only -, — and V, that is logically equivalent
to the formula given here. By coding techniques, having just one parameter z in our
It prevents, however, getting a non-standard

block of quantifiers in non-standard codes of PRA-axioms.
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Definition 5.3 A tableau proof of a contradiction from a set of ax-
ioms T containing the identity axioms is a finite sequence T'y, 'y, ..., T,
where the T'; satisfy the following conditions.

e For 0 <i<r, T} is a sequence of sequences of labeled formulas.
The elements of T'; are denoted by I'). The elements of the I
are denoted by ¢f ;(I) where 1 is the label of f ; and is either 0
or 1. In case l =1 in ¢f ;(I), we call ¢f; the active formula of
both I‘f and T';. Only non-atomic formulas can be active.

o [’y contains just one finite non-empty sequence of labeled formu-
las. We require of (€T for k < Ih(T'g).

e In every T (j < |h(T,)) there is an atomic formula that also
occurs negated in TY.

o Fvery 0 <1i < r contains exactly one sequence I‘g with an active
formula in it. This sequence in its turn contains exactly one
active formula.

e For 0<i<r, we have Ih(T';) < Ih(T;41) < Ih(T;) + 1.

o For 0 <i<r, we have In(I7) < Ih(l"{_,_l) < Ih(D?) + 2.

o For 0 <i<r, we have of ; = o}, ; for k < Ih(T7).

e Ih(TY) < Ih(l"f+1) iff T contains the active formula of T;. In
this case, with n = Ih(T'}) and @7 the active formula, one of the
following holds.'®

(B) @i is of the form ——0 in which case T}, ; = 6 and Ih(Ff+1) =
n+ 1.

(v) @i is of the form 61 — 0. In this case T}, ; = -6 and
only in this case Ih(T'iy1) = |h(I;) + 1. Let p := Ih(Ty).
I'%,, is defined as follows: |h(I'} ;) = Ih(T{ ;) = n + 1,
Tf,,=TF,, fork<n and T}, , =0s.

() @I is of the form =(61 — 02). Only in this case (T}, ;) =

Ih(T?) + 2 and I? ;=061 and [*:L;rllj = —f,.

() @i is of the form ¥z 6(z). In this case Ih(T7;) = n+1
and T}, ; = 0(t) for some term t that is freely substitutable
for x in 6(x).

(Q) @i is of the form =Vx 6(x). In this case Ih(T7 ;) =n+1
and T%,, ; = —8(y) for some variable y that occurs in no
formula of T.

It is well-known that ¢ is provable from T iff there is a tableau
proof of a contradiction from T'U {—¢}. The length of tableaux proofs

19We start with (8), so that we have the same labels as in Definition 8.9 from [WP87].
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can grow superexponentially larger than their regular counterparts. A
pleasant feature of tableaux proofs is the sub-formula property.

We will work with some suitable Aj-coding of assignments that
are always zero on all but finitely many variables. The constant zero
valuation is denoted just by 0. Also do we use well-known satisfaction
predicates like Satyy, (7, 0) for formulas 7 € II; and valuations o. By
Val(t, o) we denote some A; valuation function for terms ¢ and assign-
ments 0. By ¥i(z) we denote the predicate that only holds on the
standard model on codes of (syntactical) -sentences.

Proor OoF THEOREM 5.1. We will expose an I¥;-cut and show that
IS, + B + Con” (PRA + B) for any B € 3 (formulated using only -, —
and V). If we would have a J-proof of L from PRA + B in I¥; + B we
can also find a tableau proof of a contradiction (not necessarily in J)
from PRA” + B, as IZ; proves the totality of the superexponentiation
function. By PRA’ we denote the axiom set of PRA intersected with
J.

Thus, it suffices to show that IX; + B + TabCon(PRA” + B). By
TabCon we mean the formalization of the assertion that there is no
tableau proof of a contradiction.

The cut that does the job is the following:2°
J(z) ==V 2'<zVz 3y Sup..(z) = y.

First we see that J(z) indeed defines a cut in I¥;. Obviously I3, F
J(0). We now see I¥; + J(z) — J(2+1). For, reason in I¥; and
suppose J(z). In order to obtain J(z+1) it is sufficient to show that
Vz 3y Sup.,(z) = y. This follows from an easy ¥;-induction.?!

As B € ¥, we may assume that B = 3z A(z) with A € I1;.

We reason in IS 4+ B and assume —TabCon(PRA” +B). As B holds,
for some a we have A(a). We fix this a for the rest of the proof. Let
p="To,T4,...,T; be a hypothetical tableau proof of a contradiction
from PRA’ + B.

Via some easy inductions a number of basic properties of p is es-
tablished, like the sub-formula property and the fact that every 3;!-
formula in p comes from an PRA-axiom of the form [D.], etcetera.
Inductively we define for every I'/ a valuation o; ;.

- 00,0 = 0.

20Formally speaking we should use the §u_[’)(s, z,x,y) predicate here.

*1By Theorem 3.13 from [Jo002] we see that if some theory T proves that J is a cut, then
automatically 7' + IX;. Our proof could also work if some theory 7' D PRA proved for
some cut J' that Vz€J' VzeJ' Jy Sup,(x)=y. We do not know if for some PRA C T C I2;
such a J' exists. (Probably in such a case we also need T + 3z =J'(2).)
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- If T} contains no active formula, oiy1; = 04 ;.

- If 7 contains an active formula one of (8)-(¢) applies. Let

m=Ih(T7).

8) Oit1,j = 04j-

(7) Git1, =Oiy1,m = 0i ;.

(0) oiy1,; =04

(€) oiy1,; =0i,-

(¢) In this case essentially an existential quantifier is eliminated.

We treat the three possible eliminations.2?

*x The first existential quantifier in B is eliminated and
B is replaced by A(y). In this case oi41,; = o0y, for
all variables different from y. Furthermore we define
oit1,;(y) = a

x The first existential quantifier in a formula of the form
dsdy<s %(s,f, t,y) for some term ¢ and number z€J
is eliminated and replaced by Jy<w %(U,E,t,y) for
some variable v. In this case o;41,; = 0;; for all vari-
ables different from v. Furthermore we define ¢;41 ;(v)
to be the minimal number b such that

3 Z/Sb gIl—[/)(IL VaI(E, Ui,j); Val(t7 ai,j); y)

Note that, as z € J, such a number b must exist. (See
also footnote 16.)

* A bounded existential quantifier in a formula of the form
Jz<t 0(z) is eliminated and Iz<t 6(z) is replaced by
y <t A6(y) for some variable y. In this case 6(y) is in
Ag (yet another induction). We define 0,11 ;(y) to be
the minimal ¢ < Val(t, 0; ;) such that Sata,(76(c)”, 05 ;)
if such a c exists.?3In case no such c exists, we define
0i+1,;(y) = 0. For the other variables we have 0,41 ; =
U,',j.

It is not hard to see that o; ;(z) has a X1 or even Ay graph. The
proof is now completed by showing by induction on 4:

Vi<r 3j<Ih(T;)VE<Ih(T) (S1(Tpf;7) = Sats, (T¢f; 7, 005)). (1)

Note that the statement is indeed ¥; as in I¥; we have the ¥; col-
lection principle which tells us that the bounded universal quantifiers

22 Again, to see (in IX;) that these are the only three possibilities, an induction is
executed.

22We have the ¥; minimal number principle at our disposal in I¥;. With ¢ we mean
the numeral corresponding to c.
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can be somehow pushed inside the unbounded existential quantifier of
the Saty, .

Once we have shown (1), we have indeed finished the proof as every
T (j<Ih(T,)) contains some atomic formula and its negation. Atomic
formulas are certainly ¥; which gives for some j<Ih(T',) and some
atomic formula 6, both Saty, ("67,0, ;) and Saty, ("=67,0, ;) and we
have arrived at a contradiction.?* Hence TabCon(PRA’ + B).

As announced (1) will be proved by induction on ¢. If i=0, as there
are no ¥;-formulas in T, (1) holds in a trivial way.
For the inductive step, let i<r and j<lh(T';) such that

VE<Ih(TY) (S1("¢k,7) = Sats, (T¢f ;7. 04,3))-

We look for j'<Ih(T';+1) such that
Vk,‘<|h(F§+1) (Zl(rﬂpﬁ-l,j'—') - Sat21(r90§+1,j'—|a0i+l,j’)) (i)

If 7 contains no active formula, I’/ 1 =I"’ and 0,41 j=0i, and we
can just take j'=j. ‘

So, we may assume that I'; contains an active formula, say o7,
and one of (8)-(¢) holds. In the cases (8), () and () it is clear which
j' should be taken such that (f) holds. We now concentrate on the two
remaining cases.

(¢€). Here ¢ is of the form 3z 6(z). We only need to consider the
case that dz 0(z) € ¥,. By an easy induction we see that Iz 0(x) is
either Ag or a subformula (modulo substitution of terms) of an axiom
of PRA from group [D]. .

In case ¢} = Iz §(x) and Iz O(x) € Ao, for some v ¢ T], 7}, ; =
6(v). As we know that Sats, ("¢, 05 ;), we see that 041 ; is tailored
such that Sata, ("¢} ;7 0it1,5) holds. Clearly also Sats, ("¢} ;7 0it1,5)
and we can take j=j' to obtain (}).

The other possibility is ¢} = 3s Jy<s Sup(s, Z, ¢, y) for some (pos-
sibly non-standard) term ¢. Consequently o7}, ; = Jy<v %(U,E, t,y)
for some v ¢ T7. Again 0, j is tailored such that Sata, ("o ;5 Oit1,5)
holds and we can take j=j' to obtain (}).

(e). We only need to consider the case ¢} = Vz 6(z) with 6(z) € ¥;.
In case Vz 8(z) € X1, the induction hypothesis and the definition of
0i+1,; guarantees us that j=j' yields a solution of (}). So, we may
assume that Vz 6(z) ¢ ¥;. By an easy induction we see that thus
Vz 6(z) is A(a) or (x) has one of the following forms:

24There seems to be some redundancy in employing both tableaux proofs of a contra-
diction and the Sat predicates as the internal structure of the Sat predicates is somehow
reminiscent to that of tableaux proofs of a contradiction.
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1. A subformula (modulo substitution of terms) of an axiom of PRA
of the form [A] or [B],

2. A subformula (modulo substitution of terms) of an induction ax-
iom [C],

3. ds3Jy<s grj_p/)(s,z,t,y) for some (possibly non-standard) term ¢
and some z€J.

Our strategy in all cases but 3 will be to show that?®

Vo Satr, ("Vz 0(x)7,0). &
This is sufficient as
Vo Satr, ("Vz 6(x)7, o)
Vo Vz Sata, ("0(v)7, olv/z])
Vo' Sata,(T0(v)7, ")

Vo Sata, (T6(t)7,0)
Vo Sats, (T6(¢)7, o).

4l

Here v is some fresh variable, f[v/z] denotes the formula where z is
substituted for v in §(v), and o[v/z] denotes the valuation which (pos-
sibly) only differs from ¢ in that it assigns to the variable v the value
z.

The strategy to prove 3 is quite similar. The formula
Vx 3s3y<s Sup(s,z,z,y) is a standard formula that holds if z € J,
whence for some variable v we have

Vo Sat, ("Ve Is Fy<s §I\JE)(S, v,z,y)", olv/z])
and thus also
Vo Satr, ("Vr 3s Jy<s STJB(S, Z,2,y)",0).
We immediately see that

Vo Saty, ("3s 3y<s Sup(s,z,t,y)7, o).

The proof is thus finished if we have shown & in case Vz 0(z) is
either A(a) or a subformula of an axiom of the groups [A4], [B] and
[C]. The only hard case is whenever Vz 6(z) is a subformula of a
PRA axiom of group [C], as the other cases concern true standard
IT;-sentences only. By an easy induction we see that it is sufficient to
show that for every ¢ € Ag

Vz Satm, ("Vz (p(0, 2)AVy<v (¢(y, 2) = p(y+1,2)) = ¢(v,2))7,00,0[v/x]).

Ve Satm, ("7, 0) is often denoted by Truer, (¢)

43



This is proved by a II;-induction on z. Note that in I¥; we have
indeed access to IIj-induction as I¥; = III;. The fact that ¢ can be
non-standard urges us to be very precise.

If =0 we are done if we have shown

Satm, ("Vz (p(0,2) AVy<0 (p(y,2) = ¢(y +1,2)) = ¢(0,2))7, 00,0)

or equivalently
Vz Sata, (Te(0,w) = ¢(0,w)7, og0[w/2]).
By an easy induction on the length of ¢ we can show that for any o
Sata, (Te(0,w) = p(0,w)7, o).
For the inductive step we have to show

Satn, ("Vz (p(0, 2)AV y<v (p(y, 2) = @(y+1,2)) = ¢(v,2))7, 00,0[v/z+1])
or equivalently that for arbitrary z
Sata, (T (0, w) AV y<wv (p(y, w) = (y+1,w)) = (v, w)7,00,0[v/z+1][w/z]).>

The reasoning by which we obtain this is almost like ¢ were standard.
So, we suppose

Sata, ("p(0, w)AVy<v (p(y,w) = (y+1,w)) ", 0o,0[v/z+1][w/z]) (1)
and set out to prove
SatAo (r‘(p(v, w)17 00,0 [U/.’E + 1] [’UJ/Z])

The induction hypothesis together with some basic properties of the
Sat predicates gives us

SatAo (I—(p(oa w)/\v:l/<v (cp(y, U)) - <p(y+1, ’IU)) - (p(U, w)-|7 00,0 [’l)/.Z’] [U)/Z]) (ﬁ)
A witnessing sequence for () is also a witnessing sequence for
Sata, (Tp(0,w) AVy<v (p(y, w) = ¢y + 1,w))7, 00,0[v/z][w/2]).

Combing this with (f) gives us Sata,("¢(v,w)™, 000[v/z][w/z]). Also
from (h) we get Sata, ("¢(v,w) = @(v+1,w)7, 00,0[v/z][w/z]), so that
we may conclude Sata,("o(v + 1,w)", 00,0[v/z][w/z]). A witnessing
sequence for the latter is also a witnessing sequence for

Sata, ("o(v,w) 7, o0 0[v/z + 1][w/2]).

QED

2By ¢[v/x][w/z] we mean sequential substitution. This is not an important detail, as
we may assume that we have chosen v and w such that no variable clashes occur.
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