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Abstract. Interpretations are a natural tool in comparing the strength of two
theories. In this paper we give a brief introduction to the topic of interpretability
and interpretability logics. We will focus on the, so far, unknown interpretability
logic of PRA. One research technique will be treated. This technique can be best
described as restricting the realizations in the arithmetical semantics.

1 What are interpretations and why study them?

How to interpret “Eli, Eli, lama sabachtani”? Let us consider the concept
of interpretation in the previous phrase1. What does it actually mean to
interpret something. Or more specifically, what do we mean when we say
that T interprets some utterance ϕ of S? Well, in this case T can first
translate ϕ to its own language, then place it in an adequate context and
then somehow make sense of it.

The mathematical notion of interpretation is somewhat similar. We
say that a theory T interprets another theory S whenever there is some
translation such that all translated theorems of S become provable in T .
We give a precise definition. Throughout this paper we will stay in the
realm of first-order logic.

Definition 1 K is a relative interpretation of a theory S into a theory T ,
we write K : T � S, whenever the following holds. K is a pair 〈δ, F 〉. The
first component, δ, is a formula in the language of T with a single free
variable. This formula is used to specify the domain of our interpretation
in a sense that we will see right now. The second component, F , is an

1“Eli, Eli, lama sabachtani” were Jesus’ last words. Some scholars translate this to
“My God, my God, why hast thou forsaken me?”. Others read it as “My God, my God,
how thou dost glorify me!”.
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easy (primitive recursive) map that sends formulas ψ in the language of
S, to formulas F (ψ) in the language of T . We demand for all ψ that the
free variables of ψ and F (ψ) are the same. The map F should commute
with the boolean connectives, like F (α ∧ β) = F (α) ∧ F (β). Moreover F
should relativize the quantifiers to our domain specifier δ. Thus, for example
F (∀x α) = ∀x (δ(x)→ F (α)).

We think this notion of interpretation is a natural one and comes close
to our every day use of the concept of interpretation. And indeed it is a
natural tool in comparing the the proof strength of two theories.

A first guess to say what it means that some theory T is at least as
strong as some other theory S could be the following. Whenever S sees the
truth of a formula ψ, T should also be able to see the truth of ψ. But, S and
T might speak different languages. This is where the idea of a translation
comes in.

Of course the translation should preserve some structure. Also it seems
unreasonable that T should have the same domain of discourse as S. Tak-
ing these considerations into account it comes quite natural to say that T
is at least as strong as S whenever T interprets S in the sense of Definition 1.

In the mathematical and metamathematical literature the here defined
notion of interpretation turns up time and again. Perhaps the most famous
example is in the proof of the consistency of non-euclidean geometry. In
this proof (see for example [Gre96]) a model for non-euclidean geometry is
built in a uniform way inside a model for euclidean geometry. Of course
we somehow “know” that euclidean geometry is consistent. This uniform
model construction is really nothing but an interpretation.

Tarski, Mostowski and Robinson first studied interpretations as a (meta)
mathematical tool in a systematic way in [TMR53]. They also used inter-
pretations to determine the undecidability of certain theories. It is not hard
to convince oneself that some consistent theory T is undecidable whenever
T interprets some essentially undecidable theory S. We say that S is essen-
tially undecidable if S is undecidable and every consistent extension of T in
the same language is also undecidable.

2 Formalized interpretability

In the previous section we have introduced the mathematical notion of inter-
pretability. We have given some arguments to plea that it is a natural and
interesting notion to consider. In this section we will add one more argu-
ment to our list. We will see that theories can in a certain way speak about
interpretations. This insight will provide us with a simple yet expressive for-
malism in which large parts of metamathematical practise are expressible.
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Amongst these are the Model Existence lemma as used in Gödel’s Complete-
ness theorem, Gödel’s Second Incompleteness theorem, but also the method
of relative consistency using interpretations.

Ever since Gödel we know that in theories of some minimal strength we
can code syntax and syntactical notions like provability. We write 2Tϕ for
the very long statement that codes the fact that the sentence ϕ is provable
in the theory T . As usual we denote ¬2¬ϕ by 3ϕ. Once we realize that
the notion of provability can be coded in a theory, it does not come as a
surprise that we can do the same for interpretability.

For, what does it mean that S is interpretable in T? This means that
there is a primitive recursive translation such that all translated theorems of
S are provable in T . With some sloppy notation this can be written down as
∃j ∀x (2Sx→ 2Tx

j). Indeed, it turns out that the notion of interpretability
can be expressed by a Σ3-sentence.2 We will denote the formalized statement
of T interprets S by T � S.

In this paper we will, for reasons that will become clear below, be mainly
interested in interpretability relations between theories that are both finite
extensions of some base theory T . Thus, we are interested in statements of
the form (T +α)� (T +β) which we will abbreviate with α�T β. When the
base theory T is clear from the context we will even omit sometimes the T
in �T and in 2T .

After having introduced this notation we see that many interesting prop-
erties can be expressed. For example (i) : α�β → (3α→ 3β). The formula
(i) expresses that T + β is consistent whenever it is interpretable in a con-
sistent theory T + α. We would like to say that (i) actually holds for any
choice of α and β. One way of doing so is by working with arithmetical
realizations and modal logics.

Definition 2 By FormIL we denote the set of formulas in the modal lan-
guage of interpretability logic. This is the smallest set containing ⊥, >, a
countable infinite set of propositional variables and being closed under the
boolean connectives, a unary modal operator 2 and a binary modal operator
�. The 3 will be an abbreviation for ¬2¬.

Definition 3 An arithmetical realization (relative to a theory T ) is a map
(·)∗ that sends any propositional variable p to some arithmetical sentence
p∗. This map is extended to FormIL by stipulating that it commutes with
the boolean connectives and demanding that (2A)∗ = 2TA

∗ and that (A �

B)∗ = A∗ �T B
∗. An interpretability principle of a theory T is a formula

in FormIL that is provable in T under any arithmetical realization. By the
interpretability logic of T we mean the set of all interpretability principles
of T or some system generating this set. We write IL(T).

2A Σ3-sentence is one that starts with a sequence of an existential- then universal- and
then again existential quantifier to be followed by some formula only containing bounded
quantification.
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Note that by � we might now denote either the modal operator or the
formalized notion of interpretability. We are confident however that this
will not cause any confusion. Also note that the interpretability logic of a
theory is the interpretability behaviour of that theory as seen by itself.

The modal language we have just introduced is rather expressive. Gödel’s
Second Incompleteness theorem can be written down as 3> → ¬23>.
Some reflection learns us that 3> → ¬(>�3>) can be seen as a generalized
version of Gödel’s Second Incompleteness theorem; Under the assumption
of the consistency, the consistency itself is not only just not provable, but
not even interpretable!

An interpretation of S in T provides in an obvious way a uniform pro-
cedure to define a model of S within any model of T . Thus, the formula
3A�A expresses in a certain sense the Model Existence lemma; whenever
A is consistent in T , we can make a model of T +A.

Now consider a theory T . What is the modal characterization of its
interpretability logic? For two classes of theories the answer to this question
is known. If T is finitely axiomatizable IL(T) is known to be ILP as defined
below. If T is essentially reflexive3 IL(T) is also known. It is ILM, which is
defined below. (See for an overview of these results [Vis97].)

We now present a logic IL that generates interpretability formulas that
are interpretability principles for any reasonable theory. The logic IL is the
smallest set of formulas in FormIL that is closed under the necessitation rule
A/2A and under Modus Ponens that contains all propositional tautologies
and all instantiations of the following axiom schemata.

L1 : 2(C → D)→ (2C → 2D)
L2 : 2A→ 22A
L3 : 2(2A→ A)→ 2A
J1 : 2(C → D)→ C �D
J2 : (C �D) ∧ (D � E)→ C � E
J3 : (C � E) ∧ (D � E)→ C ∨D � E
J4 : C �D → (3C → 3D)
J5 : 3A�A

The logic that arises from only the provability schemes L1-L3 is often
called GL after Gödel and Löb. In this logic we have only formulas which
are built up using the 2 modality. We call this class of formulas FormGL.

Two other prominent principles are M : A � B → A ∧ 2C � B ∧ 2C
and P : A� B → 2(A� B). The logic that arises by adding more axiom
schemes to IL is denoted by IL with the names of the principles postfixed
to it.

3A theory is reflexive if it proves the consistence of any finitely axiomatized subtheory.
It is essentially reflexive if all its finite extensions are reflexive.
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For no theory T that is neither finitely axiomatizable nor essentially
reflexive, IL(T) is known. PRA is such a theory.

3 What is PRA?

Primitive Recursive Arithmetic, we will write PRA, is a theory that has been
studied extensively in the literature. We can think of PRA as the theory
with minimal strength that can do basic reasoning about primitive recursion.
In a rudimentary form PRA was first introduced by Skolem in 1923. (See
for a translation [Sko67].) The emergence of PRA is best understood in the
light of Hilbert’s programme and finitism (see [Tai81]).

The precise formulation is not very much to our interest in this paper
but the reader may think of it as I∆0 (see for example [HP93]) together with
the Σ1 induction rule. The latter allows one to conclude ∀x σ(x) from σ(0)
and ∀x (σ(x)→ σ(x+ 1)) whenever σ is a Σ1-formula.

It is well known that PRA is a reflexive theory but not essentially re-
flexive. However, any extension of PRA by Σ2-sentences is reflexive (see
[Bek97]). This important feature of PRA is reflected in our treatise of a
lowerbound of IL(PRA). It is worth noting that we use no specific proper-
ties of PRA in providing an upperbound for IL(PRA) and indeed our results
hold for a large class of theories.

4 A specific research tool: restricting the possible
arithmetical realizations.

As we mentioned before, it is unknown what is IL(PRA). In this situation
lower and upper bounds are already quite informative. This section makes
some comments on these bounds. Also we shall reflect a bit on one technique
that is used in determining upperbounds.

A lowerbound PRA certainly is a reasonable theory according to [JV00].
From [JV00] we thus get for free that ILM0P0W ⊆ IL(PRA). With these
letters we refer to the corresponding schemata:

M0 : A�B → 3A ∧2C �B ∧2C
P0 : A� 3B → 2(A�B)
W : A�B → A�B ∧2¬A

In [Joo03] two more interpretability principles of PRA are formulated.

B : A�B → A ∧2C �B ∧2C
Z : (A�B) ∧ (B �A)→ A�A ∧B
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In B we require that A be an ES2 (essentially Σ2) formula. In Z we require
that both A and B be ED2 (essentially ∆2) formulas. These two classes of
formulas are defined as follows.

ES2 := 2FormIL | ¬2FormIL | ES2 ∧ ES2 | ES2 ∨ ES2 | ¬(ES2 � FormIL)
ED2 := 2FormIL | ¬ED2 | ED2 ∧ ED2 | ED2 ∨ ED2

Consequently ILBM0P0WZ is also a lowerbound for IL(PRA).

An upperbound In our Definition 3 we defined IL(T) to be the set of all
interpretability principles of T . An interpretability principle of T is a modal
formula in FormIL that is provable in T under any arithmetical realization.

Let Sub(Γ) be the set of realizations that take their values in Γ. We
define the Γ-interpretability logic of T to be set of all formulas in FormIL

that are provable in T under any realization in Sub(Γ). We denote this logic
by ILΓ(T). Clearly we have that IL∆(T) ⊆ ILΓ(T) whenever Γ ⊆ ∆. This
observation can be used to obtain a rough upperbound for IL(PRA). In
order to do so, we first calculate the Γ-provability logic of PRA for a specific
Γ. This is defined completely analogously to its interpretability variant and
is denoted by PLΓ(PRA).

First we define the set B of arithmetical sentences as follows.

B := ⊥ | > | 2(B) | 3(B) | B → B | B ∨ B | B ∧ B

Definition 4 The logic RGL is obtained by adding the linearity axiom
schema 2(2A → B) ∨ 2(�B → A) to GL. Here �B is an abbreviation of
B ∧2B.

The logic RGL (the R stands for restricted) has been considered before
in the literature. It is the system J in Chapter 13 of Boolos’ book [Boo93].
Ever since Solovay (see [Sol76]) we know that GL is the provability logic of
any strong enough theory and certainly for PRA.

In the proof below we will make use of the standard modal semantics
for GL. A GL-frame F is a pair 〈W,R〉 where W is a finite non-empty
set of worlds and R is a transitive conversely well-founded relation on it. A
GL-model is a triple 〈W,R,〉. Here  is a relation on W×FormGL such
that for all m∈M the set {A∈FormGL | m  A} is a maximal GL-consistent
one. Moreover we demand m  2A ⇔ ∀n (mRn → n  A). We write
M |= A and say that A holds on M if for all m∈M we have m  A. For F a
frame we write F |= A if A holds on any model that has F as its underlying
frame. It is well known that GL ` A if and only if A holds on all finite
transitive and conversely well-founded models.

Theorem 5 PLB(PRA) = RGL
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Proof of Theorem 5. Let Ln be the linear frame with n elements. For
convenience we call the bottom world n−1 and the top world 0. It is well
known that RGL ` A ⇔ ∀n (Ln |= A). Our proof will thus consist of
showing that ∀ ∗ ∈Sub(B) PRA ` A∗ ⇔ ∀n (Ln |= A).

For the ⇐ direction we assume that ∃ ∗ ∈Sub(B) PRA 0 A∗ and show
that for some m∈ω, Lm 6|= A. So, fix a ∗ for which PRA 0 A∗. The
arithmetical formula A∗ can be seen as a formula in the closed fragment
of GL. By the completeness of GL we can find a GL model such that
M,x  ¬A∗. By ρ(y) we denote the rank of y, that is, the length of the
longest R-chain that starts in y. Let ρ(x) = n. As the valuation of ¬A∗ at x
solely depends on the rank of x (see for example [Boo93], Chapter 7, Lemma
3), we see that Ln+1, n  ¬A∗ for every possible valuation on Ln+1 (we also
denote this by Ln+1, n |= ¬A∗). We define Ln+1,m  p⇔ Ln+1,m |= p∗. It
is clear that Ln+1, n  ¬A.

For the ⇒ direction we fix some n∈ω such that Ln 6|= A and construct a
∗ in Sub(B) such that PRA 0 A∗. Let Ln be a model with domain Ln such
that Ln, n−1  ¬A. Instead of applying the Solovay construction we can
assign to each world m the arithmetical sentence

ϕm := 2m+1
PRA⊥ ∧3m

PRA>.

(We define 20
PRA⊥:=⊥ and 2n+1

PRA⊥:=2PRA(2n
PRA⊥). From now on we will

omit the subscript PRA.) It is easy to see that

1. PRA ` ϕl → ¬ϕm if l 6= m,

2. PRA ` ϕl → 2(
∨∨

m<l ϕm),

3. PRA ` ϕl →
∧∧

m<l 3ϕm.

We set p∗ :=
∨∨

Ln,mp ϕm. Notice that ∗ is in Sub(B). Using 1, 2 and 3 we
can prove a truth lemma, that is, for all m

Ln,m  C ⇒ PRA ` ϕm → C∗ and
Ln,m 6 C ⇒ PRA ` ϕm → ¬C∗.

By this truth-lemma, Ln, n − 1  ¬A ⇒ PRA ` ϕn−1 → (¬A)∗ and conse-
quently PRA ` 3ϕn−1 → ¬2A∗. Thus N |= 3ϕn−1 → ¬2A∗. As ϕn−1 is
consistent with PRA we see that N |= 3ϕn−1 whence N |= ¬2A∗ and thus
PRA 0 A∗. qed

Definition 6 The logic RIL is obtained by adding the linearity axiom schema
2(2A→ B) ∨2(�B → A) to ILW.

Theorem 7 RIL = ILB(PRA)
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Proof of Theorem 7. We will expose a translation from formulas ϕ in
FormIL to formulas ϕtr in FormGL such that

RIL ` ϕ⇔ RGL ` ϕtr (∗)
and

RIL ` ϕ↔ ϕtr. (∗∗)

If we moreover know (∗∗∗) : RIL ` ϕ⇒ ∀ ∗ ∈Sub(B) PRA ` ϕ∗ we would
be done. For then we have by (∗∗) and (∗∗∗) that

∀ ∗ ∈Sub(B) PRA ` ϕ∗ ↔ (ϕtr)∗

and consequently

∀ ∗ ∈Sub(B) PRA ` ϕ∗ ⇔
∀ ∗ ∈Sub(B) PRA ` (ϕtr)∗ ⇔
RGL ` ϕtr ⇔
RIL ` ϕ.

We first see that (∗∗∗) holds. From our remarks concerning a lowerbound
of IL(PRA) we know that ILW ⊆ ILB(PRA). Thus it remains to show
that PRA ` 2(2A∗ → B∗) ∨ 2(�B∗ → A∗) for any formulas A and B in
FormIL and any ∗∈Sub(B). As any formula in the closed fragment of ILW is
equivalent to a formula in the closed fragment of GL (see [HŠ91]), Theorem
5 gives us that indeed the linearity axiom holds for the closed fragment of
GL.

Our translation will be the identity translation except for �. In that
case we define

(A�B)tr := 2(Atr → (Btr ∨3Btr)).

We first see that we have (∗∗). It is sufficient to show that RIL ` p�q →
2(p→ (q∨3q)). We reason in RIL. An instantiation of the linearity axiom
gives us 2(2¬q → (¬p∨q))∨2((¬p∨q)∧2(¬p∨q)→ ¬q). The first disjunct
immediately yields 2(p→ (q ∨3q)).

In case of the second disjunct we get by propositional logic 2(q → 3(p∧
¬q)) and thus also 2(q → 3p). Now we assume p � q. By W we get
p � q ∧ 2¬p. Together with 2(q → 3p), this gives us p � ⊥, that is 2¬p.
Consequently we have 2(p→ (q ∨3q)).

We now prove (∗). By induction on RIL ` ϕ we see that RGL ` ϕtr.
All the specific interpretability axioms turn out to be provable under our
translation in GL. The only axioms where the 2A → 22A axiom scheme
is really used is in J2 and J4. To prove the translation of W we also need L3.

If RGL ` ϕtr then certainly RIL ` ϕtr and by (∗∗), RIL ` ϕ.
qed

8



Joost J. Joosten

We thus see that RIL is an upperbound for IL(PRA). Using the trans-
lation from the proof of Theorem 7, it is not hard to see that both the
principles P and M are provable in RIL. Choosing larger Γ will generally
yield a smaller ILΓ(PRA) and thus a sharper upperbound.

Finally we remark that if RGL 0 ϕ, then ϕ is certainly not a provability
principle. But in this case we can find a counterexample with a “clear
(meta)mathematical” content.

I would like to thank Lev Beklemishev for many enligthening discussions
and for pointing out an error in an earlier version of this paper. Also I would
like to thank an anonymous reviewer who helped improving the readability
of this paper.
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