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Abstract

This paper provides an overview of results related to the Orey-Hájek
characterization and the Friedman characterization. We sketch the ground-
work on which the results rest and we elaborate the mathematical struc-
ture behind the results.

A second goal of this paper is to give arithmetical soundness proofs of
interpretability principles. The proofs should be of such generality that
they make very little reference to the specific base theory.

We provide two modal systems within which such soundness proofs
can be given. One system is based on definable cuts. The other is based
on finite approximations of theories.

1



Contents

1 Introduction and preliminaries 3
1.1 A road map to the paper . . . . . . . . . . . . . . . . . . . 4
1.2 A short word on coding . . . . . . . . . . . . . . . . . . . . 4
1.3 Arithmetical theories . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Reasonable arithmetical theories . . . . . . . . . . . 5
1.3.2 Reflexive theories . . . . . . . . . . . . . . . . . . . . 6

1.4 Interpretability in a weak meta theory . . . . . . . . . . . . 8
1.5 Interpretations and models . . . . . . . . . . . . . . . . . . 12

2 Interpretability logics 12
2.1 The logic IL . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 The formalized henkin construction . . . . . . . . . . . . . . 14
2.3 More logics . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Essentially reflexive theories . . . . . . . . . . . . . . . . . . 16

3 Cuts and induction 17
3.1 Basic properties of cuts . . . . . . . . . . . . . . . . . . . . 17
3.2 Cuts and the henkin construction . . . . . . . . . . . . . . . 18
3.3 Pudlák’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Cuts and interpretability logics . . . . . . . . . . . . . . . . 20

4 Characterizations of interpretability 22
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1 Introduction and preliminaries

Interpretations as we shall study them have proven to be a useful tool in
comparing theories. If a theory U interprets a theory V , we write U ¤ V ,
then in a sense, U is as least as strong as V . Thus, interpretations gives
us a means of comparing proof strength.

In words, an interpretation j of V in U , we write j : U ¤V , is a struc-
ture preserving map sending axioms of V to theorems of U . Structure
preserving means that the map should commute with proof constructions
and with boolean connectives. Quantifiers get relativized to domain spec-
ifiers.

We demand the map to act on axioms of V rather than on theorems,
so that indeed interpretations preserve proof structure. Our notion of
interpretation is in rough lines the interpretations as studied by Tarski et
al in [TMR53]. Let us put it into a formal definition. The theories that we
study in this paper are theories formulated in first order predicate logic.
All theories have a finite signature that contains identity. For simplicity
we shall assume that all our theories are formulated in a purely relational
way.

Definition 1.1. A relative interpretation k of a theory S into a theory
T is a pair 〈δ, F 〉 for which the following holds. The first component δ, is
a formula in the language of T with a single free variable. This formula is
used to specify the domain of our interpretation. The second component,
F , is a finite map that sends relation symbols R (including identity) from
the language of S, to formulas F (R) in the language of T . We demand for
all R that the free variables of R and F (R) are the same. Recursively we
define the translation ϕk of a formula ϕ in the language of S as follows.

• (R(~x))k = F (R)(~x)

• (ϕ ∧ ψ)k = ϕk ∧ ψk and likewise for other boolean connectives (this
implies ⊥k = ⊥)

• (∀x ϕ(x))k = ∀x (δ(x) → ϕk) and analogously for the existential
quantifier

Finally we demand that T ` ϕk for all axioms ϕ of S.

We can distinguish four different approaches to the study of inter-
pretability.

1. Use interpretations in a series of case studies to relate the proof the-
oretic strength of various theories to each other. This study can be
compared with other comparative methods like, for example, differ-
ent proof theoretic ordinals.

2. Interpretability induces a preorder on theories. This can be studied
as such or by dividing it out to a partial order. This leads to the
study of degrees or chapters. By identifying interpretations, we can
also consider the category of theories where the interpretations are
morphisms.

3. Study the general behavioral properties of interpretability and try to
find logics describing this. This leads to the study of interpretability
logics.
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4. Study the nature of interpretations, for example by relating it to
other meta-mathematical notions.

In this paper, the emphasis will be on the last three approaches. As the
approaches are rather closely related, also in this paper they will come
more or less intertwined. However, we have tried to set out some traces
in our road map to this paper for the reader with a special focus.

1.1 A road map to the paper

For the reader primarily interested in provability logics we recommend
the following track: Sections 1, 2 (without 2.4), 3, and 5.

The reader that is primarily interested in theorems on the nature of
interpretability can follow the following track (in this order): Sections 1,
3 (without 3.4), 2.4, and 4.

For the reader with an interest in interpretability and categories there
is the following track: Sections 1, 3 (without 3.4), and 4.2.

We assume the reader to be familiar with basic arithmetical theories
like Buss’ S1

2, EA (= I∆0 + exp), IΣ1, PA etcetera. (See for example
[Bus98] or [HP93]). We shall also work with arithmetical hierarchies as
the Σn-sentences and the bounded arithmetical hierarchies like the Σbn.

Moreover, we shall employ techniques and concepts necessary for the
arithmetization of syntax. Thus, we shall work with provability predicates
2U corresponding uniformly to arithmetical theories U .

We shall always write the formalized version of a concept in sans-
serif style. For example, proofU (p, ϕ) stands for the formalization of “p
is a U -proof of ϕ”, con(U) stands for the formalization of “U is a consis-
tent theory” and so forth. Occasionally we shall employ truth-predicates.
Again, [Bus98] and [HP93] are adequate references.

1.2 A short word on coding

There are many good reasons to switch to formalized interpretability for
our study. As we shall see, we can use formalized interpretability, as
in the way Gödel used formalized provability, to study a theory and its
limitations.

In a formalized setting it is straightforward to give a meaning to ex-
pressions involving iterated provability and interpretability statements.
Moreover, by formalization we get access to powerful reasoning like the
fixed-point lemma for arithmetic and so on.

Formalization calls for coding of syntax. At some places in this paper
we shall need estimates of codes of syntactical objects. Therefore it is
good to discuss the nature of the coding process we will employ. However
we shall not consider the implementation details of our coding.

We shall code strings over some finite alphabet A with cardinality a.
First we define an alphabetic order on A. Next we enumerate all finite
strings over A in the following way. First we enumerate all strings of
length 0, then of length 1, etcetera. For every n, we enumerate the strings
of length n in alphabetic order. The coding of a finite string over A will
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just be its ordinal number in this enumeration. We shall now see some
easy arithmetical properties of this coding. We shall often refrain from
distinguishing syntactical objects and their codes.

1. There are an many strings of length n.

2. There are an + an1 · · ·+ 1 = an+1−1
a−1

many strings of length ≤ n.

3. From (2) it follows that the code of a syntactical object of length n,

is O(a
n+1−1
a−1

) = O(an) big.

4. Conversely, the length of a syntactical object that has code ϕ is
O(|ϕ|) (logarithm of ϕ) big.

5. If ϕ and ψ are codes of syntactical objects, the concatenation ϕ ? ψ
of ϕ and ψ is O(ϕ · ψ) big. For, |ϕ ? ψ| = |ϕ| + |ψ|, whence by (3),
ϕ ? ψ ≈ a|ϕ|+|ψ| = a|ϕ| · a|ψ| = ϕ · ψ.

6. If ϕ and t are (codes of) syntactical objects, then ϕx(t) is O(ϕ|t|)
big. Here ϕx(t) denotes the syntactical object that results from ϕ
by replacing every (unbounded) occurrence of x by t. The length of
ϕ is about |ϕ|. In the worst case, these are all x-symbols. In this
case, the length of ϕx(t) is |ϕ| · |t| and thus ϕx(t) is O(a|ϕ|·|t|) =
O(t|ϕ|) = O(ϕ|t|) big.

We want to represent numbers by terms and then consider the code of the

term. It is not a good idea to represent a number n by

n times
︷ ︸︸ ︷

S . . . S 0. For, the
length of this object is n+1 whence its code is about 2n+1 and we would
like to avoid the use of exponentiation. In the setting of weaker arithmetics
it is common practice to use so-called efficient numerals. These numerals
are defined by recursion as follows. 0 = 0; 2·n = (SS0) · n and 2·n+ 1 =
S((SS0) · n). Clearly, these numerals implement the system of dyadic
notation.

1.3 Arithmetical theories

In this paper, we shall be mainly concerned with arithmetical theories.
In doing so, formalization of interpretability becomes a routine matter.
Moreover, it facilitates us to relate interpretability to other meta-mathematical
notions that typically use arithmetic.

We do not demand that our theories are formulated in the language of
arithmetic. Instead, we demand that some sufficiently strong fragment of
number theory should be embeddable, viz. interpretable in our theories.

1.3.1 Reasonable arithmetical theories

As we have just agreed, our theories should contain a sufficient amount
of arithmetic. Sufficient means here, enough to do coding and elemen-
tary arguments. On the other hand, we do not want to exclude many
interesting weaker theories by demanding too much arithmetic.

In Subsection 1.2 we have seen that a substitution operation on codes
of syntactical objects asks for a function of growth rate x|x|. Reasonable
arithmetical theories should thus also have such a function. In Buss’s S1

2
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this is the smash function ]. In the theory I∆0 + Ω1 this is the function
ω1(x) . In this paper we chose1 to work with S1

2.

Definition 1.2. We will call a pair 〈U, k〉 a numberized theory if k : U ¤
S12. A theory U is numberizable or arithmetical if for some j, 〈U, j〉 is a
numberized theory.

From now on, we shall only consider numberizable or numberized the-
ories. Often however, we will fix a numberization j and reason about the
theory 〈U, j〉 as if it were formulated in the language of arithmetic.

As we want to do arithmetization of syntax, our theories should be
coded in a simple way. We will assume that all our theories U have an
∃∆b

1-axiomatization. That is, there is some ∃∆b
1-formula axiomsU (x) with

- S1
2 ` axiomsU (ϕ) iff ϕ is an axiom of U .

Thus, the axiom set of U should be decidable in polynomial time. The
choice of ∃∆b

1-axiomatizations is also motivated by Lemma 1.3.
For already really weak theories we have Σ1-completeness. However,

proofs of Σ1-sentences σ are multi-exponentially big, that is, 2σn for some
n depending on σ. (See e.g. [HP93].)

However, for ∃Σb1-formulas we do have a completeness theorem (see
[Bus98]). From now on, we shall often write a sup-index to a quantifier
to specify the domain of quantification.

Lemma 1.3. If α(x) ∈ ∃Σb1, then there is some standard natural number
n such that

S1
2 ` ∀x [α(x)→ ∃ p<ωn1 (x) proofU (p, α(ẋ))].

This holds for any reasonable arithmetical theory U . Moreover, we have
also a formalized version of this statement.

S1
2 ` ∀

∃Σb1α ∃n 2S1
2
(∀x [α(x)→ ∃ p<ωn1 (x) proofU (p, α(ẋ))]).

1.3.2 Reflexive theories

Many meta-mathematical statements involve the notion of reflexivity. The
idea of a theory being reflexive is essentially that it proves the consistency
of all of its finite subtheories. Throughout literature we can find many
different variants of this notion. For stronger theories, all these notions
coincide. But for weaker theories, the differences are essential. We give
some notions of reflexivity.

1. ∀n U ` con(U [n]) where U [n] denotes the conjunction of the first n
axioms of U .

2. ∀n U ` con(U¹n) where con(U¹n) denotes that there is no proof of
falsity using only axioms of U with gödel number ≤ n.

1The choice of S12 is motivated as follows. Robinson’s arithmetic Q is too weak for some of
our arguments. On the other hand I∆0+Ω1 aka S2 is not known to be finitely axiomatizable.
However, with some care, we could have used I∆0 +Ω1 as well.
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3. ∀n U ` conn(U) where conn(U) denotes that there is no proof of
falsity with a proof p where p has the following properties. All non-
logical axioms of U that occur in p have Gödel number ≤ n. All
formulas ϕ in that occur in p have a logical complexity ρ(ϕ) ≤ n.
Here ρ is some complexity measure that basically counts the number
of quantifier alternations in ϕ. Important features of this ρ are that
for every n, there are truth predicates for formulas with complexity
n. Moreover, the ρ-measure of a formula should be more or less
(modulo some poly-time difference, see Remark 1.8) preserved under
translations. An example of such a ρ is given in [Vis93].

It is clear that (1) ⇒ (2) ⇒ (3). For the corresponding provability
notions, the implications reverse. In this paper, our notion of reflexivity
shall be the third one.

We shall write 2U,n for ¬conn(U + ¬ϕ) or ∃p proofU,n(p, ϕ). Here,
proofU,n(p, ϕ) denotes that p is a U -proof of ϕ with all axioms in p are
≤ n and for all formulas ψ that occur in p, we have ρ(ψ) ≤ n.

Remark 1.4. An inspection of the proof of provable Σ1-completeness
(Lemma 1.3) gives us some more information. The proof p that witnesses
the provability in U of some ∃Σb1-sentence α, can easily be taken cut-free.
Moreover, all axioms occurring in p are about as big as α. Thus, from α,
we get for some n (depending linearly on α) that proofU,n(p, α).

If we wish to emphasize the fact that our theories are not necessarily in
the language of arithmetic, but just can be numberized, our formulations
of reflexivity should be slightly changed. For example (3) will look like
j : U ¤ S1

2 + {conn(U) | n ∈ ω}. This also explains the prominent role of
the reflexivization functor 0(·) as studied in Subsection 4.2.

If U is a reflexive theory, we do not necessarily have any reflection
principles. That is, we do not have U ` 2V ϕ → ϕ for some natural
V ⊂ U and for some natural class of formulae ϕ. We do have, however, a
weak form of ∀Πb1-reflection. This is expressed in the following lemma.

Lemma 1.5. Let U be a reflexive theory. Then

T ` ∀∀Π
b
1π ∀n 2U∀x (2U,nπ(x)→ π(x)).

Proof. Reason in T and fix π and n. Let m be such that we have (see
Lemma 1.3 and Remark 1.4)

2U∀x (¬π(x)→ 2U,m¬π(x)).

Furthermore, let k := max{n,m}. Now, reason in U , fix some x and
assume 2U,nπ(x). Thus, clearly also 2U,kπ(x). If now ¬π(x), then also
2U,k¬π(x), whence 2U,k⊥. This contradicts the reflexivity, whence π(x).
As x was arbitrary we get ∀x (2U,nπ(x)→ π(x)). a

We note that this lemma also holds for the other notions of restricted
provability we introduced in this subsection.
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1.4 Interpretability in a weak meta theory

To formalize insights about interpretability in weak meta theories like
S12 we need to be very careful. Definitions of interpretability that are
unproblematically equivalent in a strong theory like, say, IΣ1 diverge in
weak theories. As we shall see, the major source of problems is the absence
of BΣ1.

Here BΣ1 is the so-called collection scheme for Σ1-formulae. Roughly,
BΣ1 says that the range of a Σ1-definable function on a finite inter-
val is again finite. A mathematical formulation is ∀x≤u ∃y σ(x, y) →
∃z ∀x≤u∃ y≤z σ(x, y) where σ(x, y) ∈ Σ1 may contain other variables
too. In this subsection, we study various divergent definitions of inter-
pretability.

We start by making an elementary observation on interpretations. Ba-
sically, the next definition and lemma say that interpretations transform
proofs into translated proofs.

Definition 1.6. Let k be a translation. By recursion on a proof p in
natural deduction we define the translation of p under k, we write pk. For
this purpose, we first define k(ϕ) for formulae ϕ to be2

∧

xi∈FV(ϕ) δ(xi)→

ϕk. Here FV(ϕ) denotes the set of free variables of ϕ. Clearly, this set
cannot contain more than |ϕ| elements, whence k(ϕ) will not be too big.
Obviously, for sentences ϕ, we have k(ϕ) = ϕk.

If p is just a single assumption ϕ, then pk is k(ϕ). The translation of
the proof constructions are defined precisely in such a way that we can
prove Lemma 1.7 below. For example, the translation of

ϕ ψ

ϕ ∧ ψ

will be

[
∧

xi∈FV(ϕ∧ψ) δ(xi)]1
∧

xi∈FV(ϕ) δ(xi)
∧

xi∈FV(ϕ) δ(xi)→ ϕk

ϕk
D

ψk

ϕk ∧ ψk
∧

xi∈FV(ϕ∧ψ) δ(xi)→ ϕk ∧ ψk
→ I, 1

where D is just a symmetric copy of the part above ϕk. We note that the
translation of the proof constructions is available3 in S1

2, as the number of
free variables in ϕ ∧ ψ is bounded by |ϕ ∧ ψ|.

Lemma 1.7. If p is a proof of a sentence ϕ with assumptions in some
set of sentences Γ, then for any translation k, pk is a proof of ϕk with
assumptions in Γk.

Proof. Note that the restriction on sentences is needed. For example

∀x ϕ(x) ∀x (ϕ(x)→ ψ(x))

ψ(x)

2To be really precise we should say that, for example, we let smaller xi come first in∧

xi∈FV(ϕ) δ(xi).
3More efficient translations on proofs are also available. However they are less uniform.
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Figure 1: Transitivity of interpretability

but
(∀x ϕ(x))k (∀x (ϕ(x)→ ψ(x)))k

δ(x)→ ψk(x)

and in general 0 (δ(x) → ψk) ↔ ψk. The lemma is proved by induction
on p. To account for formulas in the induction, we use the notion k(ϕ)
from Definition 1.6, which is tailored precisely to let the induction go
through. a

Remark 1.8. The proof translation leaves all the structure invariant.
Thus, there is a provably total (in S1

2) function f such that , if p is a
U, n-proof of ϕ, then pk is a proof of ϕk, where pk has the following
properties. All axioms in pk are ≤ f(n, k) and all formulas ψ in pk have
ρ(ψ) ≤ f(n, k).

There are various reasons to give, why we want the notion of inter-
pretability to be transitive, that is, S¤U whenever S¤T and T ¤U . The
obvious way of proving this would be by composing (doing the one after
the other) two interpretations. Thus, if we have j : S ¤ T and k : T ¤ U
we would like to have4 j ◦ k : S ¤ U .

If we try to perform this proof as depicted in Figure 1, at a certain
point we would like to collect the S-proofs p1, · · · , pm of the j-translated
T -axioms used in a proof of a k-translation of an axiom u of U , and take
the maximum of all such proofs. But to see that such a maximum exists,
we precisely need Σ1-collection.

However, it is desirable to also reason about interpretability in the
absence of BΣ1. A trick is needed to circumvent the problem of the
unprovability of transitivity (and many other elementary desiderata).

One way to solve the problem is by switching to a notion of inter-
pretability where the needed collection has been built in. This is the no-
tion of smooth interpretability as in Definition 1.9. In the presence of BΣ1

4A formal definition of j ◦ k is given in Section 2.1.
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j : U ¤sa V j : U ¤st V

j : U ¤t V

j : U ¤a V

j : U ¤st0 V

exp

BΣ1

In S1
2:

BΠ1

Figure 2: Versions of relative interpretability

this notion will coincide with the earlier defined notion of interpretability,
as Theorem 1.10 tells us.

Definition 1.9. We define the notions of axioms interpretability ¤a, the-
orems interpretability ¤t and smooth axioms interpretability ¤sa. For
completeness and academic perversion we also add the notions of weak
smooth theorems interpretability ¤st0 and smooth theorems interpretabil-
ity ¤st.

j : U ¤a V := ∀v ∃p (axiomsV (v)→ proofU (p, v
j))

j : U ¤t V := ∀ϕ∀p ∃p′ (proofV (p, ϕ)→ proofU (p
′, ϕj))

j : U ¤sa V := ∀x ∃y ∀ v≤x ∃ p≤y (axiomsV (v)→ proofU (p, v
j))

j : U ¤st0 V := ∀x ∃y ∀ϕ≤x ∀ p≤x ∃ p′≤y (proofV (p, ϕ)→ proofU (p
′, ϕj))

j : U ¤st V := ∀x ∃y ∀ϕ≤x ∃ p′≤y ∀p (proofV (p, ϕ)→ proofU (p
′, ϕj))

Theorem 1.10. In S1
2 we have all the arrows as depicted in Figure 2:

Versions of relative interpretability. The dotted arrows indicate that an
additional condition is needed; the condition written next to it.

Proof. We shall only comment on the arrows that are not completely triv-
ial.

• T ` j : U ¤a V → j : U ¤sa V , if T ` BΣ1. So, reason in T and
suppose ∀v ∃p (axiomsV (v)→ proofU (p, v

j)). If we fix some x, we get
∀ v≤x ∃p (axiomsV (v) → proofU (p, v

j)). By BΣ1 we get the required
∃y ∀ v≤x ∃ p≤y (axiomsV (v) → proofU (v

j)). It is not clear if T ` BΣ1 is
a necessary condition.

• S1
2 6` j : U ¤a V → j : U ¤t V . A counter example is given in [Vis91].

• T ` j : U ¤t V → j : U ¤sa V , if T ` exp. If T is reflexive,
we get by Corollary 4.9 that ` U ¤t V ↔ U ¤sa V . However, different
interpretations are used to witness the different notions of interpretability
in this case. If T ` exp, we reason as follows. We reason in T and suppose
that ∀ϕ∀p ∃p′ (proofV (p, ϕ)→ proofU (p

′, ϕj)). We wish to see

∀x ∃y ∀ v≤x ∃ p≤y (axiomsV (v)→ proofU (v
j)). (1)
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So, we pick x arbitrarily and consider5 ν :=
∧

axiomsV (vi)∧vi≤x

vi. No-

tice that in the worst case, for all y ≤ x, we have axiomsV (y), whence the
length of ν can be bounded by x · |x|. Thus, ν itself can be bounded by xx,
which exists whenever T ` exp. Clearly, ∃p proofV (p, ν) whence by our
assumption ∃p′ proofU (p

′, νj). In a uniform way, with just a slightly larger
proof p′′, every vi

j can be extracted from the proof p′ of νj . We may take
this p′′ ≈ y to obtain (1). It is not clear if T ` exp is a necessary condition.

• S1
2 ` j : U ¤sa V → j : U ¤st0 V . So, we wish to see that

∀x ∃y ∀ϕ≤x ∀ p≤x ∃ p′≤y (proofV (p, ϕ)→ proofU (p
′, ϕj))

from the assumption that j : U ¤sa V . So, we pick x arbitrarily. If now
for some p ≤ x we have proofV (p, ϕ), then clearly ϕ ≤ x and all axioms vi
of V that occur in p are ≤ x. By our assumption, we can find a y0 such
that we can find proofs pi ≤ y0 for all the vi

j . Now, with some sloppy
notation, (pj)vij (pi) is a proof for ϕj . This proof can be estimated (again
with sloppy notations).

(pj)vij (pi) ≤ (pj)vij (y0) ≤ (pj)|y0| ≤ (xj)|y0|

The latter bound is clearly present in S1
2.

• T ` j : U ¤st0 V → j : U ¤st V if T ` BΠ1. Suppose

∀x ∃y ∀ϕ≤x ∀ p≤x ∃ p′≤y (proofV (p, ϕ)→ proofU (p
′, ϕj)). (2)

We wish to see

∀x ∃y ∀ϕ≤x ∃ p′≤y ∀p (proofV (p, ϕ)→ proofU (p
′, ϕj)). (3)

Consider x. Now,

∀ϕ≤x ∃p(2V ϕ→ proofV (p, ϕ)).

As 2V ϕ→ proofV (p, ϕ) is Π1, we get by BΠ1 that

∃y0 ∀ϕ≤x ∃ p≤y0 (2V ϕ→ proofV (p, ϕ)).

Now we can take this y0 = x and apply 2 to obtain some y such that

∀ϕ≤y0 ∀ p≤y0 ∃ p
′≤y (proofV (p, ϕ)→ proofU (p

′, ϕj)).

Clearly, this y is also sufficient for 3. It is not clear if T ` BΠ1 is a
necessary condition. a

We note that the notion of smooth theorems interpretability is not
really a good one. For it seems to say more on the nature of a theory
than on the nature of interpretability. For example, at first sight we seem
to need U ` BΠ1 in order to obtain the desirable U ` id : U ¤st U as the
most straightforward proof of it goes as follows.

5To see that ν exists, we seem to also use some collection; we collect all the vi ≤ x for which
axiomsV (vi). However, it is not hard to see that we can consider ν also without collection.
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We pick some x and consider all the ϕ ≤ x for which ∃p (proofU (p, ϕ)∧
∀ p′≤p ¬proofU (p

′, ϕ)). By BΠ1 we can pick the largest such p to serve as
a bound. But at BΠ1, all the notions of interpretability coincide (BΠ1 `
BΣ1).

Finally, we note that we have many admissible rules from one notion
of interpretability to another. For example, by Buss’s theorem on the
provably total recursive functions of S1

2, it is not hard to see that

S1
2 ` j : U ¤a V ⇒ S1

2 ` j : U ¤t V.

In the rest of the paper, we shall at most places no longer write subscripts
to the ¤’s. Our reading convention is then that we take that notion of
interpretability that is best to perform the argument. Often this is just
smooth interpretability ¤s, which from now on is the name for ¤sa.

Moreover, in [Vis91] some sort of conservation result concerning ¤a
and ¤s is proved. For a considerable class of formulas ϕ and theories T ,
and for a considerable class of arguments we have that T ` ϕa ⇒ T `
ϕs. Here ϕa denotes the formula ϕ using the notion ¤a and likewise for
ϕs. Thus indeed, in many cases a sharp distinction between the notions
involved is not needed.

1.5 Interpretations and models

We can view interpretations j : U ¤ V as a way of defining uniformly a
model N of V inside a model M of U . Interpretations in foundational
papers mostly bear the guise of a uniform model construction.

Definition 1.11. Let j : U ¤ V with j = 〈δ, F 〉. If M |= U , we denote
by M j the following model.

• |M j | = {x ∈ |M | |M |= δ(x)}/ ≡, where a ≡ b iff M |= a =j b.

• M j |= R(α1, . . . , αn) iff M |= F (R)(a1, . . . , an), for some a1 ∈ α1,
. . . , an ∈ αn.

The fact that j : U ¤V is now reflected in the observation that, whenever
M |= U , then M j |= V .

On many occasions viewing interpretations as uniform model construc-
tions provides the right heuristics.

2 Interpretability logics

One possible way to study interpretability is by means of modal logics.
With such an approach we can capture a large part of the structural
behavior of interpretations. Let us consider such a structural rule.

For any theories U , V and W we have that, if U ¤V and V ¤W , then
also U ¤W . It is not hard to catch this in a modal logic. But modal
logics talk about propositions and interpretability talks about theories.

It does not seem to be a good idea to directly translate propositions to
theories. For what does the negation of a theory mean? And how to read
implication? And how to translate modal statements involving iterated
modalities?

12



The usual way to relate modal logics to interpretability is to translate
propositional variables to arithmetical sentences that are added to some
base theory T . As we shall see, in doing so we get quite an expressive
formalism in which the logic of provability is naturally embedded.

We shall work with a modal language containing two modalities, a
unary modality 2 and a binary modality ¤. As always, we shall use 3A
as short for ¬2¬A. Apart from propositional variables we also have two
constants > and ⊥ in our language.

In this paper we thus use the same symbol ¤ both for formalized
interpretability and for our binary modal operator. The same holds for
2. But the context will always decide on how to read the symbol.

Definition 2.1. An arithmetical T -realization is a map ∗ sending propo-
sitional variables p to arithmetical sentences p∗. The realization ∗ is ex-
tended to a map that is defined on all modal formulae as follows.

It is defined to commute with all boolean connectives. Moreover
(A ¤ B)∗ = (T ∪ {A∗}) ¤ (T ∪ {B∗}) (we shall write A∗ ¤T B

∗) and
(2A)∗ = 2TA

∗. Here ¤T and 2T denote the formulas expressing for-
malized interpretability and formalized provability respectively, over T ,
as defined in Section 1.

We shall reserve the symbol ∗ to range over T -realizations. Moreover,
we will speak just of realizations if the T is clear from the context. In
the literature realizations are also referred to as interpretations or transla-
tions. As these words are already reserved for other notions in our paper,
we prefer to talk of realizations.

Definition 2.2. A modal formula A is an interpretability principle of a
theory T , if ∀ ∗ T ` A∗. The interpretability logic of a theory T , we write
IL(T), is the set of all the interpretability principles of T or a logic that
generates it.

2.1 The logic IL

The logic IL that we shall present below, is a sort of core logic. It is
contained in all other interpretability logics that we shall consider. We
shall see that IL ⊂ IL(T) for any reasonable T .

Definition 2.3. The logic IL is the smallest set of formulas being closed
under the rules of Necessitation and of Modus Ponens, that contains
all tautological formulas and all instantiations of the following axiom
schemata.

L1 2(A→ B)→ (2A→ 2B)

L2 2A→ 22A

L3 2(2A→ A)→ 2A

J1 2(A→ B)→ A¤B

J2 (A¤B) ∧ (B ¤ C)→ A¤ C

J3 (A¤ C) ∧ (B ¤ C)→ A ∨B ¤ C

J4 A¤B → (3A→ 3B)

J5 3A¤A

13



Some elementary reasoning in IL is captured in the following lemma.

Lemma 2.4.

1. IL ` 2A↔ ¬A¤⊥

2. IL ` A¤A ∧ 2¬A

3. IL ` A ∨3A¤A

Proof. All of these statements have very easy proofs. We give an informal
proof of the second statement. Reason in IL. It is easy to see A ¤ (A ∧
2¬A) ∨ (A ∧ 3A). By L3 we get 3A → 3(A ∧ 2¬A). Thus, A ∧ 3A ¤
3(A ∧ 2¬A) and by J5 we get 3(A ∧ 2¬A) ¤ A ∧ 2¬A. As certainly
A∧2¬A¤A∧2¬A we have that (A∧2¬A)∨ (A∧3A)¤A∧2¬A and
the result follows from transitivity of ¤. a

We shall now briefly argue that all the axioms of IL are indeed sound.
That is, we shall see that they are provable in any theory under any
realization.

The principles L1-L3 are the familiar provability conditions. They are
well known to hold (be sound) in S1

2. The principle J1 is easy to see by
taking the identity translation.

To see the soundness of J2, we should describe how we can code the
composition of two interpretations into a single interpretation. Let k :
U ¤V and j : V ¤W with k := 〈δk, Fk〉 and j := 〈δj , Fj〉. We define k ◦ j
to be 〈δk◦j , Fk◦j〉 with

• δk◦j := δk ∧ (δj)
k,

• Fk◦j(R) := (Fj(R))
k.

By an easy formula induction, we now see that S1
2 ` (ϕj)

k
↔ ϕk◦j and we

are done.
To see the soundness of J3, we reason as follows. We suppose that

j : α ¤T γ and k : β ¤T γ. We need to construct an interpretation j ∨ k
that uses the translation of j in case α and the translation of k otherwise.
We thus define

• δj∨k := (δj ∧ α) ∨ (δk ∧ ¬α),

• Fj∨k(R) := (Fj(R) ∧ α) ∨ (Fk(R) ∧ ¬α).

We note that j∨k can be very different from k∨j. Again by easy formula
induction we now see that S1

2 ` ϕ
j∨k ↔ (α ∧ ϕj) ∨ (¬α ∧ ϕk) and we are

done.
J4 is very easy. For, if j : α¤T β, we certainly have that 2T (α→ βj).

If now 2T¬β then 2T (α→ ¬β
j) and we get 2T¬α.

The only principle of IL that needs some serious argument is J5. We
shall discuss this in the next subsection.

2.2 The formalized henkin construction

In proving the soundness of J5, thinking about interpretability in terms
of uniform model constructions yields the right heuristics. If we know the
consistency of T + α, we should be able to construct, in a uniform way, a
model of T+α. This uniform construction is just the henkin construction.
In a more general setting, we have the following theorem.
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Theorem 2.5. If U ` con(V ), then U ¤ V .

A proof would closely follow the henkin construction. Thus, first the
language of V is extended so that it contains a witness c∃xϕ(x) for every
existential sentence ∃x ϕ(x). Then we can extend V to a maximal con-
sistent V ′ in the enriched language, containing all sentences of the form
∃xϕ(x)→ ϕ(c∃xϕ(x)). This V

′ can be seen as a term model with a corre-
sponding truth predicate. Clearly, if V ` ϕ then ϕ ∈ V ′. It is not hard to
see that V ′ is representable (close inspection yields a ∆2-representation)
in U .

At first sight the argument uses quite some induction in extending V
to V ′. Miraculously enough, the whole argument can be adapted to S1

2.
The trick consists in replacing the use of induction by employing definable
cuts as is explained in Section 3. We get the following theorem.

Theorem 2.6. For any numberizable theories T and U , we have that for
any V ,

T ` 2Ucon(V )→ ∃k (k : U ¤ V & ∀ϕ 2U (2V ϕ→ ϕk)).

Proof. A proof can be found in [Vis91]. Actually something stronger is
proved there. Namely, that for some standard number m we have

∀ϕ∃ p≤ωm1 (ϕ) proofU (p,2V ϕ→ ϕk).

a

2.3 More logics

The interpretability logic IL is a sort of basic interpretability logic. All
other interpretability logics we consider shall be extensions with other
principles of it. Principles we shall consider in this paper are amongst the
following.

W := A¤B → A¤B ∧ 2¬A
M0 := A¤B → 3A ∧ 2C ¤B ∧ 2C
W∗ := A¤B → B ∧ 2C ¤B ∧ 2C ∧ 2¬A
P0 := A¤3B → 2(A¤B)
R := A¤B → ¬(A¤ ¬C)¤B ∧ 2C
M := A¤B → A ∧ 2C ¤B ∧ 2C
PR := A¤B → 2(3A→ 3B)
P := A¤B → 2(A¤B)

If X is a set of axiom schemata we will denote by ILX the logic that arises
by adding the axiom schemata in X to IL. Thus, ILX is the smallest set of
formulas being closed under the rules of Modus Ponens and Necessitation
and containing all tautologies and all instantiations of the axiom schemata
of IL (L1-J5) and of the axiom schemata of X.

A central theme in the study of formalized interpretability is to deter-
mine IL(T) for a specific T . For two classes of theories, IL(T) is known.

Definition 2.7. A theory T is essentially reflexive if all of its finite sen-
tential extensions are reflexive.
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Theorem 2.8 (Berarducci [Ber90], Shavrukov [Sha88]). If T is an
essentially reflexive theory, then IL(T) = ILM.

Theorem 2.9 (Visser [Vis90a]). If T is finitely axiomatizable, then,
IL(T) = ILP.

2.4 Essentially reflexive theories

In Definition 2.7 we stressed that we only considered sentential extensions
of T . We can also consider extensions with formulas. This gives rise to
the notion of essentially globally reflexive theories. We can restate the
definition as follows.

∀ϕ ∀n T ` ϕ(x)→ conn(T + ϕ(ẋ))

In this subsection we shall compare the two notions of essential reflexivity.

Lemma 2.10. If T is an essentially globally reflexive theory extending6

EA, then T satisfies full induction.

Proof. (sketch) We will show that T satisfies the full induction rule, from
which the result follows. So, suppose that

T ` ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1)).

Then, for some m,

T ` 2T,m(ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1))).

Thus, also

T ` ∀x 2T,m(ϕ(x)→ ϕ(x+ 1))

can be obtained uniformly in x.
All these proofs can be glued together to obtain T ` ∀x 2T,mϕ(x),

whence by essential reflexivity we get T ` ∀x ϕ(x). a

Note that the same argument only yields that T is closed under the
Π1-induction rule if T is just reflexive. But this is a really weak closure
condition.

The use of global reflexivity was really needed. It is known that Lemma
2.10 does not hold for essentially locally reflexive theories. Here follows a
short argument that is attributed to Feferman.

If T is any theory in the language of arithmetic, then U := T ∪ {ϕ→
con(ϕ) | ϕ a sentence } has two nice properties, as is readily verified.
First, U is essentially locally reflexive, and secondly, T+TrueΠ1 ⊇ U . Here
TrueΠ1 denotes the set of all true (in the standard model) Π1-sentences.

To see that U is essentially locally reflexive, we see that for any sen-
tence ψ, and for any number n we have U ` ψ → conn(U + ψ). For this, it
is sufficient to show that U ` ψ → con(ψ ∧ U [n]) where U [n] denotes the

6It is not hard to extend the argument to S1
2, by using cuts, efficient numerals and different

induction principles.
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conjunction of the first n axioms. By definition ψ∧U [n]→ con(ψ ∧ U [n])
is an axiom of U , whence U ` ψ → con(ψ ∧ U [n]).

To see that U is included in T + TrueΠ1 , we need to see that any
axiom of the form ϕ → con(ϕ) is. But, either con(ϕ) ∈ TrueΠ1 and
T + TrueΠ1 ` ϕ → con(ϕ), or con(ϕ) is not true. In that case we have
` ¬ϕ, and consequently ` ϕ→ con(ϕ).

Thus, for example EA+{ϕ→ con(ϕ) | ϕ a sentence } ⊆ EA+TrueΠ1 .
It is well known that no Σ3-axiomatized theory can prove IΣ1 (see for
example Fact 2.3 from [Joo03]). But EA+TrueΠ1 has a Π2-axiomatization,
thus EA + {ϕ→ con(ϕ) | ϕ a sentence } 0 IΣ1.

Admittedly, theories like the U above are a bit artificial. All natural
theories that are essentially reflexive are globally so and hence by Lemma
2.10 satisfy full induction.

3 Cuts and induction

Inductive reasoning is a central feature of everyday mathematical practice.
We are so used to it, that it enters a proof almost unnoticed. It is when
one works with weak theories and in the absence of sufficient induction,
that its all pervading nature is best felt.

A main tool to compensate for the lack of induction are the so-called
definable cuts. They are definable initial segments of the natural num-
bers that posses some desirable properties that we could not infer for all
numbers to hold by means of induction.

The idea is really simple. So, if we can derive ϕ(0) ∧ ∀x (ϕ(x) →
ϕ(x + 1)) and do not have access to an induction axiom for ϕ, we just
consider J(x) : ∀ y≤x ϕ(y). Clearly J now defines an initial segment
on which ϕ holds. As we shall see, for a lot of reasoning we can restrict
ourselves to initial segments rather than quantifying over all numbers.

3.1 Basic properties of cuts

Throughout the literature one can find some variations on the definition
of a cut. At some places, a cut is only supposed to be an initial segment of
the natural numbers. At other places some additional closure properties
are demanded. By a well known technique due to Solovay (see for example
[HP93]) any definable initial segment can be shortened in a definable way,
so that it has a lot of desirable closure properties. Therefore, and as
we almost always need the closure properties, we include them in our
definition.

Definition 3.1. A definable U -cut is a formula J(x) with only x free, for
which we have the following.

1. U ` J(0) ∧ ∀x (J(x)→ J(x+ 1))

2. U ` J(x) ∧ y≤x→ J(y)

3. U ` J(x) ∧ J(y)→ J(x+ y) ∧ J(x · y)

4. U ` J(x)→ J(ω1(x))

17



We shall sometimes also write x ∈ J instead of J(x). A first fun-
damental insight about cuts is the principle of outside big, inside small.
Although not every number x is in J , we can find for every x a proof px
that witnesses x ∈ J .

Lemma 3.2. Let T and U be reasonable arithmetical theories and let J
be a U-cut. We have that

T ` ∀x 2UJ(x).

Actually, we can have the quantifier over all cuts within the theory T , that
is

T ` ∀U-cutJ ∀x 2UJ(x).

Proof. (sketch) Let us start by making the quantifier ∃U-CutJ a bit more
precise. By ∃U-CutJ we shall mean ∃J 2UCut(J). Here Cut(J) is the
definable function that sends the code of a formula χ with one free variable
to the code of the formula that expresses that χ defines a cut.

For a number a, we start with the standard proof that J(0). This
proof is combined with a−1 many instantiations of the standard proof of
∀x (J(x) → J(x + 1)). In the case of weaker theories, we have to switch
to efficient numerals to keep the bound of the proof within range. a

Remark 3.3. The proof sketch actually tells us that (provably in S1
2) for

every U -cut J , there is an n ∈ ω such that ∀x 2U,nJ(x).

Lemma 3.4. Cuts are provably closed under terms, that is

T ` ∀U-cutJ ∀termt 2U∀ ~x∈J t(~x) ∈ J.

Proof. By an easy induction on terms, fixing some U -cut J . Prima facie
this looks like a Σ1-induction but it is easy to see that the proofs have
poly-time (in t) bounds, whence the induction is ∆0(ω1). a

As all U -cuts are closed under ω1(x) , simply relativizing all quantors to a
cut is an example of an interpretation of S1

2 in U . We shall always denote
both the cut and the interpretation that it defines by the same symbol.

3.2 Cuts and the henkin construction

As cuts have nice closure properties, many arguments can be performed
within that cut. The numbers in the cut will so to say, play the role of
the normal numbers. It turns out that the whole henkin argument can be
carried out using only the consistency on a cut.

Theorem 3.5. We have Theorem 2.6 also in the following form.

T ` 2UconI(V )→ ∃k (k : U ¤ V & ∀ϕ 2U (2V ϕ→ ϕk))

Here I is any (possibly non-standard) U-cut that is closed under ω1(x) .

Proof. By close inspection of the proof of Theorem 2.6. All operations on
hypothetical proofs p, can be bounded by some ωk1 (p) for some standard
k. As I is closed under ω1(x) , all the bounds remain within I. a
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We conclude this subsection with two asides, closely related to the
henkin construction.

Lemma 3.6. Let U contain S1
2. We have that

U ` con(Pred).

Here con(Pred) is a natural formalization of the statement that predicate
logic is consistent.

Proof. By defining a simple (one-point) model within S1
2. a

Remark 3.7. If U has full induction, then it holds that U ¤ V iff. V is
interpretable in U by some interpretation that maps identity to identity.

Proof. Suppose j : U¤V with j = 〈δ, F 〉. We can define j ′ := 〈δ′, F ′〉 with
δ′(x) := δ(x) ∧ ∀ y<x (δ(y) → y 6=jx). F ′ agrees with F on all symbols
except that it maps identity to identity. By the minimal number principle
we can prove ∀x (δ(x) → ∃x′ (x′=jx) ∧ δ′(x)), and thus ∀~x (δ′(~x) →

(ϕj(~x)↔ ϕj
′

(~x))) for all formulae ϕ. a

It is not the case that the implication in Remark 3.7 can be reversed.
For, if U is reflexive, contains I∆2 and U ¤ V , the following reasoning
can be performed. By reflexivity of U (and the totality of exp), we get by
Lemma 4.2 of the Orey-Hájek characterization that ∀x 2Ucon(V, x). We
can now perform the henkin construction (Lemma 4.1). This yields an
interpretation where all symbols of V get a ∆2-translation. Thus, by I∆2

we can prove ∀x (δ(x)→ ∃x′ (x′=jx)∧δ′(x)) and obtain an interpretation
that maps identity to identity. There exist plenty of reflexive extensions
of I∆2 that do not contain full induction. An example is Σ3-IR.

3.3 Pudlák’s lemma

Pudlák’s lemma is central to many arguments in the field of interpretabil-
ity logics. It provides a means to compare a model M of U and its
internally defined model M j of V if j : U ¤ V . If U has full induction,
this comparison is fairly easy.

Theorem 3.8. Suppose j : U ¤ V and U has full induction. Let M be a
model of U . We have that M ⊆e M

j via a definable embedding.

Proof. (sketch) If U has full induction and j : U ¤ V , we may by Remark
3.7 actually assume that j maps identity in V to identity in U . Thus, we
can define the following function.

f :=

{
0 7→ 0j

x+ 1 7→ f(x)+j1j

Now, by induction, f can be proved to be total. Note that full in-
duction is needed here, as we have a-priori no bound on the complexity
of 0j and +j . Moreover, it can be proved that f(a + b) = f(a)+jf(b),
f(a ·b) = f(a) ·jf(b) and that y≤jf(b)→ ∃ a<b f(a) = y. In other words,
that f is an isomorphism between its domain and its codomain and the
codomain is an initial segment of M j . a
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If U does not have full induction, a comparison between M and M j is
given by Pudlák’s lemma, first explicitly mentioned in [Pud85]. Roughly,
Pudlák’s lemma says that in the general case, we can find a definable U -cut
I of M and a definable embedding f : I −→M j such that f [I] ⊆e M

j .
In formulating the statement we have to be careful as we can no longer

assume that identity is mapped to identity. A precise formulation of
Pudlák’s lemma in terms of an isomorphism between two initial segments
can for example be found in [JV00]. We have chosen here to formulate and
prove the most general syntactic consequence of Pudlák’s lemma, namely
that I and f [I], as substructures of M and M j respectively, make true
the same ∆0-formulas.

Lemma 3.9 (Pudlák’s Lemma). In the proof of the lemma we shall
make the quantifier ∃j,J-functionh explicit. It basically means that h defines a
function from a cut J to the =j-equivalence classes of the numbers defined
by the interpretation j. The lemma can now be stated as follows.

T ` j : U ¤ V → ∃U-CutJ ∃j,J-functionh ∀∆0ϕ 2U∀ ~x ∈ J (ϕj(h(~x))↔ ϕ(~x))

Moreover, the h and J can be obtained uniformly from j by a function
that is provably total in S1

2.

A detailed proof of Pudlák’s lemma is given in Appendix B. If j is an
interpretation with j : α ¤ β, we shall sometimes call the corresponding
isomorphic cut that is given by Lemma 3.9, the Pudlák cut of j and denote
it by the corresponding upper case letter J .

3.4 Cuts and interpretability logics

In a modal setting, facts about cuts are reflected in the following way.

(→)J 2
JA→ 2A (∀)

LJ
1 2

J(A→ B)→ (2JA→ 2
JB) (∀)

LJ
2 2

IA→ 2
I
2
JA (∀∀)

LJ
3 2

J(2IA→ A)→ 2
JA (∀∀)

JJ
5 3

IA¤A (∀)
MJ A¤B → A ∧ 2JC ¤B ∧ 2C (∃)
NecJ ` A/ ` 2JA (∀)

It might be desirable to add some simple operations on cuts to the modal
language like I ⊆ J , I ∩ J and I ∪ J . Like this, we get for example the
following principle.

2
J(A→ B)→ (2IA→ 2

I∪JB) (∀∀)

It is not hard to see that all the principles mentioned above indeed hold in
all numberized theories. The principle (→)J is a triviality; LJ

1 reflects that
concatenation of proofs in a cut, remains within this cut as concatenation
is approximately multiplication; LJ

2 is Lemma 3.10; LJ
3 is Löb’s theorem

with cuts, as proved in Lemma 3.11; JJ
5 follows from Theorem 3.5; MJ is

Lemma 3.12. Also NecJ is easy to see. If α is provable, it has a standard
proof, and standard proofs are provably in any cut.
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Lemma 3.10. For any U-cuts I and J we have that T ` 2IUα→ 2
I
U2

J
Uα.

Proof. Reason in T and assume that proofU (p, α) for some p ∈ I. As
proofU (p, α) ∈ ∃Σ

b
1, by Lemma 1.3 we get for some p′ that proofU (p

′, proofU (p, α)).
As I is closed under ω1, we see that actually p

′ ∈ I, whence 2IUproofU (α).
Lemma 3.2 now gives us the desired 2IU2

J
Uα. a

Lemma 3.11. For any U-cuts I and J we have that T ` 2JU (2
I
Uα →

α)→ 2
J
Uα.

Proof. The lemma really just boils down to copying the standard proof
of Löb’s theorem making some some minor adaptations. In the proof we
shall omit the subscript U to the boxes.

Thus, let F be a fixed point of the equation F ↔ (2IF → α). By ap-
plying twice NecJ on the interesting side of the bi-implication, we arrive at
2
J
2
I(F → (2IF → α)). We now reason within T using our assumption

A : 2J(2Iα→ α) as follows.

2
J
2
I(F → (2IF → α)) → 2

J(2IF → (2I2IF → 2
Iα)) by LJ

2

→ 2
J(2IF → 2

Iα) by A
→ 2

J(2IF → α) (∗)
→ 2

JF by LJ
2

→ 2
J
2
IF by (∗)

→ 2
Jα

a

Lemma 3.12. For any α, β and γ we have that T ` α ¤ β → ∃J (α ∧
2
Jγ ¤ β ∧ 2γ).

Proof. This is a direct consequence of Pudlák’s lemma. So, we suppose
j : α¤β and consider the corresponding (T+α)-cut J and the j, J-function
h that are given by Lemma 3.9. Now, as proofT (p, γ) ∈ ∆0, we get that
2T+α∀ p∈J (proofT (p, γ)↔ (proofT (h(p), γ))

j) and thus certainly

2T+α(2
Jγ → (2γ)j). (4)

It is now easy to see that j : T + α ¤ T + β. For, if 2T+β+2γϕ, we get
2T+β2γ → ϕ, whence by our assumption 2T+α(2γ → ϕ)j , i.e., 2T+α((2γ)

j →
ϕj). By (4) we now get the required 2T+α+2Jγϕ

j . a

With the modal principles we have given here, many interesting facts
can be derived. With A ≡ B we shall denote that A and B are equi-
interpretable. That is, (A¤B) & (B ¤A).

Lemma 3.13. For any I and J , we have A ≡ A ∧ 2I¬A ≡ A ∨3JA.

Proof. Just copy the proofs from IL, replacing some regular principles
with the new principles relativized to a cut. a

Lemma 3.14. For any J we have ¬(A¤ ¬C)→ 3(A ∧ 2JC).

Proof. By contraposition we get that (sloppy notation) 2(A→ 3
J¬C)→

A¤3J¬C ¤ ¬C. a
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4 Characterizations of interpretability

In this section we shall relate the notion of relative interpretability to other
notions, familiar in the context of meta mathematics, like consistency
assertions and Π1-conservativity. Typically, these notions are formulated
using arithmetic. Thus, our theories should be related to arithmetic too.
In this section we employ two ways of relating our original theory U to
arithmetic.

In the first subsection we do so by fixing some interpretation (number-
ization) j of S1

2 in U . In the second subsection we use a map 0(·) assigning
arithmetical theories 0U to arbitrary theories U .

In Subsection 4.1 we are mainly concerned with the so-called Orey-
Hájek characterizations of interpretability. We give detailed proofs and
study the conditions needed in them. We shall work with theories as if
they were formulated in the language of arithmetic. That is, we consider
theories U with a fixed numberization n : U ¤ S1

2.
A disadvantage of doing so is clearly that our statements may be some-

how misleading; when we think of e.g. ZFC we do not like to think of it
as coming with a fixed numberization.

On the other hand, there is the advantage of perspicuity and readabil-
ity. For example, our notion of Π1-conservativity refers to arithmetical
Π1-sentences and thus makes explicit use of some fixed interpretation.

In Subsection 4.2 we consider our map 0U and study it as a functor
between categories. In doing so, many characterizations get a more elegant
formulation and proof. Our results have a direct bearing on the categories
we study.

Finally, in Subsection 4.3 we give a model theoretic characterization
of interpretability.

4.1 The Orey-Hájek characterizations

We consider the diagram from Figure 3. We shall comment on all the
arrows in the diagram.

Lemma 4.1. In S1
2 we can prove ∀n U ` conn(V )⇒ U ¤ V .

Proof. The only requirement for this implication to hold, is that U `
con(Pred). But, by our assumptions on U and by Lemma 3.6 this is
automatically satisfied.

Let us first give the informal proof. Thus, let axiomsV (x) be the for-
mula that defines the axiom set of V .

We now apply a trick due to Feferman and consider the theory V ′

that consists of those axioms of V up to which we have evidence for their
consistency. Thus, axiomsV ′(x) := axiomsV (x) ∧ conx(V ).

We shall now prove that U ¤ V in two steps. First, we will see that

U ` con(V ′). (5)

Thus, by Theorem 2.5 we get that U ¤ V ′. Second, we shall see that

V = V ′. (6)
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U ¤ V

∀
∀Πb1π (2V π → 2Uπ)

∀n U ` conn(V )4.1

4.2

4.34.5 4.44.6

Figure 3: Characterizations of interpretability

To see (5), we reason in U , and assume for a contradiction that
proofV ′(p,⊥) for some proof p. We consider the largest axiom v that
occurs in p. By assumption we have (in U) that axiomsV ′(v) whence
conv(V ). But, as clearly V ′ ⊆ V , we see that p is also a V -proof. We can
now obtain a cut-free proof p′ of ⊥. Clearly proofV,v(p

′,⊥) and we have
our contradiction.

If V ′ is empty, we can not consider v. But in this case, con(V ′) ↔
con(Pred), and by assumption, U ` con(Pred).

We shall now see (6). Clearly N |= axiomsV ′(v)→ axiomsV (v) for any
v ∈ N. To see that the converse also holds, we reason as follows.

Suppose N |= axiomsV (v). By assumption U ` conv(V ), whence
conv(V ) holds on any model M of U . We now observe that N is an
initial segment of (the numbers of) any model M of U , that is,

N ⊆e M. (7)

As M |= conv(V ) and as conv(V ) is a Π1-sentence, we see that also N |=
conv(V ). By assumption we had N |= axiomsV (v), thus we get that N |=
axiomsV ′(v). We conclude that

N |= axiomsV (x)↔ axiomsV ′(x) (8)

whence, that V = V ′. As U ` con(V ′), we get by Theorem 2.5 that
U ¤ V ′. We may thus infer the required U ¤ V .
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It is not possible to directly formalize the informal proof. At (8) we
concluded that V = V ′. This actually uses some form of Π1-reflection
which is manifested in (7). The lack of reflection in the formal environ-
ment will be compensated by another sort of reflection, as formulated in
Theorem 2.6.

Moreover, to see (5), we had to use a cut elimination. To avoid this,
we shall need a sharper version of Feferman’s trick.

Let us now start with the formal proof sketch. We shall reason in
U . Without any induction we conclude ∀x (conx(V ) → conx+1(V )) or
∃x (conx(V )∧2V,x+1⊥). In both cases we shall sketch a henkin construc-
tion.

If ∀x (conx(V )→ conx+1(V )) and also con0(V ), we can find a cut J(x)
with J(x)→ conx(V ). We now consider the following non-standard proof
predicate.

2
∗
Wϕ := ∃x∈J 2W,xϕ

We note that we have con∗(V ), where con∗(V ) of course denotes ¬∃x∈J 2V,x⊥.
As always, we extend the language on J by adding witnesses and define a
series of theories in the usual way. That is, by adding more and more sen-
tences (in J) to our theories while staying consistent (in our non-standard
sense).

V = V0 ⊆ V1 ⊆ V2 ⊆ · · ·with con∗(Vi) (9)

We note that 2∗Viϕ and 2∗Vi¬ϕ is not possible, and that for ϕ ∈ J we
can not have con∗(ϕ ∧ ¬ϕ). These observations seem to be too trivial to
make, but actually many a non standard proof predicate encountered in
the literature does prove the consistency of inconsistent theories.

As always, the sequence (9) defines a cut I ⊆ J , that induces a henkin
set W and we can relate our required interpretation k to this henkin set
as was, for example, done in [Vis91].

We now consider the case that for some fixed b we have conb(V ) ∧
2V,b+1⊥. We note that we can see the uniqueness of this b without using
any substantial induction. Basically, we shall now do the same construc-
tion as before only that we now possibly stop at b.

For example the cut J(x) will now be replaced by x ≤ b. Thus, we
may end up with a truncated henkin set W . But this set is complete
with respect to relatively small formulas. Moreover, W is certainly closed
under subformulas and substitution of witnesses. Thus, W is sufficiently
large to define the required interpretation k.

In both cases we can perform the following reasoning.

2V ϕ → ∃x 2V,xϕ
→ ∃x 2U (conx(V ) ∧ 2V,xϕ)
→ 2U2

∗
V ϕ

→ 2Uϕ
k

The remarks from [Vis91] on the bounds of our proofs are still applicable
and we thus obtain a smooth interpretation.

a
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Figure 4: Transformations on proofs

Lemma 4.2. In the presence of exp, we can prove that for reflexive U ,
U ¤ V → ∀x 2Uconx(V ).

Proof. The informal argument is conceptually very clear and we have
depicted it in Figure 4. The accompanying reasoning is as follows.

We assume U ¤ V , whence for some k we have k : U ¤ V . Thus, for
axioms interpretability we find that ∀u ∃p (axiomsV (u)→ proofU (p, u

k)).
We are now to see that ∀x U ` conx(V ). So, we fix some x. By our
assumption we get that for some l, that

∀u≤x ∃p (axiomsV (u)→ proofU,l(p, u
k)). (10)

This formula is actually equivalent to the Σ1-formula

∃n∀u≤x ∃ p≤n (axiomsV (u)→ proofU,l(p, u
k)) (11)

from which we may conclude by provable Σ1-completeness,

U ` ∃n∀u≤x ∃ p≤n (axiomsV (u)→ proofU,l(p, u
k)). (12)

We now reason in U and suppose that there is some V, x-proof p of
⊥. The assumptions in p are axioms v1 . . . vm of V , with each vi ≤ x.
Moreover, all the formulas ψ in p have ρ(ψ) ≤ x. By Lemma 1.7, p
transforms to a proof pk of ⊥k which is again ⊥.

The assumptions in pk are now among the v1
k . . . vm

k. By Remark
1.8 we get that for some n′ depending on x and k, we have that all the
axioms in pk are ≤ n′ and all the ψ occurring in pk have ρ(ψ) ≤ n′.

Now by (12), we have U, l-proofs pi ≤ n of vi
k. The assumptions in the

pi are axioms of U . Clearly all of these axioms are ≤ l. We can now form
a U, l+n′-proof p′ of ⊥ by substituting all the pi for the (vi)

k. Thus we
have shown proofU,l+n′(p′,⊥). But this clearly contradicts the reflexivity
of U .
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The informal argument is readily formalized to obtain T ` U ¤ V →
∀x 2Ucon(V, x). However there are some subtleties.

First of all, to conclude that (10) is equivalent to (11), a genuine ap-
plication of BΣ1 is needed. If U lacks BΣ1, we have to switch to smooth
interpretability to still have the implication valid. Smoothness then auto-
matically also provides the l that we used in 10.

In addition we need that T proves the totality of exponentiation.
For weaker theories, we only have provable ∃Σb1-completeness. But if
axiomsV (u) is ∆

b
1, we can only guarantee that ∀u≤m ∃ p≤n (axiomsV (u)→

proofU (p, u
k)) is Πb2. As far as we know, exponentiation is needed to prove

∃Πb2-completeness.
All other transformations of objects in our proof only require the to-

tality of ω1(x) .
a

The assumption that U is reflexive can in a sense not be dispensed
with. That is, if

∀V (U ¤ V → ∀x 2Uconx(V )), (13)

then U is reflexive, as clearly U ¤ U . In a similar way we see that if

∀U (U ¤ V → ∀x 2Uconx(V )), (14)

that then V is reflexive. However, V being reflexive could never be a suffi-
cient condition for (14) to hold, as we know from [Sha97] that interpreting
reflexive theories in finitely many axioms is complete Σ3.

Lemma 4.3. In S1
2 we can prove ∀x 2Uconx(V ) → ∀∀Π

b
1π (2V π →

2Uπ).

Proof. There are no conditions on U and V for this implication to hold.
We shall directly give the formal proof as the informal proof does not give
a clearer picture.

Thus, we reason in S1
2 and assume ∀x 2Uconx(V ). Now we consider

any π ∈ ∀Πb1 such that 2V π. Thus, for some x we have 2V,xπ. We choose
x large enough, so that we also have (see Remark 1.4)

2U (¬π → 2V,x¬π). (15)

As 2V,xπ → 2U2V,xπ, we also have that

2U2V,xπ. (16)

Combining (15), (16) and the assumption that ∀x 2Uconx(V ), we see that
indeed 2Uπ. a

Lemma 4.4. In S1
2 we can prove that for reflexive V we have

∀∀Π
b
1π (2V π → 2Uπ)→ ∀x 2Uconx(V ).

Proof. If V is reflexive and ∀∀Π
b
1π (2V π → 2Uπ) then, as for every x,

conx(V ) is a ∀Πb1-formula, also ∀x 2Uconx(V ). a
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It is obvious that

∀U [∀∀Π
b
1π (2V π → 2Uπ)→ ∀x 2Uconx(V )] (17)

implies that V is reflexive. Likewise,

∀V [∀∀Π
b
1π (2V π → 2Uπ)→ ∀x 2Uconx(V )] (18)

implies that U is reflexive. However, U being reflexive can never be a
sufficient condition for (18) to hold. An easy counterexample is obtained
by taking U to be PRA and V to be IΣ1. (See for example [Joo03].)

Lemma 4.5. For reflexive V we have ∀∀Π
b
1π (2V π → 2Uπ)→ U ¤ V .

Proof. We know of no direct proof of this implication. Also, all proofs in
the literature go via Lemmata 4.4 and 4.1, and hence use reflexivity of
V . a

Again, by [Sha97] and Lemma 4.6 we see that U being reflexive can

not be a sufficient condition for ∀∀Π
b
1π (2V π → 2Uπ)→ U ¤ V to hold.

In our context, the reflexivity of V is not necessary, as ∀U U ¤ S1
2 and

S1
2 is not reflexive.

Lemma 4.6. Let U be a reflexive and sequential theory. We have that

U ¤ V → ∀∀Π
b
1π (2V π → 2Uπ).

If moreover U ` exp we also get U ¤ V → ∀Π1π (2V π → 2Uπ). If U
is not reflexive, we still have that U¤V → ∃U-CutJ ∀Π1π (2V π → 2Uπ

J).
For these implications, it is actually sufficient to work with the notion

of theorems interpretability.

Proof. The intuition for the formal proof comes from Pudlák’s lemma,
which in turn is tailored to compensate a lack of induction. We shall first
give an informal proof sketch if U has full induction. Then we shall give
the formal proof using Pudlák’s lemma.

If U has full induction and j : U ¤ V , we may assume by Remark 3.7
assume that j maps identity to identity. By Theorem 3.8 we now see that
M ⊆e M

j . If for some π ∈ Π1, 2V π then by soundness M j |= π, whence
M |= π. As M was arbitrary, we get by the completeness theorem that
2Uπ.

To transform this argument into a formal one, valid for weak theories,
there are two mayor adaptations to be made. First, the use of the sound-
ness and completeness theorem has to be avoided . This can be done by
simply staying in the realm of provability. Secondly, we should get rid of
the use of full induction. This is done by switching to a cut in Pudlák’s
lemma.

Thus, the formal argument runs as follows. Reason in T and assume
U ¤ V .

We fix some j : U ¤V . By Pudlák’s lemma, Lemma 3.9, we now find7

a definable U -cut J and a j, J-function h such that

∀∆0ϕ 2U∀ ~x∈J (ϕj(h(~x))↔ ϕ(~x)).

7Remark B.3 ensures us that we can find them also in the case of theorems interpretability.
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We shall see that for this cut J we have that

∀Π1π (2V π → 2Uπ
J). (19)

Therefore, we fix some π ∈ Π1 and assume 2V π. Let ϕ(x) ∈ ∆0 be
such that π = ∀x ϕ(x). Thus we have 2V ∀x ϕ(x), hence by theorems
interpretability

2U∀x (δ(x)→ ϕj(x)). (20)

We are to see 2U∀x (J(x)→ ϕ(x)). To see this, we reason in U and fix x
such that J(x). By definition of J , h(x) is defined. By the definition of h,
we have δ(h(x)), whence by (20), ϕj(h(x)). Pudlák’s lemma now yields
the desired ϕ(x). As x was arbitrary, we have proved (20).

So far, we have not used the reflexivity of U . We shall now see that

∀∀Π
b
1π (2Uπ

J → 2Uπ)

holds for any U -cut J whenever U is reflexive. For this purpose, we fix
some π ∈ ∀Πb1, some U -cut J and assume 2Uπ

J . Thus, ∃n 2U,nπ
J and

also ∃n 2U2U,nπ
J . If π = ∀x ϕ(x) with ϕ(x) ∈ Πb1, we get ∃n 2U2U,n∀x (x ∈

J → ϕ(x)), whence also

∃n 2U∀x 2U,n(x ∈ J → ϕ(x)).

By Lemma 3.2 and Remark 3.3, for large enough n, this implies

∃n 2U∀x 2U,nϕ(x)

and by Lemma 1.5 (only here we use that π ∈ ∀Πb1) we obtain the required
2U∀x ϕ(x). a

U being reflexive and sequential is a sufficient condition for U ¤ V →

∀∀Π
b
1π (2V π → 2Uπ) to hold. For sequential (or even `-reflexive, as

defined in Subsection 4.2) theories, reflexivity is also a necessary condition.
That is to say, that for such theories,

∀V [U ¤ V → ∀∀Π
b
1π (2V π → 2Uπ)], (21)

implies that U is reflexive.8 For, if U is sequential, we get by Lemma
4.12 that for every n, U ¤ S1

2 + conn(U). Thus, by (21) we get that
∀n U ` conn(U).

The sequentiallity is essentially used here: we can expose a non-
sequential non-reflexive U which satisfies (21).

By a result of Hanf [Han65] we can find a finitely axiomatized decidable
theory T with PA+ con(T ) ` con(PA). We now let U := PA ¢ T with the
numberization of PA. Here, ¢ is the disjoint union as defined in Appendix
A. We make two observations of U .

First, U satisfies (21). Suppose that PA ¢ T ¤ V and 2V π. Then
V ¤ S1

2 + π whence PA¢T ¤ S1
2 + π. As we have pairing in S1

2 + π, we can

8Note that the tempting fixed point ϕ(π)↔ (S1
2 + ∀

Π1π ϕ(π)¤ S1
2 + π ↔ TrueΠ1

(π)) also
yields a reflexive (inconsistent) theory S1

2 + ∀
Π1π ϕ(π).
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apply Theorem A.5 and obtain that PA ¤ S1
2 + π or T ¤ S1

2 + π. By the
decidability of T and by the essentially undecidability of S1

2, we see that
PA¤S1

2 +π. By Lemma 4.6 we conclude that PA ` π, whence PA¢T ` π.
Second, we see that PA ¢ T can not be reflexive. Suppose for a con-

tradiction that ∀n PA ¢ T ` conn((PA ¢ T )). Then, for all n, PA `
conn((PA ¢ T )) and thus, for sufficiently large n, PA ` con(T ). But this
would imply that PA ` con(PA) which is a contradiction.

Again, by [Sha97] we note that V being reflexive can never be a suffi-

cient condition for ∀U [U ¤ V → ∀∀Π
b
1π (2V π → 2Uπ)].

The main work on the Orey-Hájek characterization has now been done.
We can easily extract some useful, mostly well-known corollaries.

Corollary 4.7. If U is a reflexive theory, then

T ` U ¤ V ↔ ∀x 2Uconx(V ).

Here T contains exp and ¤ denotes smooth interpretability.

Corollary 4.8. If V is a reflexive theory, then the following are equiva-
lent.

1. U ¤ V

2. ∃U-CutJ ∀Π1π (2V π → 2Uπ
J)

3. ∃U-CutJ ∀x 2UconJx(V )

Proof. This is part of Theorem 2.3 from [Sha97]. (1) ⇒ (2) is already
proved in Lemma 4.6, (2) ⇒ (3) follows from the transitivity of V and
(3) ⇒ (1) is a sharpening of Lemma 4.1. which closely follows Theorem
3.5. Note that ¤ may denote denote smooth or theorems interpretability.

a

Corollary 4.9. If V is reflexive, then

` U ¤t V ↔ U ¤s V.

Proof. By Remark B.3 and Corollary 4.8.
a

Corollary 4.10. If U and V are both reflexive theories we have that the
following are provably equivalent in S1

2.

1. U ¤ V

2. ∀∀Π
b
1π (2V π → 2Uπ)

3. ∀x 2Uconx(V )

Proof. If we go (1)⇒ (2)⇒ (3)⇒ (1) we do not need the totality of exp

that was needed for (1)⇒ (3). a

As an application we can for example see9 that PA¤ PA+ InCon(PA).
It is well known that PA is essentially reflexive, so we use Corollary 4.10.

9By using ILW, we see that actually for all T we have T ¤ T + Incon(T ).
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Thus, it is sufficient to show that PA+ InCon(PA) is Π1-conservative over
PA.

So, suppose that PA+ InCon(PA) ` π for some Π1-sentence π. In other
words PA ` 2⊥ → π. We shall now see that PA ` 2π → π, which by
Löb’s Theorem gives us PA ` π.

Thus, in PA, assume 2π. Suppose for a contradiction that ¬π. By
Σ1-completeness we also get 2¬π, which yields 2⊥ with the assumption
2π. But we have 2⊥ → π and we conclude π. A contradiction.

4.2 Characterizations and functors

In this subsection, we rearrange the material to make it look more math-
ematical. We reformulate such notions as reflexivity in terms of functors
between appropriate degree structures, viewed as pre-ordering categories.
Theorems like the Orey-Hájek characterization receive a natural formu-
lations in this framework. Also the precise relation between Orey-Hájek
and the Friedman becomes fully perspicuous.

We shall work extensively with the notion of local interpretability. Ba-
sically, a theory U interprets a theory V locally if it interprets all of its fi-
nite subtheories. Again, in weak meta theories there are various divergent
notions possible.10 In this subsection we will not worry about these sub-
tle distinctions, assuming that our metalanguage is EA plus Σ1-collection.
Moreover, we shall always explicitly mention our numberizations.

Let THRY be the structure of theories ordered by ⊆. Let DEG be
the degrees of interpretability between theories. Let DEGloc be the degree
structure of local interpretability. The ordering of DEG will be written as
U ¢ V or U −→ V . The ordering of DEGloc will be written as U ¢loc V or

U
loc
−→ V .
We will not divide out the preorders, treating the degree structures

as preorder categories. If we want to restrict, e.g., DEG to a subclass of
theories, we use a subscript to signal that. Consider a theory V . We
define:

• 0V := S12 + {conn(V ) | n ∈ ω}.
(We pronounce this as ‘mho of V ’, where ‘mho’ rhymes with ‘Joe’.)

• 0+V := EA + {conn(V ) | n ∈ ω} = 0V + exp.

We will call the operation V 7→ 0V : reflexivization. The name is mo-
tivated by Lemma 4.16, which says that 0V is, in a sense, the smallest
reflexive theory in which V is interpretable. We will later see that 0 and
0
+ give us functors between appropriate categories.
Lemma 4.1 expressed the following basic insight.

Theorem 4.11. hV : 0V ¤ V .

Here, hV denotes the ‘henkin interpretation’ which is the syntactic variant
of the henkin model.

In this subsection we distinguish three kinds of reflexivity.

• A numberized theory 〈U, j〉 is reflexive iff j : U ¤0U .

10Two such notions are U ¤loc,t V : ⇐⇒ ∀φ (2V φ → ∃k 2Uφ
k) and U ¤loc,s V : ⇐⇒

∀x∃y ∀α∈axiomsV [x] ∃p, k<y ProofU (p, α
k).
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• A theory U is existentially reflexive, or e-reflexive iff, for some j,
j : U ¤ 0U . (In other words, U is e-reflexive iff it has a reflexive
numberization.)

• A theory V is locally reflexive, or `-reflexive iff V ¤loc 0V .

By a sharpened version of the second incompleteness theorem, one can
show that e-reflexive theories cannot be finitely axiomatizable. (This re-
sult is due to Pudlák, see [Pud85] or [Vis93].)

Sequential theories are important in our study. A useful feature of
them is that they allow for truth predicates. Moreover, they are easily
seen to interpret S1

2, by taking for 0 e.g. the empty sequence etc. Here is
a basic insight concerning sequential theories.

Lemma 4.12. Sequential theories are `-reflexive. I.o.w., if V is sequen-
tial, then V ¤loc 0V .

Proof. (sketch) Given some fixed n ∈ ω, we are to interpret S1
2 + conn(V ).

Going from an V, n-proof p to a cut-free V, n-proof p′ can cause a multi-
exponential blow-up. However, the multi-exponent is linear in n (see
[Ger03]).

By Solovay’s techniques on shortening of cuts we can find a V -cut J
for which this multi-exponent is always defined. Thus, for every proof p
in J , there is a cut-free proof p′.

The idea is now to prove, by using the truth predicates11, that at any
step in p′, a true formula is obtained. As always, we compensate a lack
of induction in V by shortening J even further. a

Note that if U is `-reflexive, then so is U ¢ U (see Appendix A). Since
U ¢ U is not sequential, we see that there are non-sequential `-reflexive
theories.

4.2.1 Reflexivization as a Functor

In this subsubsection, we treat the basic insight (Theorem 4.13), from
which, in combination with Theorem 4.11, many others will follow by
simple semi-modal arguments. Theorem 4.13 also tells us that 0(·) can
act as a functor between various categories.

Theorem 4.13. Suppose U ¤loc V . Then, 0U ⊇ 0V .

Proof. Suppose U ¤loc V . Consider any n. By assumption there is an
interpretation j such that j : U ¤ Vn. So, ∀φ∈αV,n ∃r r:2Uφ

j . By Σ1-
collection, we can find a k, such that ∀φ∈αV,n ∃r<k r:2Uφ

j . Takingm :=
|k|, we find:12 ∀φ∈αV,n ∃r<k r:2U,mφ

j . Hence, by Σ1-completeness,
0U ` ∀φ∈αV,n ∃r<k r:2U,mφ

j .
Reason in 0U . Suppose p : 2V,n⊥. Using j, we can transform p into

a proof q : 2U,m?⊥, where m? is a sufficiently large standard number,

11It would be good to explicitly define truth-predicates for the formula complexities as used
in [Ger03]. Alternatively, the formula complexities from [Vis93] for which we know to have
truth predicates could be linked to the ones used in [Ger03].
12We see that a ‘carefree metatheory’ for this argument should be something like EA plus

Σ1-collection.
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depending only on n, j and k. Note that q exists because the proofs of
the translations of axioms that we plug in are bounded by the standard
number k. But conm?(U). Hence, conn(V ). a

Theorem 4.13 tells us that reflexivization can be considered as a func-
tor from DEGloc to THRY. It follows that also 0+ can also be considered
as a functor from DEGloc to THRY.

It would be appropriate to call 0 the Orey-Hájek functor and 0+ the
Friedman functor, because of their connection (see below) to resp. the
Orey-Hájek characterization and the Friedman characterization.

Note that Theorem 4.13 tells us a.o. that reflexivization can be consid-
ered as an operation that works on theories-as-sets-of-theorems. We may
contrast this with an ‘intensional’ operation like13 U 7→ S12 + con(U). We
collect some immediate consequences of Theorem 4.13.

Lemma 4.14.
(i) e-Reflexiveness is preserved under mutual interpretability.
(ii) `-Reflexiveness is preserved under mutual local interpretability.

Proof. Ad (i). Suppose U is e-reflexive and U ≡ V . Using Theorem 4.13,
we find that: V ≡ U ≡ 0U ≡ 0V . Hence V is e-reflexive.

Ad (ii). Suppose U is `-reflexive and U ≡loc V . Using Theorem 4.11
and 4.13, we find that: V ≡loc U ≡loc 0U ≡ 0V . Hence V is `-reflexive. a

Lemma 4.15. Suppose U is e-reflexive. Then, U ¤loc V iff U ¤ V .

Proof. Suppose U is e-reflexive and U ¤loc V . Then, U ¤ 0U ¤ 0V ¤ V .
The other direction is (even more) trivial. a

Lemma 4.16. Suppose U is `-reflexive. Then, 〈0U , id〉 is the smallest
reflexive theory in DEG that interprets U .

Proof. By Theorem 4.11 indeed 0U ¤U . By the `-reflexivity of U we get
that U ≡loc 0U , whence, by Theorem 4.13 0U = 00U

and indeed 〈0U , id〉
is reflexive.

If for some reflexive T we have T ¤loc U , we get by Lemma 4.15 that
T ¤ U . By Theorem 4.13 we get 0T ⊇ 0U . But, using the reflexivity of
T we now get T ¤0T ⊇ 0U and we are done. a

Note that the reflexivization of the theory of pure identity is S12, which
is finitely axiomatized and, hence, not reflexive. Since 0V is itself `-
reflexive, we always have that 〈02V , id〉 is reflexive.

Open Question 4.17. Give an example of a U that is not `-reflexive,
but where 〈0U , id〉 is reflexive.

Lemma 4.18. Suppose U is `-reflexive. Then, U ¤loc V iff 0U ⊇ 0V .

13For example, let U be a theory in the language of pure identity. The non-logical axioms
of U are given by α, where α(x) expresses: for some n < |x|, x is an an n-fold conjunction
(associating to the right) of ⊥ and n is the smallest ZF-proof of ⊥. We see that U is, in a
weak sense, finitely axiomatized, that U is co-extensional with the theory of pure identity, but
that S12 + con(U) is far stronger than S12. Moreover, S12 proves the consistency of the theory
of pure identity.
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Proof. Suppose 0U ⊇ 0V . Then, U ¤loc 0U ⊇ 0V ¤ V . a

Let DEGlr be the degrees of interpretability between `-reflexive theo-
ries. Let DEGloc

lr be the degree structure of local interpretability restricted
to `-reflexive theories.

Lemma 4.18 tells us that reflexivization is an embedding of DEGloc
lr

in THRY. The `-reflexivity is really necessary, as 0 is in general not an
embedding.

For example, let SEIN be the theory of pure identity and let ONE be
SEIN + ∀x, y x = y. Then, 0SEIN = S12 = 0ONE. But not SEIN ≡loc ONE.
It would be interesting to see a less trifling counterexample.

4.2.2 The Orey-Hájek Characterization

We can now reformulate the Orey-Hájek characterizations using local in-
terpretability. All the characterizations are direct consequences of Theo-
rem 4.13. Here is the first Orey-Hájek characterization.

Theorem 4.19 (Orey-Hájek 1).
Suppose 〈U, j〉 is reflexive. Then, U ¤ V iff j : U ¤0V .

Note that the conclusion of this theorem, universally quantified over
V , implies that 〈U, j〉 is reflexive. If V is e-reflexive, then V ≡ 0V . Thus,
the following theorem is a triviality.

Theorem 4.20 (Orey-Hájek 2).
Suppose V is e-reflexive. Then, U ¤ V iff U ¤0V .

Again, the conclusion of Orey-Hájek 2, universally quantified over U , is
equivalent to the premise. It is, by now folklore that we also have an
Orey-Hájek characterization for local interpretability. It is contained in
the following theorem.

Theorem 4.21. For `-reflexive U we have the following.

U ¤loc V ⇔ 0U ⊇ 0V
⇔ 0U ¤ V
⇔ U ¤loc 0V .

As a corollary to Theorem 4.21, we shall now see that reflexivization
can be viewed, modulo mutual relative interpretability, as the right adjoint
of the embedding functor between the degrees of global interpretability of
locally reflexive theories and the degrees of local interpretability of locally
reflexive theories. Let us therefore single out one of the equivalences14 of
Theorem 4.21.

U ¤loc V ⇔ 0U ¤ V (22)

We reformulate this equivalence a bit, to make the adjunction fully ex-
plicit. We now treat, par abus de langage, 0 as a functor from DEGloc

lr to
DEGlr. Let emb be the embedding functor of DEGlr in DEGloc

lr . Now (22)

14Again we note that the conclusion of the equivalence, universally quantified over V , is
equivalent with the premise, that is, the `-reflexivity of U .
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tells us that 0(·) is the right adjoint of emb. We may represent this fact
in the following picture.

emb(V )
loc - U

V
glob

- 0U

It is immediate from general facts about adjoints that, for `-reflexive U ,
0U ≡ 00U

. Note, however, that Lemma 4.16 is more informative.

4.2.3 Variants of 0

As long as we are working modulo relative interpretability there are many
interesting variants of 0. In this subsection, we shall discuss three such
variants.

Recall that U [n] denotes the theory axiomatized by the first n axioms
of U . Let Ω∞ := S12 + {Ωi | i ∈ ω}, where Ωi expresses the totality of the
function ωi(x) (see [HP93]). zU is our first variant of 0U .

• zU := Ω∞ + {cutfree-con(U [n]) | n ∈ ω}.

We have the following lemma.

Lemma 4.22. zU ≡ 0U .

The essence of the proof is given in [Vis93], Subsection 3.2. Note that,
for finitely axiomatized theories U , we have zU = Ω∞ + cutfree-con(U).
Inspection of the results, gives Ω∞ ≡ 0S1

2
. (See again [Vis93].) It follows

that Ω∞, being an e-reflexive theory, is not finitely axiomatizable.
We proceed to the next variant of 0U . Let U be sequential and suppose

j : U ¤ S12. We define a new theory ∇U,j as follows. We add a new unary
predicate I to the language of U . The theory ∇U,j is axiomatized by U
plus the axiom cutj(I) plus all axioms of the form:

cutj(A)→ ∀x (I(x)→ A(x)),

where A is a U -formula having only x free. Clearly U ≡loc ∇U,j .

Lemma 4.23. Suppose 〈U, j〉 is a numberized theory and suppose that U
is sequential. Then, ∇U,j ≡ 0U .

Proof. We first see that ∇U,j ¤ 0U . By sequentiallity of U , we can find
for any n a 〈U, j〉-cut I such that U ` conIn(U). We have ∇U,j ` I ⊆ I.
Hence, ∇U,j ` conIn(U). It follows that I : ∇U,j ¤0U .

Conversely, by a simple compactness argument we find that 0U `
0∇U,j . Hence 0U ¤∇U,j . a

Before we can give the third variant of 0U , we first have to agree
on some notation. Let Γ be some set of sentences in the language of
arithmetic. We define, for arbitrary U , and for 〈V, j〉 a numberized theory,
the Γ-content of that theory as follows.

• CntΓ(U) := S12 + {φ∈Γ | U ¤ (S12 + φ)}

• CntΓ(〈V, j〉) := S12 + {φ∈Γ | j : V ¤ (S12 + φ)},
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These definitions do not give us a bona fide theories with sufficiently sim-
ple axiomatizations. We can handle this problem by employing a variant
of Craig’s trick. (See for example Definition 5.1.)

Note that CntΓ(U) might be inconsistent, where U is not. E.g., there
is an Orey-sentence O which is of complexity ∆2, such that PA¤ (S12+O)
and PA¤ (S12 + ¬O). So, CntΣ2(PA) is inconsistent.

Lemma 4.24. If U ¤loc V , then CntΓ(U) ⊇ CntΓ(V ).

Lemma 4.24 tells us that CntΓ(·) is a functor from DEGloc to THRY.

Lemma 4.25.

1. Cnt∀Πb1
(U) ⊆ 0U .

2. Suppose that U is `-reflexive. Then, Cnt∀Πb1
(U) = 0U .

3. CntΠ1(U) ≡ Cnt∀Πb1
(U).

Proof. Ad (1). Suppose we have j : U ¤ (S12 + π). We show that 0U ` π.
We have, for sufficiently large n,

0U ` ¬π → 2U,n¬π
j

→ 2U,n⊥

→ ⊥.

So indeed 0U ` π.

Ad (2). Suppose U is `-reflexive. Then, clearly, 0U ⊆ Cnt∀Πb1
(U), since

the conn(U) are ∀Π
b
1.

Ad (3). We claim that there is a definable S12-cut J , such that, for any
Π1-sentence π, there is a ∀Πb1-sentence π

?, such that S12 ` π → π? and
S12 ` π

? → πJ . Using this claim, we see that

id : CntΠ1(U)¤ Cnt∀Πb1
(U) and J : Cnt∀Πb1

(U)¤ CntΠ1(U).

The claim can be proved in a fancy way by invoking the formalization
by Gaifman and Dimitracopoulos (see [GD82]) of Matijacevič’s Theorem
in EA aka I∆0 + exp.

A simpler argument is as follows. Suppose π = ∀~x π0~x, where π0 is ∆0.
Take π? := ∀~x π0(|~x|) and let J be some cut such that S12 ` ∀z∈J 2z↓. a

4.2.4 Conservativity

We define two notions of conservativity as follows.

• V is `-Γ-conservative over U , or: U ¤loc,Γ V , iff U ¤loc CntΓ(V ).

• Suppose 〈U, j〉 and 〈V, k〉 are numberized. Then, 〈V, k〉 is Γ-conservative
over 〈U, j〉, or: 〈U, j〉¤Γ 〈V, k〉, iff j : U ¤ CntΓ(〈V, k〉).

Note that the notion of `-Γ-conservativity is, in general, not a very inter-
esting notion. It only makes sense for certain special classes Γ.
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Lemma 4.26. Suppose U and V are `-reflexive. Then,

U ¤loc,∀Πb1
V ⇔ U ¤loc V.

Lemma 4.27. Suppose 〈U, j〉 and 〈V, k〉 are numberized theories. Then,

〈U, j〉¤Γ 〈V, k〉 ⇔ CntΓ(〈U, j〉) ⊇ CntΓ(〈V, k〉).

4.2.5 The Friedman Functor

In this subsection we study the Friedman functor 0+.

Lemma 4.28. Suppose U is `-reflexive. Then, 0+U and 0U prove the
same ∀Πb1-sentences.

Proof. Consider π ∈ ∀Πb1. Suppose 0+U ` π, Then, for some n, EA +
conn(U) ` π. By a results of Wilkie and Paris (see [WP87], or see [Vis90b]
or [Vis92]), we have, for some cut J , S12+ conn(U) ` π

J . Let k : U ¤ (S12+
conn(U)). We have, for sufficiently large m,

0U ` ¬π → 2U,m(¬πJ)k

→ 2U,m(2U,n⊥)
k

→ 2U,m⊥

→ ⊥

Hence 0U ` π. a

Lemma 4.29. Suppose U is `-reflexive. Then,

U ¤loc V ⇔ 0
+
U ⊇ 0

+
V

Proof. Suppose U is `-reflexive. It is sufficient to show that, if 0+U ⊇ 0
+
V ,

then 0U ⊇ 0V . But this is immediate by Lemma 4.28. a

By cut elimination (see [Ger03] and [Ger0X]), we can show that over
EA we may replace the conn(U) by cutfree-con(U [n]).15

In case U is finitely axiomatized, we have the following simplifications.

• U is `-reflexive iff U ¤ (S12 + cutfree-con(U)).

• 0+U = EA + cutfree-con(U).

Putting things together, we get a version of the Friedman Characteriza-
tion.

Theorem 4.30. Suppose U and V are finitely axiomatized and `-reflexive,
then:

U ¤ V ⇔ EA + cutfree-con(U) ` cutfree-con(V ).

15Alternatively, we can show that, for finitely axiomatized V , for some V -cut J , we have
S12 ` cutfree-con(V ) → conJn(V ). This uses the construction of an interpretation k via a
variant of the henkin construction. Subsequently, we produce a proof of n-reflection using
an appropriate truth-predicate truem: S12 ` ∀φ (2

J
V,nφ → truem(φk)). Finally, we apply the

results of Wilkie and Paris to obtain: EA ` cutfree-con(V )→ conn(V ).
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Wilkie and Paris show in [WP87] that EA ` cutfree-con(S12). It follows
that EA = 0

+

S1
2
. Hence, EA ≡∀Πb1

0S1
2
. (This is approximately Theorem

8.15 of [WP87].) Thus, if we ‘measure’ the complexity of theories using
the Friedman functor, then S12 is of the lowest complexity.

We can view 0
+ as a functor from DEGloc to AR, the ordering of

extensions of Q in the language of arithmetic with the subset relation.
We can show that this functor preserves sums.

Lemma 4.31. Let W = U ⊕ V . Then, for every k, there is an n and a
S12-cut J , such that S12 + conn(U) + conn(V ) ` conJk (W ). By the results
of Wilkie and Paris, it follows that for every k, there is an n, such that
EA + conn(U) + conn(V ) ` conk(W ).

Proof. Choosing n sufficiently large, we can construct interpretations

i : (S12 + conn(U))¤ Uk and i′ : (S12 + conn(V ))¤ Vk.

Using these interpretations, we can construct an interpretation j : (S12 +
conn(U)) ¤ Wk. Now we can construct a satisfaction-predicate for W -
formulas of complexity k in S12 + conn(U), adapted to j. This predicate
gives us the usual proof of S12 + conn(U) + conn(V ) ` conJk (W ), for a
suitable cut J . a

It follows that:

Lemma 4.32. 0+U⊕V = 0+U ∪ 0
+
V .

We end with an insight in the relation between 0 and 0+.

Lemma 4.33. 0+ ◦ 0 = 0+.

Proof. Since 0U ¤ U , we immediately have 0+
0U
⊇ 0+U . In the converse

direction, it is sufficient to prove that, for any k (that is sufficiently large
to make the statement meaningful):

(†) EA + conk(U) ` conk(S
1
2 + conk(U)).

To prove (†) it is, by the results of Wilkie and Paris, sufficient to show:

(‡) For some definable cut J , S12 + conk(U) ` conJk (S
1
2 + conk(U)).

But this last fact is immediate from the `-reflexivity of 0U . (Since 0U is
sequential, we have the consistency statements always on definable cuts,
by Pudlák’s Result. See Lemma 3.9.) a

4.3 End-extensions

We have a model-theoretic characterization of interpretability between
extensions of PA in the language of PA(see Theorem 3.8). It is simply
that U ¤ V iff every modelM of U has an endextension N satisfying V .
In this subsection we generalize this result as far as possible. It seems to us
that the rules of the game are to formulate the characterization as much
as possible in terms of the structure of the models without mentioning
syntax. In this respect our result is not quite perfect, since we have to
mention a definable inner model.
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Consider a model M of signature Σ and a model N of signature Θ.
Suppose m is a relative interpretation such thatMm |= S12. We say that
N is an m-end-extension of M, or m : M ¹end N , iff, for all relative
interpretations n with N n |= S12, there is an initial embedding ofMm in
Nn. We say that N is an end-extension ofM orM¹end N iff, for some
m, m :M¹end N .

Here are some basic facts on m-end-extensions.

1. If m :M¹end N and n : N ¹end K, then m :M¹end K.

2. If Mm satisfies full induction in M, then m : M ¹end M. (We
do not know whether the converse holds.) Moreover, any internal
model N ofM is an m-end-extension ofM.

Theorem 4.34. Suppose U is sequential and e-reflexive. We can find an
m : U ¤ S12 such that, for any `-reflexive V , the following are equivalent:

1. U ¤ V ;

2. for allM∈ Mod(U), there is an N ∈ Mod(V ) such that m :M¹end

N ;

3. there is an l : U ¤ S12 such that, for all M ∈ Mod(U), there is an
N ∈ Mod(V ) such that l :M¹end N .

We will present two proofs of the theorem as both proofs have some in-
terest on their own. Here is the first proof.

Proof. Suppose U is sequential and e-reflexive. We first find m. Pick any
l : U ¤ S12. By Lemma 4.23, we can find p : U ¤ ∇U,l. Recall that ∇U,l
contains U . We take m := p ◦ I.

(1) ⇒ (2). Suppose k : U ¤ V . We can ‘lift’ k in the obvious way to
k? : ∇U,l ¤ V . We consider q := p ◦ k? : U ¤ V . Let M ∈ Mod(U)
be given. We take N := Mq. Suppose that for some interpretation n,
Nn |= S12. We want to show that there is an initial embedding fromMm

to Nn.
We will use Figure 5 to support our argument. Let us first resume the

list of interpretations that will be used in our proof.

l : U ¤ S1
2

I : ∇U,l ¤ S1
2

k : U ¤ V
q := p ◦ k? : U ¤ V

p : U ¤∇U,l
m := p ◦ I : U ¤ S1

2

k? : ∇U,l ¤ V

Now we consider the internal modelM? :=Mp ofM. We note that:
M? |= ∇U,l. Our main characters N , Mm and Nn exist as internal
models ofM?:

• N =Mq =M(p◦k?) = (Mp)k
?

= (M?)k
?

,

• Mm =M(p◦I) = (Mp)I = (M?)I ,

• Nn = ((M?)k
?

)n = (M?)(k
?◦n)

38



Nn |= S1
2

N :=Mq |= V

I

M |= U
M? :=Mp |= ∇U,l

J

J

(M?)l |= S1
2

Figure 5: End extension theorem

So we only have to show that there is an initial embedding from (M?)I

to (M?)(k
?◦n).

Let us consider (M?)l and (M?)(k
?◦n). Since U is sequential and

M? |= U , we can, with Pudlák’s lemma, find a definable cut J of (M?)l

isomorphic to a cut of (M?)(k
?◦n). Both k? and l only involve the language

of U , so we find that J is given by a U -formula. Hence, by the definition
of I, we have that (M?)I is a cut of J . We may conclude that there is
an initial embedding from (M?)I to (M?)(k

?◦n).

(2)⇒ (3). This one is trivial.

(3) ⇒ (1). Suppose that V is `-reflexive, l : U ¤ S12, and, for all M ∈
Mod(U), there is an N ∈ Mod(V ) such that l : M ¹end N . For any
n ∈ ω, there is a k : V ¤ S12 such that V ` conkn(V ). Since Ml has
an initial embedding in N k, it follows that Ml |= conn(V ). Since M
was arbitrary, we have, by the completeness theorem, that U ` conkn(V ).
Hence l : U ¤0V , and, thus U ¤ V . a

We give the second proof of Theorem 4.34.

Second Proof of Theorem 4.34. Our alternative only concerns the step
(1)⇒ (2). Suppose m0 : U ¤0U . We can shorten m0 to m1 such that (i)
there is a Σ1-truth-predicate for the Σ1-sentences inside m1 definable in
U and (ii) m1 satisfies I∆0+Ω1+BΣ1. We will also have: m1 : U ¤0U .

Let m2 be the interpretation that extends m1 by adding the Σ1-truth-
predicate. Now consider any theory V . We assume that the axiom set of
V is not too complex. So, in the de-luxe circumstances of I∆0+Ω1+BΣ1
provability in V will be Σ1.

Now we build in 0V + I∆0+Ω1+BΣ1, using the Feferman predicate,
an interpretation q of V . Note that this interpretation is restricted: we
have a satisfaction-predicate for the interpretation that works for standard
formulas. We can construct the isomorphic cut J between m1 and q. Say
the isomorphism is Φ. For any m′ : V ¤ S12, we can define:
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• J ′(x) :⇐⇒ J(x) ∧ ∃y (x(Φ)y ∧ δq◦m′(y)).

Note that Φ will give an initial embedding from J ′ to q ◦m′. The con-
struction of J ′ is uniform in the provability predicate of V . So in the
theory ♥V which is 0V + I∆0 + Ω1 + BΣ1 extended with a Σ1-truth-
predicate and the appropriate axioms, we can give J ′ a fixed complexity,
say n, independent of the specific V we are considering. Let satn be the
satisfaction predicate for this complexity. We define:

• J?(x) :⇐⇒ ∀ y∈Γn (cut({z | satn(y, z)})→ satn(y, x)).

We take m := m2 ◦ J
?.

Now suppose U ¤ V . By Theorem 4.19, it follows that m2 : U ¤ ♥V .
We build, inside m2, a restricted interpretation q of V , which has an ap-
propriately simple satisfaction predicate for standard formulas. Consider
k := m2 ◦ q : U ¤ V . Let M be any model of U . Consider N := Mk.
Suppose Nm′

|= S12. We can find a cut J of Mm2 that is isomorphic to

a cut of Nm′

, such that J is given by a formula of complexity n. By
constructionMm is a cut of (Mm2)J and we are done. a

5 Arithmetical soundness proofs

In this section we shall give arithmetical soundness proofs for interpretabil-
ity principles that hold in all reasonable arithmetical theories. These
principles should thus certainly hold in any finitely axiomatizable and in
any essentially reflexive theory. This means that the principles should be
provable both in ILP and ILM.

We shall see that the two modal proofs give rise to two different arith-
metical soundness proofs. The M-style proofs use definable cuts and find
place is some sort of modal system as described in Subsection 3.4. The
P-style proofs are based on finite approximations of interpretability. This
behavior is captured also in a modal-like system as we shall see below.

5.1 Finite approximations of interpretability

It is a triviality that for finitely axiomatized theories we have α ¤ β →
2(α¤ β). For, α¤ β is nothing but a Σ1-sentence and we get 2(α¤ β).

Thus, if we want to mimic the P behavior for a general theory T , we
should make the α¤T β a simple enough statement so that we get 2(α¤β).
Clearly, for α¤T β in general this is not possible, but in some situations
we are also satisfied with 2(α¤T ′ β) where T ′ is some approximation of
T .

There are two choices of T ′ that can be made. First, we could take
for T ′ a finite subtheory of T , and note that16 T + α ¤ T ′ + β. Second,
we could define a theory T ′ that is extensionally the same as T , but for
which T +α¤T ′+ β is so simple that we actually get 2(T +α¤T ′+ β).
We shall work out the second variant, albeit some of our arguments can
also be carried out using the first approach.

16It would have been even nicer to get T ′ +α¤ T ′ + β, but it is not clear if this can always
be established.
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A first idea would be to take for the axioms of T ′ just the axioms of
T that are in translated form provable in T + α. This almost works, but
we want to be sure that T ′ contains verifyably enough arithmetic to do
for example a henkin construction.

Thus, the second idea would be to just add S1
2 to our first approach.

This turns out to only work in the presence of Σ1-collection and exp. The
exp is then needed to get provable Σ1-completeness whence L2 for 2T ′ .

We shall use a use a little trick a-là Craig so that our theory T ′ will
stay ∃Σb1-definable. The same trick makes the use of BΣ1 superfluous.

Let s12 be the sentence axiomatizing S1
2.

Definition 5.1. If k : T + α¤ T + β, we define T k as follows.

axiomsTk (x) := (x = s12) ∨
∃p (x = pϕ ∧ (p = p)q ∧ axiomsT (ϕ) ∧ proofT+α(p, ϕ

k))

It is clear that axiomsTk (x) is in poly-time decidable if axiomsT (x) is
so. Note that we work with efficient numerals p.

Lemma 5.2. (In S1
2) If k : α¤T β, then 2Tϕ↔ 2Tkϕ and consequently

T k + α ≡ T + α¤ T + β ≡ T k + β.

Proof. 2Tkϕ → 2Tϕ is clear, as we can replace every axiom ϕ ∧ (p = p)

of T k by a proof of ϕ ∧ (p = p) from the single T -axiom ϕ. Note that we
have these proofs available as we used efficient numerals.

On the other hand, if 2Tϕ, we have a proof p of ϕ from the axioms,
say τ0, . . . , τn. Now, by the assumption that k : α¤T β (smoothness gives
the appropriate bounds) we obtain (T + α)-proofs of pi of τi

k. We can
now replace every axiom occurrence of τi in p by

τi ∧ (pi = pi)

τi
∧E, l

and obtain a T k-proof of ϕ. a

Note that, although we do have 2(2Tkϕ → 2Tϕ) we shall in general
not have 2(2Tϕ→ 2Tkϕ).

Lemma 5.3. S1
2 ` k : T + α¤ T + β → 2T (T + α¤ T k + β)

Proof. As we shall need bounds on proofs of statements of the form p = p
we consider some function f that is monotone in x, such that for any x,
the k-translation of the canonical proof of x = x is bounded by f(x, k).
Clearly, in S1

2 we can define such a function f and prove its totality.
Now, we reason in S1

2 and assume k : T + α ¤ T + β. Thus certainly
2T+αβ

k and also

2T2T+αβ
k. (23)

Likewise we get 2T+α(s
1
2)
k
and also 2T2T+α(s

1
2)
k
. Let b be such that

proofT+α(b, β
k) and let s be such that proofT+α(s, (s

1
2)
k
).

Now, we reason in T . We are going to show that k : T + α¤s T
k + β.

So, let us consider some arbitrary x. Let now y := max{s, b, x · f(x, k)}.
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We shall see that for any τ ≤ x with axiomsTk+β(τ), there is a proof

p′ ≤ y with proofT+α(p
′, τk).

If axiomsTk+β(τ), either τ = β and we are done by (23), or we have
that axiomsTk (τ). Let us consider the latter case. Again, if τ = s12 we
are done. So, we may assume that τ is of the form ϕ ∧ (p = p), with

proofT+α(p, ϕ
k). Clearly, p ≤ τ ≤ x. We can now easily obtain a (T +α)-

proof p′ of ϕk ∧ (p = p)k. As p′ is obtained by concatenating a proof of

(p = p)k to p, it is, by our assumptions on f , surely bounded by x ·f(x, k).
a

We note that we may replace ¤s in the antecedent of Lemma 5.3 by ¤t.

5.2 Finite approximations and modal logics

Just as in Subsection 3.4, we can make some sort of modal system in
which facts about finite approximations and interpretability are reflected.
As we shall see, the situation is a slightly more complicated than in the
case of cuts and modal logics. This is due to the fact that we seem to lose
necessitation.

Let us first introduce some notation. With α¤kβ we shall denote
T + α¤ T k + β, and with 2kα we shall denote 2Tkα.

In Lemma 5.2 we have seen that 2Tα → 2Tkα. However, in general
we do not have 2T (2Tα → 2Tkα). It is thus unlikely that our modal
system should reflect necessitation. However, there is an easy way to
handle this.

Definition 5.4. With ILX2 we denote the modal logic, whose axioms
are all the axioms of ILX preceded by some number (possibly zero) of
boxes. The only rule of ILX2 is modus ponens. If Y is some set of axiom
schemata, we denote by ILX2Y, the system with axioms all axioms (or
equivalently, all theorems) of ILX2 and all instantiations of schemata from
Y. The sole rule of inference is modus ponens.

Lemma 5.5. ILX = ILX2

Proof. Both ILX ⊆ ILX2 and ILX2 ⊆ ILX go by an easy induction on
the length of proofs. We only use L1 for one direction and necessitation
for the other. a

Before we give a list with principles we make one more convention. We
say that 2idA resp. A¤idB is on the syntactic level the same as 2A resp.
A¤B. The quantifiers are to be understood to range over interpretations
k : >¤T >.
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(E2)k 2
kA↔ 2A (∀)

(E¤)k A¤k B ↔ A¤B (∀)

(→ 2)k 2
k(2lA→ 2A) (∀∀)

(→ ¤)k 2
k(A¤B → A¤jB) (∀∀)

Lk
1 2

k(A→ B)→ (2kA→ 2
kB) (∀)

Lk
2 2

lA→ 2
k
2
lA (∀∀)

Lk
3 2

k(2lA→ A)→ 2
kA (∀∀)

Jk
1 2

k(A→ B)→ A¤kB (∀)
Jk

2 (A¤lB) ∧ (B¤kC)→ A¤kC (∀∀)
Jk

3 (A¤kC) ∧ (B¤kC)→ A ∨B¤kC (∀)
Jk

4 A¤kB → (3A→ 3
kB) (∀)

Jk
5 3

kA¤A (∀)
Pk A¤B → 2(A¤k B) (∃)

The modal reasoning we will perform using these principles will look
like ILX2Y, where X is L1-J5 together with (→ 2)k-Pk, and Y = {(E2)k, (E¤)k}.
We call the latter axioms extensionallity axioms. Of course, we should
somehow take the nature of the quantifiers along in our reasoning.

It is not hard to see that all principles are arithmetically valid. As T k

contains S1
2, many arguments like Lk

1-L
k
3 and Jk

5 go as always. Jk
1 is easy.

But if it is under a 2, we need (→ 2)k. Now, (→ 2)k itself together with
(E2)k is just Lemma 5.2, and (E¤)k is a direct consequence of it. Finally,
Pk is just Lemma 5.3.

5.3 Arithmetical soundness results

We now come to the actual soundness proofs of the principles W, M0, W∗,
P0, and R. As M0 and P0 both follow from R and as W∗ follows from M0

and W, it would be sufficient to just prove the soundness of R and W.17

However, we have decided to give short proofs for all principles. Like this,
the close match between the modal systems comes better to the fore. Per
principle we shall give a proof in ILP and in ILM. These proofs can then
be copied almost literally to yield arithmetical soundness proofs.

5.3.1 The principle W

Lemma 5.6. ILP `W and ILPR `W

Proof.

A¤B → 2(A¤B)
→ 2(3A→ 3B) (∗)
→ 2(2¬B → 2¬A) (∗∗)

Evidently A ¤ B → A ¤ (B ∧ 2¬A) ∨ (B ∧ 3A). As clearly B ∧ 2¬A ¤
B ∧ 2¬A, we have shown A ¤ B → A ¤ B ∧ 2¬A once we have proven

17In Gorris Joosten, [GJ04] a principle is given that is precisely W and R together.
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B ∧3A¤B ∧ 2¬A. But, by (∗),

B ∧3A ¤ B ∧3B by L3

¤ B ∧3(B ∧ 2¬B)
¤ B ∧ 2¬B by (∗∗)
¤ B ∧ 2¬A.

a

Lemma 5.7. ILM `W

Proof. By M, A¤B → A∧2¬A¤B ∧2¬A. But A¤A∧2¬A, whence
A¤B → A¤B ∧ 2¬A. a

P-style soundness proof of W We just follow the modal proof of W

in ILP. At some places, axioms are replaced by there counterparts that
deal with finite approximations.

By Pk we have that for some k,

α¤ β → 2(α¤k β) by Jk
4

→ 2(3α→ 3
kβ) (∗)

→ 2(2k¬β → 2¬α). (∗∗)

Now α ¤ β → (β ∧ 2¬α) ∨ (β ∧ 3α). Starting from the last disjunct we
obtain by (∗)

β ∧3α ¤ β ∧3kβ by Lk
3

¤ 3
k(β ∧ 2k¬β) by Jk

5

¤ β ∧ 2k¬β by (∗∗)
¤ β ∧ 2¬α.

M-style soundness proof of W We assume j : α ¤ β and fix the
corresponding Pudlák cut J . By Lemma 3.13, α¤ α ∧ 2J¬α, whence by
MJ and J2, α¤ β ∧ 2¬α.

5.3.2 The principle M0

Lemma 5.8. ILP ` M0 and ILPR ` M0

Proof.

A¤B → 2(A¤B)
→ 2(3A→ 3B)
→ 2(3A ∧ 2C → 3B ∧ 2C)
→ 3A ∧ 2C ¤3B ∧ 2C
→ 3A ∧ 2C ¤3(B ∧ 2C)
→ 3A ∧ 2C ¤B ∧ 2C

a

Lemma 5.9. ILM ` M0

Proof. A¤B → A∧2C¤B∧2C. But, 3A∧2C¤3(A∧2C)¤A∧2C,
whence A¤B → 3A ∧ 2C ¤B ∧ 2C. a
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P-style soundness proof of M0 Starting with an application from
Pk, for some k we obtain the following reasoning.

α¤ β → 2(α¤k β) Jk
4

→ 2(3α→ 3
kβ)

→ 2(3α ∧ 2γ → 3
kβ ∧ 2γ)

→ 3α ∧ 2γ ¤3kβ ∧ 2γ o.a. by Lk
2

→ 3α ∧ 2γ ¤3k(β ∧ 2γ) by Jk
5

→ 3α ∧ 2γ ¤ β ∧ 2γ

M-style soundness proof of M0 α¤β → α∧2Jγ¤β∧2γ for some
cut J . By LJ

2 for this particular J we get 3α∧2γ → 3α∧22Jγ, whence

3α ∧ 2γ ¤ 3α ∧ 22Jγ
¤ 3(α ∧ 2Jγ)
¤ α ∧ 2Jγ by MJ

¤ β ∧ 2γ

5.3.3 The principle W
∗

Lemma 5.10. ILP `W∗ and ILPR `W∗

Proof. In ILP (resp. ILPR): if A¤B, then

2(2¬B → 2¬A) (24)

and

2(3A ∧ 2C → 3B ∧ 2C) (25)

Thus, B ∧ 2C ¤ (B ∧ 2C ∧ 2¬A) ∨ (B ∧ 2C ∧ 3A). Again, in the first
case we would be done. In the second case we get the following reasoning.

B ∧ 2C ∧3A ¤ 3A ∧ 2C by (25)
¤ 3B ∧ 2C by L3

¤ 3(B ∧ 2¬B) ∧ 2C by L2

¤ 3(B ∧ 2C ∧ 2¬B) by J5

¤ B ∧ 2C ∧ 2¬B by (24)
¤ B ∧ 2C ∧ 2¬A

a

Lemma 5.11. ILM `W∗

Proof. So, in ILM, assume A ¤ B. B ∧ 2C ¤ (B ∧ 2C ∧ 2¬A) ∨ (B ∧
2C ∧3A). Again, in the first case we would be done. In the second case
we get the following reasoning.

B ∧ 2C ∧3A ¤ 3A ∧ 2C by L3

¤ 3(A ∧ 2¬A) ∧ 2C by L2

¤ 3(A ∧ 2C ∧ 2¬A) by J5

¤ A ∧ 2C ∧ 2¬A by M and A¤B
¤ B ∧ 2C ∧ 2¬A

a
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P-style soundness proof of W
∗ For some k we get starting with

an application of Pk the following reasoning.

α¤ β → 2(α¤k β) by Jk
4

→ 2(3α→ 3
kβ)

→ 2(2k¬β → 2¬α) (∗)
→ 2(3α ∧ 2γ → 3

kβ ∧ 2γ) (∗∗)

We follow the modal proof.

β ∧ 2γ ∧3α ¤ 3α ∧ 2γ by (∗∗)
¤ 3

kβ ∧ 2γ by Lk
3

¤ 3
k(β ∧ 2k¬β) ∧ 2γ by Lk

2

¤ 3
k(β ∧ 2γ ∧ 2k¬β) by Jk

5

¤ β ∧ 2γ ∧ 2k¬β by (∗)
¤ β ∧ 2γ ∧ 2¬α

M-style soundness proof of W
∗ Also following the modal proof.

With J the Pudlák cut of j : α¤ β we get the following reasoning.

β ∧ 2γ ∧3α ¤ 3α ∧ 2γ by LJ
3

¤ 3(α ∧ 2J¬α) ∧ 2γ by LJ
2

¤ 3(α ∧ 2Jγ ∧ 2J¬α) by J5

¤ α ∧ 2Jγ ∧ 2J¬α by MJ

¤ β ∧ 2γ ∧ 2¬α

5.3.4 The principle P0

Lemma 5.12. ILP ` P0

Proof. Within ILP: A¤3B → 2(A¤3B)→ 2(A¤B). a

Lemma 5.13. ILPR 0 P0

Proof. It is easy to see that frames satisfying uRxRySuz → xRz are
sound for ILPR. And it is equally easy to provide such a model on which
P0 does not hold. a

Lemma 5.14. ILM ` P0

Proof.

A¤3B → A ∧ 2¬B ¤⊥
→ 2(A→ 3B)
→ 22(A→ 3B)
→ 2(A¤3B)
→ 2(A¤B)

a

P-style soundness proof of P0 The proof goes conform the modal
proof. Thus, for some k, α¤3β → 2(α¤k 3β). But as also 2(3β ¤ β),
we get by Jk

2 the required α¤3β → 2(α¤ β).
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M-style soundness proof of P0 Again, we follow the modal proof.
Thus, for some cut J we get the following.

A¤3B → A ∧ 2J¬B ¤⊥
→ 2(A→ 3

JB)
→ 22(A→ 3

JB)
→ 2(A¤3JB)
→ 2(A¤B)

Note: the principle A¤3B → 2(A¤3B) is also provable in both ILM

and ILP. In [Vis97] it is shown that this principle is not valid in PRA. It
is nice to see where proof attempts of this principle in our systems fail.

5.3.5 The principle R

Before we see that ILP ` R, we first proof an auxiliary lemma.

Lemma 5.15. IL ` ¬(A¤ ¬C) ∧ (A¤B)→ 3(B ∧ 2C)

Proof. We prove the logical equivalent (A¤B)∧2(B → 3¬C)→ A¤¬C
in IL. But this is clear, as (A¤B)∧2(B → 3¬C)→ A¤B ∧3¬C and
3¬C ¤ ¬C. a

Lemma 5.16. ILP ` P0

Proof. A¤B → 2(A¤B). Using this together with Lemma 5.15 we get
that under the assumption A¤B, we have

¬(A¤ ¬C) ¤ ¬(A¤ ¬C) ∧ (A¤B)
¤ 3(B ∧ 2C)
¤ B ∧ 2C

a

Lemma 5.17. ILPR 0 R

Proof. By exposing a countermodel as in the proof of Lemma 5.13. a

Lemma 5.18. ILM ` R

Proof. In IL it is easy to see that ¬(A ¤ ¬C) → 3(A ∧ 2C). Thus, if
A¤B then

¬(A¤ ¬C) ¤ 3(A ∧ 2C)
¤ A ∧ 2C
¤ B ∧ 2C

a
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P-style soundness proof of R Conform the modal proof, we first
see that (α ¤k β) ∧ ¬(α ¤ ¬γ) → 3

k(β ∧ 2γ). For, suppose that α ¤k β
and 2k(β → 3¬γ) then by Jk

1, β ¤
k
3¬γ. Thus, by Jk

2 and J5, we get
β ¤ ¬γ. From α¤k β we get, again by Jk

2 that α¤ ¬γ. We have not used
any extensionallity axioms, thus also

2((α¤k β) ∧ ¬(α¤ ¬γ)→ 3
k(β ∧ 2γ)) (26)

We now turn to the main proof. So, suppose k : α ¤ β, then 2(α ¤k β)
and thus

¬(α¤ ¬γ) ¤ ¬(α¤ ¬γ) ∧ (α¤k β) by (26)

¤ 3
k(β ∧ 2γ) by Jk

5

¤ β ∧ 2γ.

M-style soundness proof of R Again following the modal poof. So,
suppose that j : α ¤ β and let J be the corresponding Pudlák cut. By
Lemma 3.14 we get that for this cut ¬(α ¤ ¬γ) → 3(α ∧ 2Jγ). Thus, if
j : α¤ β then

¬(α¤ ¬γ) ¤ 3(α ∧ 2Jγ)
¤ α ∧ 2Jγ
¤ β ∧ 2γ

5.3.6 Mixing proof styles

Sometimes, mixing P and M-style proofs can be fruitful. The next lemma
provides an example.

Lemma 5.19. In any reasonable arithmetical theory we have that
α¤3β → 2(¬(α¤ ¬γ)→ 3(β ∧ γ)).

Proof. Suppose k : α ¤ 3β and let K be the corresponding Pudlák cut.
Then, by MJ we get

α¤3β → α ∧ 2Kγ ¤3β ∧ 2γ
→ α ∧ 2Kγ ¤3(β ∧ γ) by Pk

→ 2(α ∧ 2Kγ ¤k 3(β ∧ γ)) by Jk
4

→ 2(3(α ∧ 2Kγ)→ 3
k
3(β ∧ γ)) by Lk

2

→ 2(3(α ∧ 2Kγ)→ 3(β ∧ γ))

But, by Lemma 3.14 we get 2(¬(α ¤ ¬γ) → 3(α ∧ 2Kγ)) and we are
done. a

It is not hard to see that the above principle is already provable in
ILR.

Lemma 5.20. ILR ` A¤B → ¬(A¤ ¬C) ∧ 2D ¤B ∧ 2(C ∧D)

Proof. One easily sees that IL ` ¬(A ¤ ¬C) ∧ 2D → ¬(A ¤ ¬(C ∧D)).
One application of R now gives the desired result. a

Lemma 5.21. ILR ` A¤3B → 2(¬(A¤ ¬C)→ 3(B ∧ C))
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Proof. In ILR we get

A¤3B → ¬(A¤ ¬C)¤3B ∧ 2C
→ ¬(A¤ ¬C)¤3(B ∧ C)
→ ¬(A¤ ¬C) ∧ 2¬(B ∧ C)¤⊥
→ 2(¬(A¤ ¬C)→ 3(B ∧ C))

a

It is also not hard to see that A ¤ 3B → 2(¬(A ¤ ¬C) → 3(B ∧ C))
follows semantically from the frame condition of R.
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A The Sum

The sum U ⊕ V is given as a theory W of signature ΣW , where ΣW
is given as the disjoint union of ΣU and ΣV plus two additional fresh
unary predicate symbols ∆U and ∆V and a new binary identity symbol
EW .18 Let τU and τV be the obvious translations of the languages of U ,
respectively V into the language of W , where we relativize to ∆U in the
first case and to ∆V in the second case. We take W to be axiomatized by
the following axioms.

• ` PτU~v → ~v : ∆U ,

• ` PτV ~v → ~v : ∆V ,

• ` AτU , for A a U -axiom,

• ` AτV , for A a V -axiom,

18Of course, if U = V , we take the appropriate measures to make the ∆ disjoint.
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• ` ∀x (x : ∆U ∨ x : ∆V ),

• ` xEW y ⇐⇒ ∀z ((xEUz ⇐⇒ yEUz) ∧ (xEV z ⇐⇒ yEV z)).

Note that, in the presence of the other axioms, the last axiom says that
EW is the crudest congruence relation w.r.t. all predicates of W .

It is easy to check that ⊕ gives us the supremum, i.e. the sum in the
sense of category theory, in DEG and DEGloc.

We define U ¢ V as the disjoint union of U and V . this is U ⊕ V with
the further axiom that ∆U and ∆V are disjoint. (It is easy to see that
we can simplify the definition a bit, having just one ∆ and with EW the
union of EU and EV .)

Theorem A.1. U ⊕ V is consistent iff both U and V are consistent. It
follows that, if W ⊕ Z ` φin0 ∨ ψin1 , then W ` φ or Z ` ψ. (These facts
can be verified in I∆0 + supexp.) Similarly for ¢.

Theorem A.2. Consider any formula φ~x. Partition ~x into ~y and ~z. We
have that φ~y~z is provably equivalent in (U ¢ V ) + ~y : ∆U + ~z : ∆V to a
boolean combination of U-formulas ψ~y and V -formulas χ~z.

Proof. The proof is by induction of φ, quantifiying over all possible par-
titions of he free variables. a

We prove, in our context, a theorem well-known from the research on
chapters. See [MPS90].

Lemma A.3. Suppose W is a theory with a pairing function working for
all objects. Suppose K : U ¢V ¤W . Then, for some k, U ¢V proves that
there at most k elements of δK modulo EK in either in ∆U or in ∆V .

Proof. Let W and K be as in the statement of the theorem. Reason in
U ¢ V . By Theorem A.2, there are U -formulas φi(x, z) and V -formulas
ψi(y), for i = 0, . . . , n− 1, such that, for all x, z : (δK ∩∆U ) and, for all
y : (δK ∩∆V ), we have pair(x, y, z) ⇐⇒

∨

i(φi(x, z) ∧ ψi(y)). Similarly,
there are U -formulas φ?j (y, z) and V -formulas ψ?j (x), for j = 0, . . . , n?−1)
such that, for all y, z : (δK ∩ ∆V ) and, for all x : (δK ∩ ∆U ), we have
pair(x, y, z) ⇐⇒

∨

j(φ
?
j (y, z) ∧ ψ

?
j (x)).

Let m be the maximum of n, n?. Consider x0, . . . , x2m, y0, . . . , y2m,
where the xi are in ∆U and the yi are in ∆V . We assume further
that the xi are pairwise EK -disjoint and, similarly, for the yi. Suppose
pair(xi, yi, zi), for i = 0, . . . , 2m. Clearly, for one of ∆U ,∆V , there are at
least m+1 of the zi in that set. Without loss of generality we may assume
that z0, . . . , zm are in ∆U . So we have that, for each j ∈ {0, . . . ,m}, there
is an i ∈ {0, . . . , n− 1}, such that φi(xj , zj) and ψi(yj). By the Pidgeon
Hole Principle, for some i, there are j, j ′ with j 6= j′, such that φi(xj , zj)
and ψi(yj) and φi(xj′ , zj′) and ψi(yj′). It follows that φi(xj , zj) and
ψi(yj′). Hence, pair(xj , yj′ , zj). Since we have both pair(xj , yj , zj). and
pair(xj , yj′ , zj), we may conclude that yjEKyj′ . A contradiction.

So it follows that either in ∆U or in ∆V there are less than 2m elements
of δK , modulo EK . a
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Lemma A.4. Suppose W is a theory with a pairing function working for
all objects. Supose further that W has two provably definable, provably
distinct objects, say 0 and 1. Suppose K : U ¢ V ¤W . Then, we can find
a K̃ : U ¢ V ¤W , such that U ¢ V proves that δK̃ is either entirely in
∆U or entirely in ∆V .

Proof. By Lemma A.3, for some k, U ¢ V proves that there are at most
k elements of δK in one of ∆U , ∆V . Consider n with 2n > k. For any
0, 1-sequence σ = b0 · · · bn−1 of we define a W -formula z(Fσ)w as follows:

• z(Fε)w :⇐⇒ z = w,

• z(Fbτ )w :⇐⇒ ∃u (z(Fτ )u ∧ pair(b, u, z)).

We define the interpretation Mσ :W →W as follows:

• δMσ (x) :⇐⇒ ∃y y(Fσ)x,

• PMσ (~x) :⇐⇒ ∃~y (~y(Fσ)~x ∧ P (~y)).

We take Kσ := K ◦ Mσ. Suppose σ0, . . . , σm−1 enumerates the 0, 1-
sequences of length n. We define:

• K(0) := Kσ0 ,

• K(j+1) := Kσj+1〈δKσj+1
⊆ ∆U ∨ δKσj+1

⊆ ∆V 〉K
(j),

• K̃ := K(m).

It is easily seen that K̃ is a promised. a

Theorem A.5. Suppose W is a theory with a pairing function working
for all objects. Suppose further thatW has two provably definable, provably
distinct objects, say 0 and 1. Suppose K : U ¢ V ¤W . Then, we can find
a K? such that K? : U ¤W or K? : V ¤W .

Proof. LetK andW be as stipulated in the conditions of the theorem. By
Lemma A.4, we may replace K be K̃, such that U ¢V ` δK̃ ⊆ ∆U ∨δK̃ ⊆
∆V . By Theorem A.2, there are U -sentences φ0, . . . , φn−1, φ

?
0, . . . , φ

?
n?−1,

and V -sentences ψ0, . . . , ψn−1, ψ
?
0 , . . . , ψ

?
n?−1 such that:

• U ¢ V ` δK̃ ⊆ ∆U ⇐⇒
∨

i(φi ∧ ψi),

• U ¢ V ` δK̃ ⊆ ∆V ⇐⇒
∨

j(φ
?
j ∧ ψ

?
j )

It follows that U ¢ V `
∨

i φi ∨
∨

j ψ
?
j . Hence, by Theorem A.1, we find

U `
∨

i φi or V `
∨

j ψ
?
j .

Without loss of generality we may assume that the first case obtains.
Also we may assume that the φi∧ψi are consistent with U¢V —otherwise
we may omit them from our disjunction. It is sufficient to provide, for
each i, K [i] : (U + φi)¤W . Then we can take:

• K? := K [0]〈φ0〉(K
[1]〈φ1〉(. . . 〈φn−2〉K

[n−1]) · · · ).

Consider (U + φi) ¢ (V + ψi). This is a consistent theory. We have
(U + φi)¢ (V + ψi) ` δK̃ ⊆ ∆U . It follows that we have:

• (U + φi)¢ (V + ψi) ` δK̃(x) ⇐⇒ (∆U (x) ∧
∨

p(χ
δ
p(x) ∧ ρ

δ
p)),

where χδp is a U -formula and ρδp is a V -sentence;
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• (U + φi)¢ (V + ψi) ` PK̃(~x) ⇐⇒ (~x : ∆U ∧
∨

q(χ
P
q (~x) ∧ ρ

P
q )),

where χPq is a U -formula and ρPq is a V -sentence.

Consider the set R all the V -sentences ρ involved in these equivalences.
With each subset X of R we associate a formula γX which is the conjunc-
tion of all the sentences in X and of all the negations of the sentences in
R \X. Clearly V + ψi + γX must be consistent for some X. We consider
some such X. Now note that:

• (U+φi)¢(V +ψi+γX) ` δK̃(x) ⇐⇒ (∆U (x)∧
∨
{χδp(x) | ρ

δ
p ∈ X}),

• (U + φi)¢ (V + ψi + γX) ` PK̃(~x) ⇐⇒ (~x : ∆U ∧
∨
{χPq (~x) | ρ

P
q ∈

X}).

Define:

• δK[i](x) :⇐⇒
∨
{χδp(x) | ρ

δ
p ∈ X},

• PK[i](~x) :⇐⇒
∨
{χPq (~x) | ρ

P
q ∈ X}.

We have, for any axiom α of W , (U + φi) ¢ (V + ψi + γX) ` (αK
[i]

)in0 .

We find, by Theorem A.1, U + φi ` α
K[i]

. Thus, we are done. a

Here is a variant of Theorem A.1.

Theorem A.6. Let W = U ⊕ V . Then, for every k, there is an n and
a S12-cut J , such that S12 + conn(U) + conn(V ) ` conJk (W ). By the results
of Wilkie and Paris, it follows that for every k, there is an n, such that
EA + conn(U) + conn(V ) ` conk(W )

Proof. Choosing n sufficiently large, we can construct interpretations

K : (S12 + conn(U))¤ Uk and M : (S12 + conn(V ))¤ Vk.

Using these interpretations, we can construct an interpretation N : (S12 +
conn(U)) ¤ Wk. Now we can construct a satisfaction-predicate for W -
formulas of complexity k in S12 + conn(U), adapted to N . This predicate
gives us the usual proof of S12 + conn(U) + conn(V ) ` conJk (W ), for a
suitable cut J . a

B Pudlák’s lemma

Lemma B.1 (Pudlák’s lemma).

T ` j : U ¤ V → ∃U-CutJ ∃j,J-functionh ∀∆0ϕ 2U∀ ~x ∈ J (ϕj(h(~x))↔ ϕ(~x))

Moreover, the h and J can be obtained uniformly from j by a function
that is provably total in S1

2.

Proof. Again, by ∃U-CutJ we shall mean ∃J 2UCut(J), where Cut(J) is
the definable function that sends the code of a formula χ to the code of a
formula that expresses that χ defines a cut. We apply a similar strategy
for quantifying over j, J-functions. The defining property for a relation H
to be a j, J-function is

∀ ~x, y, y′∈J (H(~x, y) & H(~x, y′)→ y=jy′).
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We will often consider H as a function and write for example ψ(h(~x))
instead of ∀y (H(~x, y)→ ψ(y)).

The idea of the proof is very easy. Just map the numbers of U via h
to the numbers of V so that 0 goes to 0j and the mapping commutes with
the successor relation. If we want to prove a property of this mapping, we
might run into problems as the intuitive proof appeals to induction. And
sufficient induction is precisely what we lack in weaker theories.

The way out here is to just put all the properties that we need our
function h to posess into its definition. Of course, then the work is in
checking that we still have a good definition. The definition being good
means here that the set of numbers on which h is defined induces a defin-
able U -cut.

In a sense, we want an (definable) initial part of the numbers of U to
be isomorphic under h to an initial part of the numbers of V . Thus, h
should definitely commute with successor, addition and mulptiplication.
Moreover, the image of h should define an initial segment, that is, be closed
under the smaller than relation. All these requirements are reflected in
the definition of Goodsequence.

Goodsequence(σ, x, y) := lh(σ) = x+ 1 ∧ σ0=
j0j ∧ σx=

jy
∧ ∀ i≤x δ(σi)
∧ ∀ i<x (σi+1=

jσi+
j1j)

∧ ∀ k+l≤x (σk+
jσl=

jσk+l)
∧ ∀ k·l≤x (σk·

jσl=
jσk·l)

∧ ∀a (a≤jy → ∃ i≤x σi=
ja)

H(x, y) := ∃σ Goodsequence(σ, x, y)
∧ ∀σ′ ∀y′ (Goodsequence(σ′, x, y′)→ y=jy′)

J ′(x) := ∀x′≤x ∃y H(x′, y)

Finally, we define J to be the closure of J ′ under +, · and ωx. Now that
we have defined all the machinery we can start the real proof. The reader
is encouridged to see at what place which defining property is used in the
proof. We do note here that the defining property ∀ i≤x δ(σi) is not used
in the proof here. We shall need it in the proof of Lemma 4.6.

We first note that J ′(x) indeed defines a U -cut. For 2UJ
′(0) you

basically need sequentiallity of U , and the translations of the identity
axioms and properties of 0.

To see 2U∀x (J ′(x)→ J ′(x+1)) is also not so hard. It follows from the
translation of basic properties provable in V , like x = y → x+ 1 = y + 1
and x+ (y + 1) = (x+ y) + 1, etc.

We should now see that h is a j, J-function. This is actually quite easy,
as we have all the necessary conditions present in our definition. Thus,
we have

2U∀x, y∈J (h(x)=jh(y)↔ x = y) (27)

The← direction reflects that h is a j, J-function. The→ direction follows
from elementary reasoning in U using the translation of basic arithmetical
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facts provable in V . So, if x 6= y, say x < y, then x+ (z + 1) = y whence
h(x)+jh(z + 1)=jh(y) which implies h(x)6=jh(y).

We are now to see that for our U -cut J and for our j, J-function h we
indeed have that19

∀∆0ϕ 2U∀ ~x∈J (ϕj(h(~x))↔ ϕ(~x)).

First we shall proof this using a seemingly Σ1-induction. A closer
inspection of the proof shall show that we can provide at all places suf-
ficiently small bounds, so that actually an ω1(x)-induction suffices. We
first proof the following claim.

Claim B.2. ∀Termt 2U∀ ~x, y ∈ J (tj(h(~x))=jh(y)↔ t(~x) = y)

Proof. The proof is by induction on t. The basis is trivial. To see for
example 2U∀ y∈J (0j=jh(y)↔ 0 = y) we reason in U as follows. By the
definition of h, we have that h(0)=j0j , and by (27) we moreover see that
0j=jh(y) ↔ 0 = y. The other basis case, that is, when t is an atom, is
precisely (27).

For the induction step, we shall only do +, as · goes almost completely
the same. Thus, we assume that t(~x) = t1(~x)+ t2(~x) and set out to prove

2U∀ ~x, y∈J (t1
j(h(~x))+jt2

j(h(~x))=jh(y)↔ t1(~x) + t2(~x) = y).

Within U :

← If t1(~x) + t2(~x) = y, then by Lemma 3.4, we can find y1 and y2
with t1(~x) = y1 and t2(~x) = y2. The induction hypothesis tells us
that t1

j(h(~x))=jh(y1) and t2
j(h(~x))=jh(y2). Now by (27), h(y1 +

y2)=
jh(y) and by the definition of h we get that

h(y1 + y2) =j h(y1)+
jh(y2)

=j i.h. t1
j(h(~x))+jt2

j(h(~x))

=j (t1(h(~x)) + t2(h(~x)))
j .

→ Suppose now t1
j(h(~x))+jt2

j(h(~x))=jh(y). Then clearly t1
j(h(~x))≤jh(y)

whence by the definition of h we can find some y1 ≤ y such that
t1
j(h(~x))=jh(y1) and likewise for t2 (using the translation of the

commutativity of addition). The induction hypothesis now yields
t1(~x) = y1 and t2(~x) = y2. By the definition of h, we get
h(y)=jh(y1)+

jh(y2)=
jh(y1+ y2), whence by (27), y1+ y2 = y, that

is, t1(~x) + t2(~x) = y.

a

We now prove by induction on ϕ ∈ ∆0 that

2U∀ ~x∈J (ϕj(h(~x))↔ ϕ(~x)). (28)

Again we proceed by an induction on ϕ.

19We use h(~x) as short for h(x0), · · · , h(xn).
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For the basis case, we consider that ϕ ≡ t1(~x) + t2(~x). We can now
use Lemma 3.4 to note that

2U∀ ~x∈J (t1(~x) = t2(~x)↔ ∃ y∈J (t1(~x) = y ∧ t2(~x) = y))

and then use Claim B.2, the transitivity of = and its translation to obtain
the result.

The boolean connectives are really trivial, so we only need to consider
bounded quantification. We show (still within U) that

∀ y, ~z∈J (∀x≤jh(y) ϕj(x, h(~z))↔ ∀x≤y ϕ(x, ~z)).

← Assume ∀x≤y ϕ(x, ~z) for some y, ~z ∈ J . We are to show
∀x≤jh(y) ϕj(x, h(~z)). Now, pick some x≤jh(y) (the translation of the
universal quantifier actually gives us an additional δ(x) which we shall
omit for the sake of readability). Now by the definition of h we find some
y′ ≤ y such that h(y′) = x. As y′ ≤ y, by our assumption, ϕ(y′, ~z) whence
by the induction hypothesis ϕj(h(y′), h(~z)), that is ϕj(x, h(~z)). As x was
arbitrarily ≤jh(y), we are done.
→ Suppose ∀x≤jh(y) ϕj(x, h(~z)). We are to see that ∀x≤y ϕ(x, ~z)).

So, pick x ≤ y arbitrarily. Clearly h(x)≤jh(y), whence by our assumption
ϕj(h(x), h(~z)) and by the induction hypothesis ϕ(x, ~z).

In the proof of Lemma 3.9 we have used twice a Σ1-induction; In
Claim B.2 and in proving (28). But in both cases, at every induction
step, a constant piece p′ of proof is added to the total proof. This piece
looks every time the same. Only some parameters in it have to be replaced
by subterms of t. So, the addition to the total proof can be estimated by
p′a(t) which is about O(tk) for some standard k. Consequently there is
some standard number l such that

∀ϕ∈∆0 ∃ p≤ϕ
l proofU (p, ∀ ~x∈J (ϕj(h(~x))↔ ϕ(~x)))

and indeed our induction was really but a bounded one. Note that we dealt
with the bounded quantification by appealing to the induction hypothesis
only once, followed by a generalization. So, fortunately we did not need
to apply the induction hypothesis to all x≤y, which would have yielded
an exponential blow-up.

a

Remark B.3. Pudlák’s lemma is valid already if we employ the notion
of theorems interpretability rather than smooth interpretability. If we
work with theories in the language of arithmetic, we can do even better.
In this case, axioms interpretability can suffice. In order to get this, all
arithmetical facts whose translations were used in the proof of Lemma 3.9
have to be promoted to the status of axiom. However, a close inspection
of the proof shows that these facts are very basic and that there are not
so many of them.
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