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Abstract

This paper is the first in a series of three related papers on modal methods in interpretability logics
and applications. In this first paper the fundaments are laid for later results. These fundaments
consist of a thorough treatment of a construction method to obtain modal models. This construc-
tion method is used to reprove some known results in the area of interpretability like the modal
completeness of the logic IL.

Next, the method is applied to obtain new results: the modal completeness of the logic ILM0,
and modal completeness of ILW

∗.
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1 Introduction

Interpretability logics are primarily used to describe structural behavior of interpre-
tability between formal mathematical theories. We shall see that the logics come with
a good modal semantics that naturally extends the regular modal semantics giving it
a dynamical flavor. In this introduction we shall informally describe the project of
this paper. Formal definitions are postponed to later sections.

The notion of interpretability that we are primarily interested in, is the notion of
relativized interpretability as studied e.g. by Tarski et al in [25]. Roughly, a theory
U interprets a theory V –we write U � V – if U proves all theorems of V under
some structure preserving translation. We allow for relativization of quantifiers. It
is defendable to say that U is as least as strong as V if U � V . We think that it is
clear that interpretations are worth to be studied, as they are omnipresent in both
mathematics and meta-mathematics (Langlands Program, relative consistency proofs,
undecidability results, Hilberts Programme and so forth).

One approach to the study of interpretability is to study general structural behavior
of interpretability. An example of such a structural rule is the transitivity of inter-
pretability. That is, for any U , V and W we have that if U �V and V �W , then also
U �W . As we shall see, modal interpretability logics provide an informative way to
support this structural study. Interpretability logics, in a sense, generate all structu-
ral rules. Many important questions on interpretability logics have been settled. One
of the most prominent open questions at this time is the question of the interpretabi-
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2 Modal Matters for Interpretability Logics

lity logic of all reasonable arithmetical theories. In this paper we make a significant
contribution to a solution of this problem. However, a modal characterization still
remains an open question.

The main aim of this paper is to establish some modal techniques/toolkit for in-
terpretability logics. Most techniques are aimed at establishing modal completeness
results. As we shall see, in the field of interpretability logics, modal completeness can
be a sticky business compared to unary modal logics. In this paper we make a first
attempt at pulling some (more) thorns out. Significant progress with this respect
has also been made by de Jongh and Veltman [8]. In [18], a masters thesis written
under the supervision of de Jongh, the current version of the construction method
was already present in a rudimentary form.

We have a feeling that the general modal theory of interpretability logics is getting
more and more mature. For example, fixed point phenomena and interpolation are
quite well understood ([10], [1], [31]).

Experience tells us that our modal semantics is quite informative and perspicuous.
It is even the case that new arithmetical principles can be obtained from modal se-
mantical considerations. An example is our new principle R. We found this principle
primarily by modal investigation. Thus, indeed, there is a close match between the
modal part and the arithmetical part. It is even possible to embed our modal seman-
tics into some category of models of arithmetic.

Although this paper is mainly a modal investigation, the main questions are still
inspired by the arithmetical meaning of our logics. Thus, our investigations will
lead to applications concerning arithmetically informative notions like, essentially
Σ1-sentences, self provers and the interpretability logic of all reasonable arithmetical
theories.

2 Interpretability logics

In this section we will define the basic notions that are needed throughout the paper.
We advise the reader to just skim through this section and use it to look up definitions
whenever they are used in the rest of the paper.

2.1 Syntax and conventions

In this paper we shall be mainly interested in interpretability logics, the formulas of
which, we write FormIL , are defined as follows.

FormIL := ⊥ | Prop | (FormIL → FormIL) | (2FormIL) | (FormIL � FormIL)

Here Prop is a countable set of propositional variables p, q, r, s, t, p0, p1, . . .. We
employ the usual definitions of the logical operators ¬,∨,∧ and ↔. Also shall we
write 3ϕ for ¬2¬ϕ. Formulas that start with a 2 are called box-formulas or 2-
formulas. Likewise we talk of 3-formulas.

From now on we will stay in the realm of interpretability logics. Unless mentioned
otherwise, formulas or sentences are formulas of FormIL . We will write p ∈ ϕ to indi-
cate that the proposition variable p does occur in ϕ. A literal is either a propositional
variable or the negation of a propositional variable.

In writing formulas we shall omit brackets that are superfluous according to the



Modal Matters for Interpretability Logics 3

following reading conventions. We say that the operators 3, 2 and ¬ bind equally
strong. They bind stronger than the equally strong binding ∧ and ∨ which in turn
bind stronger than �. The weakest (weaker than �) binding connectives are → and
↔. We shall also omit outer brackets. Thus, we shall write A�B → A∧2C�B∧2C
instead of ((A�B) → ((A ∧ (2C)) � (B ∧ (2C)))).

A schema of interpretability logic is syntactically like a formula. They are used to
generate formulae that have a specific form. We will not be specific about the syntax
of schemata as this is similar to that of formulas. Below, one can think of A, B and
C as place holders.

The rule of Modus Ponens allows one to conclude B from premises A→ B and A.
The rule of Necessitation allows one to conclude 2A from the premise A.

Definition 2.1

The logic IL is the smallest set of formulas being closed under the rules of Necessitati-
on and of Modus Ponens, that contains all tautological formulas and all instantiations
of the following axiom schemata.

L1 2(A→ B) → (2A→ 2B)

L2 2A→ 22A

L3 2(2A→ A) → 2A

J1 2(A→ B) → A�B

J2 (A�B) ∧ (B � C) → A� C

J3 (A� C) ∧ (B � C) → A ∨B � C

J4 A�B → (3A→ 3B)

J5 3A�A

We will write IL ⊢ ϕ for ϕ ∈ IL. An IL-derivation or IL-proof of ϕ is a finite sequence
of formulae ending on ϕ, each being a logical tautology, an instantiation of one of the
axiom schemata of IL, or the result of applying either Modus Ponens or Necessitation
to formulas earlier in the sequence. Clearly, IL ⊢ ϕ iff there is an IL-proof of ϕ.

Sometimes we will write IL ⊢ ϕ→ ψ → χ as short for IL ⊢ ϕ→ ψ & IL ⊢ ψ → χ.
Similarly for �. We adhere to a similar convention when we employ binary relations.
Thus, xRySxz 
 B is short for xRy & ySxz & z 
 B, and so on.

Sometimes we will consider the part of IL that does not contain the �-modality.
This is the well-known provability logic GL, whose axiom schemata are L1-L3. The
axiom schema L3 is often referred to as Löb’s axiom.

Lemma 2.2

1. IL ⊢ 2A↔ ¬A� ⊥

2. IL ⊢ A�A ∧ 2¬A

3. IL ⊢ A ∨ 3A�A

Proof. All of these statements have very easy proofs. We give an informal proof of
the second statement. Reason in IL. It is easy to see A � (A ∧ 2¬A) ∨ (A ∧ 3A).
By L3 we get 3A → 3(A ∧ 2¬A). Thus, A ∧ 3A � 3(A ∧ 2¬A) and by J5 we get
3(A∧2¬A)�A∧2¬A. As certainly A∧2¬A�A∧2¬A we have that (A∧2¬A)∨
(A ∧ 3A) �A ∧ 2¬A and the result follows from transitivity of �.
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Apart from the axiom schemata exposed in Definition 2.1 we will on occassion
consider other axiom schemata too.

M A�B → A ∧ 2C �B ∧ 2C

P A�B → 2(A�B)

M0 A�B → 3A ∧ 2C �B ∧ 2C

W A�B → A�B ∧ 2¬A

W∗ A�B → B ∧ 2C �B ∧ 2C ∧ 2¬A

P0 A� 3B → 2(A�B)

R A�B → ¬(A� ¬C) �B ∧ 2C

If X is a set of axiom schemata we will denote by ILX the logic that arises by adding
the axiom schemata in X to IL. Thus, ILX is the smallest set of formulas being closed
under the rules of Modus Ponens and Necessitation and containing all tautologies and
all instantiations of the axiom schemata of IL (L1-J5) and of the axiom schemata of
X. Instead of writing IL{M0,W} we will write ILM0W and so on.

We write ILX ⊢ ϕ for ϕ ∈ ILX. An ILX-derivation or ILX-proof of ϕ is a finite
sequence of formulae ending on ϕ, each being a logical tautology, an instantiation of
one of the axiom schemata of ILX, or the result of applying either Modus Ponens
or Necessitation to formulas earlier in the sequence. Again, ILX ⊢ ϕ iff there is an
ILX-proof of ϕ. For a schema Y, we write ILX ⊢ Y if ILX proves every instantiation
of Y.

Definition 2.3

Let Γ be a set of formulas. We say that ϕ is provable from Γ in ILX and write
Γ ⊢ILX ϕ, iff there is a finite sequence of formulae ending on ϕ, each being a theorem
of ILX, a formula from Γ, or the result of applying Modus Ponens to formulas earlier
in the sequence.

Clearly we have ∅ ⊢ILX ϕ ⇔ ILX ⊢ ϕ. In the sequel we will often write just Γ ⊢ ϕ
instead of Γ ⊢ILX ϕ if the context allows us so. It is well known that we have a
deduction theorem for this notion of derivability.

Lemma 2.4 (Deduction theorem)
Γ, A ⊢ILX B ⇔ Γ ⊢ILX A→ B

Proof. “⇐” is obvious and “⇒” goes by induction on the length n of the ILX-proof
σ of B from Γ, A.

If n>1, then σ = τ, B, where B is obtained from some C and C → B occurring
earlier in τ . Thus we can find subsequences τ ′ and τ ′′ of τ such that τ ′, C and
τ ′′, C → B are ILX-proofs from Γ, A. By the induction hypothesis we find ILX-
proofs from Γ of the form σ′, A → C and σ′′, A → (C → B). We now use the
tautology (A→ (C → B)) → ((A → C) → (A → B)) to get an ILX-proof of A→ B
from Γ.

Definition 2.5

A set Γ is ILX-consistent iff Γ 6⊢ILX ⊥. An ILX-consistent set is maximal ILX-
consistent if for any ϕ, either ϕ ∈ Γ or ¬ϕ ∈ Γ.

Lemma 2.6

Every ILX-consistent set can be extended to a maximal ILX-consistent one.
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Proof. This is Lindebaums lemma for ILX. We can just do the regular argument
as we have the deduction theorem. Note that there are countably many different
formulas.

We will often abbreviate “maximal consistent set” by MCS and refrain from expli-
citly mentioning the logic ILX when the context allows us to do so. We define three
useful relations on MCS’s, the successor relation ≺, the C-critical successor relation
≺C and the Box-inclusion relation ⊆2.

Definition 2.7

Let Γ and ∆ denote maximal ILX-consistent sets.

• Γ ≺ ∆ := 2A ∈ Γ ⇒ A,2A ∈ ∆

• Γ ≺C ∆ := A� C ∈ Γ ⇒ ¬A,2¬A ∈ ∆

• Γ ⊆2 ∆ := 2A ∈ Γ ⇒ 2A ∈ ∆

It is clear that Γ ≺C ∆ ⇒ Γ ≺ ∆. For, if 2A ∈ Γ then ¬A�⊥ ∈ Γ. Also ⊥�C ∈ Γ,
whence ¬A�C ∈ Γ. If now Γ ≺C ∆ then A,2A ∈ ∆, whence Γ ≺ ∆. It is also clear
that Γ ≺C ∆ ≺ ∆′ ⇒ Γ ≺C ∆′.

Lemma 2.8

Let Γ and ∆ denote maximal ILX-consistent sets. We have Γ ≺ ∆ iff Γ ≺⊥ ∆.

Proof. Above we have seen that Γ ≺A ∆ ⇒ Γ ≺ ∆. For the other direction suppose
now that Γ ≺ ∆. If A�⊥ ∈ Γ then, by Lemma 2.2.1, 2¬A ∈ Γ whence ¬A,2¬A ∈ ∆.

2.2 Semantics

Interpretability logics come with a Kripke-like semantics. As the signature of our
language is countable, we shall only consider countable models.

Definition 2.9

An IL-frame is a triple 〈W,R, S〉. Here W is a non-empty countable universe, R is a
binary relation on W and S is a set of binary relations on W , indexed by elements of
W . The R and S satisfy the following requirements.

1. R is conversely well-founded1

2. xRy & yRz → xRz

3. ySxz → xRy & xRz

4. xRy → ySxy

5. xRyRz → ySxz

6. uSxvSxw → uSxw

IL-frames are sometimes also called Veltman frames. We will on occasion speak of R
or Sx transitions instead of relations. If we write ySz, we shall mean that ySxz for
some x. W is sometimes called the universe, or domain, of the frame and its elements
are referred to as worlds or nodes. With x↾ we shall denote the set {y ∈ W | xRy}.
We will often represent S by a ternary relation in the canonical way, writing 〈x, y, z〉
for ySxz.

1A relation R on W is called conversely well-founded if every non-empty subset of W has an R-maximal element.
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Definition 2.10

An IL-model is a quadruple 〈W,R, S,
〉. Here 〈W,R, S, 〉 is an IL-frame and 
 is a
subset of W × Prop. We write w 
 p for 〈w, p〉 ∈ 
. As usual, 
 is extended to a

subset 
̃ of W × FormIL by demanding the following.

• w
̃p iff w 
 p for p ∈ Prop

• w 6 
̃⊥

• w
̃A→ B iff w 6 
̃A or w
̃B

• w
̃2A iff ∀v (wRv ⇒ v
̃A)

• w
̃A�B iff ∀u (wRu ∧ u
̃A⇒ ∃v (uSwv
̃B))

Note that 
̃ is completely determined by 
. Thus we will denote 
̃ also by 
. We
call 
 a forcing relation. The 
-relation depends on the model M . If necessary, we
will write M,w 
 ϕ, if not, we will just write w 
 ϕ. In this case we say that ϕ holds
at w, or that ϕ is forced at w. We say that p is in the range of 
 if w 
 p for some
w.

If F = 〈W,R, S〉 is an IL-frame, we will write x ∈ F to denote x ∈W and similarly
for IL-models. Attributes on F will be inherited by its constituent parts. For example
Fi = 〈Wi, Ri, Si〉. Often however we will write Fi |= xRy instead of Fi |= xRiy and
likewise for the S-relation. This notation is consistent with notation in first order
logic where the symbol R is interpreted in the structure Fi as Ri.

If M = 〈W,R, S,
〉, we say that M is based on the frame 〈W,R, S〉 and we call
〈W,R, S〉 its underlying frame.

If Γ is a set of formulas, we will write M,x 
 Γ as short for ∀ γ∈Γ M,x 
 γ. We
have similar reading conventions for frames and for validity.

Definition 2.11 (Generated Submodel)
Let M = 〈W,R, S,
〉 be an IL-model and let m ∈ M . We define m↾∗ to be the set
{x ∈ W | x=m ∨mRx}. By M↾m we denote the submodel generated by m defined
as follows.

M↾m := 〈m↾∗, R ∩ (m↾∗)2,
⋃

x∈m↾∗

Sx ∩ (m↾∗)2,
 ∩(m↾ ∗ ×Prop)〉

In other words, M↾m is simply the restriction of M to m↾∗.

Lemma 2.12 (Generated Submodel Lemma)
Let M be an IL-model and let m ∈ M . For all formulas ϕ and all x ∈ m↾∗ we have
that

M↾m,x 
 ϕ iff M,x 
 ϕ.

Proof. By an easy induction on the complexity of ϕ.

We say that an IL-model makes a formula ϕ true, and write M |= ϕ, if ϕ is forced
in all the nodes of M . In a formula we write

M |= ϕ :⇔ ∀w∈M w 
 ϕ.

If F = 〈W,R, S〉 is an IL-frame and 
 a subset of W × Prop, we denote by 〈W,
〉
the IL-model that is based on F and has forcing relation 
. We say that a frame F
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makes a formula ϕ true, and write F |= ϕ, if any model based on F makes ϕ true. In
a second-order formula:

F |= ϕ :⇔ ∀ 
 〈F,
〉 |= ϕ

We say that an IL-model or frame makes a scheme true if it makes all its instan-
tiations true. If we want to express this by a formula we should have a means to
quantify over all instantiations. For example, we could regard an instantiation of a
scheme X as a substitution σ carried out on X resulting in Xσ. We do not wish to be
very precise here, as it is clear what is meant. Our definitions thus read

F |= X iff ∀σ F |= Xσ

for frames F , and

M |= X iff ∀σ M |= Xσ

for models M . Sometimes we will also write F |= ILX for F |= X.
It turns out that checking the validity of a scheme on a frame is fairly easy. If X

is some scheme2, we call τ a base substitution when it sends different placeholders to
different propositional variables.

Lemma 2.13

Let X be a scheme, and τ be a corresponding base substitution as described above.
Let F be an IL-frame. We have

F |= Xτ ⇔ ∀σ F |= Xσ.

Proof. If ∀σ F |= Xσ, then certainly F |= Xτ , thus we should concentrate on the
other direction. Thus, assuming F |= Xτ we fix some σ and 
 and set out to prove
〈F,
〉 |= Xσ. We define another forcing relation 
′ on F by saying that for any place
holder A in X we have

w 
′ τ(A) :⇔ 〈F,
〉 |= σ(A)

By induction on the complexity of a subscheme3 Y of X we can now prove

〈F,
′〉, w 
′ Yτ ⇔ 〈F,
〉, w 
 Yσ.

By our assumption we get that 〈F,
〉, w 
 Xσ.

If χ is some formula in first, or higher, order predicate logic, we will evaluate F |= χ
in the standard way. In this case F is considered as a structure of first or higher order
predicate logic. We will not be too formal about these matters as the context will
always dict us which reading to choose.

Definition 2.14

Let X be a scheme of interpretability logic. We say that a formula C in first or higher
order predicate logic is a frame condition of X if

F |= C iff F |= X.

2Or a set of schemata. All of our reasoning generalizes without problems to sets of schemata. We will therefore

no longer mention the distinction.
3It is clear what this notion should be.
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The C in Definition 2.14 is also called the frame condition of the logic ILX. A
frame satisfying the ILX frame condition is often called an ILX-frame. In case no
such frame condition exists, an ILX-frame resp. model is just a frame resp. model,
validating X.

The semantics for interpretability logics is good in the sense that we have the
necessary soundness results.

Lemma 2.15 (Soundness)
IL ⊢ ϕ⇒ ∀F F |= ϕ

Proof. By induction on the length of an IL-proof of ϕ. The requirements on R and S
in Definition 2.9 are precisely such that the axiom schemata hold. Note that all axiom
schemata have their semantical counterpart except for the schema (A�C)∧(B�C) →
A ∨B � C.

Lemma 2.16 (Soundness)
Let C be the frame condition of the logic ILX. We have that

ILX ⊢ ϕ⇒ ∀F (F |= C ⇒ F |= ϕ).

Proof. As that of Lemma 2.15, plugging in the definition of the frame condition at
the right places. Note that we only need the direction F |= C ⇒ F |= X in the
proof.

Corollary 2.17

Let M be a model satisfying the ILX frame condition, and let m ∈M . We have that
Γ := {ϕ |M,m 
 ϕ} is a maximal ILX-consistent set.

Proof. Clearly ⊥ /∈ Γ. Also A ∈ Γ or ¬A ∈ Γ. By the soundness lemma, Lemma
2.16, we see that Γ is closed under ILX consequences.

Lemma 2.18

Let M be a model such that ∀w∈M w 
 ILX then ILX ⊢ ϕ⇒M |= ϕ.

Proof. By induction on the derivation of ϕ.

A modal logic ILX with frame condition C is called complete if we have the impli-
cation the other way round too. That is,

∀F (F |= C ⇒ F |= ϕ) ⇒ ILX ⊢ ϕ.

A major concern of this paper is the question whether a given modal logic ILX is
complete.

Definition 2.19

Γ 
ILX ϕ iff ∀M M |= ILX ⇒ (∀m∈M [M,m 
 Γ ⇒ M,m 
 ϕ])

Lemma 2.20

Let Γ be a finite set of formulas and let ILX be a complete logic. We have that
Γ ⊢ILX ϕ iff Γ 
ILX ϕ.

Proof. Trivial. By the deduction theorem Γ ⊢ILX ϕ ⇔⊢ILX

∧
Γ → ϕ. By our

assumption on completeness we get the result. Note that the requirement that Γ be
finite is necessary, as our modal logics are in general not compact (see also Section
3.1).
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Often we shall need to compare different frames or models. If F = 〈W,R, S〉 and
F ′ = 〈W ′, R′, S′〉 are frames, we say that F is a subframe of F ′ and write F ⊆ F ′, if
W ⊆W ′, R ⊆ R′ and S ⊆ S′. Here S ⊆ S′ is short for ∀w∈W (Sw ⊆ S′

w).

2.3 Arithmetic

As with (almost) all interesting occurrences of modal logic, interpretability logics are
used to study a hard mathematical notion. Interpretability logics, as their name
slightly suggests, are used to study the notion of formal interpretability. In this
subsection we shall very briefly say what this notion is and how modal logic is used
to study it.

We are interested in first order theories in the language of arithmetic. All theories
we will consider will thus be arithmetical theories. Moreover, we want our theories to
have a certain minimal strength. That is, they should contain a certain core theory,
say I∆0 + Ω1 from [13]. This will allow us to do reasonable coding of syntax. We call
these theories reasonable arithmetical theories.

Once we can code syntax, we can write down a decidable predicate ProofT (p, ϕ) that
holds on the standard model precisely when p is a T -proof of ϕ.4 We get a provability
predicate by quantifying existentially, that is, ProvT (ϕ) := ∃p ProofT (p, ϕ).

We can use these coding techniques to code the notion of formal interpretability
too. Roughly, a theory U interprets a theory V if there is some sort of translation so
that every theorem of V is under that translation also a theorem of U .

For a technically more transparent definition we will treat functions as relation
symbols for which the functionality axiom should hold.

Definition 2.21

Let U and V be reasonable arithmetical theories. An interpretation j from V in U is a
pair 〈δ, F 〉. Here, δ is called a domain specifier. It is a formula with one free variable.
The F is a map that sends an n-ary relation symbol of V to a formula of U with n free
variables. (We treat functions and constants as relations with additional properties.)
The interpretation j induces a translation from formulas ϕ of V to formulas ϕj of
U by replacing relation symbols by their corresponding formulas and by relativizing
quantifiers to δ. We have the following requirements.

• (R(~x))j = F (R)(~x)

• The translation induced by j commutes with the boolean connectives. Thus, for
example, (ϕ ∨ ψ)j = ϕj ∨ ψj . In particular (⊥)j = (∨∅)j = ∨∅ = ⊥

• (∀x ϕ)j = ∀x (δ(x) → ϕj)

• V ⊢ ϕ⇒ U ⊢ ϕj

We say that V is interpretable in U if there exists an interpretation j of V in U .

Using the ProvT (ϕ) predicate, it is possible to code the notion of formal interpre-
tability in arithmetical theories. This gives rise to a formula IntT (ϕ, ψ), to hold on
the standard model precisely when T + ψ is interpretable in T + ϕ. This formula is
related to the modal part by means of arithmetical realizations.

4We take the liberty to not make a distinction between a syntactical object and its code.



10 Modal Matters for Interpretability Logics

Definition 2.22

An arithmetical realization ∗ is a mapping that assigns to each propositional variable
an arithmetical sentence. This mapping is extended to all modal formulas in the
following way.

- (ϕ ∨ ψ)∗ = ϕ∗ ∨ ψ∗ and likewise for other boolean connectives. In particular
⊥∗ = (∨∅)∗ = ∨∅ = ⊥.

- (2ϕ)∗ = ProvT (ϕ∗)

- (ϕ� ψ)∗ = IntT (ϕ∗, ψ∗)

From now on, the ∗ will always range over realizations. Often we will write 2Tϕ
instead of ProvT (ϕ) or just even 2ϕ. The 2 can thus denote both a modal symbol
and an arithmetical formula. For the �-modality we adopt a similar convention. We
are confident that no confusion will arise from this.

Definition 2.23

An interpretability principle of a theory T is a modal formula ϕ that is provable in
T under any realization. That is, ∀ ∗ T ⊢ ϕ∗. The interpretability logic of a theory
T , we write IL(T), is the set of all interpretability principles.

Likewise, we can talk of the set of all provability principles of a theory T , denoted
by PL(T). Since the famous result by Solovay, PL(T) is known for a large class of
theories T .

Theorem 2.24 (Solovay [24])
PL(T) = GL for any reasonable arithmetical theory T .

For two classes of theories, IL(T) is known.

Definition 2.25

A theory T is reflexive if it proves the consistency of any of its finite subtheories. It
is essentially reflexive if any finite extension of it is reflexive.

Theorem 2.26 (Berarducci [3], Shavrukov [23])
If T is an essentially reflexive theory, then IL(T) = ILM.

Theorem 2.27 (Visser [28])
If T is finitely axiomatizable, then IL(T) = ILP.

Definition 2.28

The interpretability logic of all reasonable arithmetical theories, we write IL(All),
is the set of formulas ϕ such that ∀T ∀ ∗ T ⊢ ϕ∗. Here the T ranges over all the
reasonable arithmetical theories.

For sure IL(All) should be in the intersection of ILM and ILP. Up to now, IL(All)
is unknown. In [19] it is conjectured to be ILP0W

∗. It is one of the major open
problems in the field of interpretability logics, to characterize IL(All) in a modal way.

We conclude this subsection with a definition of the arithmetical hierarchy. This
definition is needed in the sequel to this paper.

Definition 2.29

Inductively the following classes of arithmetical formulae are defined.
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• Arithmetical formulas with only bounded quantifiers in it are called ∆0, Σ0 or
Π0-formulas.

• If ϕ is a Πn or Σn+1-formula, then ∃x ϕ is a Σn+1-formula.

• If ϕ is a Σn or Πn+1-formula, then ∀x ϕ is a Πn+1-formula.

Definition 2.30

Let ϕ be an arithmetical formula.

- ϕ ∈ Πn(T ) iff ∃π∈Πn T ⊢ ϕ↔ π

- ϕ ∈ Σn(T ) iff ∃σ∈Σn T ⊢ ϕ↔ σ

- ϕ ∈ ∆n(T ) iff ∃π∈Πn & ∃σ∈Σn T ⊢ (ϕ↔ π) ∧ (ϕ↔ σ)

Sometimes, if no confusion can arise, we will write Σn!-formulas instead of Σn-
formulas and Σn-formulas instead of Σn(T )-formulas.

3 General exposition of the construction method

A central result in this paper is given by a construction method that shall be worked
out in the next section. Most of the applications of this construction method deal with
modal completeness of a certain logic ILX. More precisely, showing that a logic ILX

is modally complete amounts to constructing, or finding, whenever ILX 6⊢ ϕ, a model
M of ILX and an x ∈ M such that M,x 
 ¬ϕ. We will employ our construction
method for this particular model construction.

In this section, we shall lay out the basic ideas which are involved in the construction
method. In particular, we will not always give precise definitions of the notions we
work with. All the definitions can be found in Section 4.

3.1 The main ingredients of the construction method

As we mentioned above, a modal completeness proof of a logic ILX amounts to a
uniform model construction to obtain M,x 
 ¬ϕ for ILX 6⊢ ϕ. If ILX 6⊢ ϕ, then {¬ϕ}
is an ILX-consistent set and thus, by a version of Lindenbaum’s Lemma (Lemma 2.6),
it is extendible to a maximal ILX-consistent set. On the other hand, once we have
an ILX-model M,x 
 ¬ϕ, we can find, by Corollary 2.17 a maximal ILX-consistent
set Γ with ¬ϕ ∈ Γ. This Γ can simply be defined as the set of all formulas that hold
at x.

To go from a maximal ILX-consistent set to a model is always the hard part. This
part is carried out in our construction method. In this method, the maximal consistent
set is somehow partly unfolded to a model.

Often in these sort of model constructions, the worlds in the model are MCS’s.
For propositional variables one then defines x 
 p iff. p ∈ x. In the setting of
interpretability logics it is sometimes inevitable to use the same MCS in different
places in the model.5 Therefore we find it convenient not to identify a world x with
a MCS, but rather label it with a MCS ν(x). However, we will still write sometimes
ϕ ∈ x instead of ϕ ∈ ν(x).

5As the truth definition of A�B has a ∀∃ character, the corresponding notion of bisimulation is rather involved.

As a consequence there is in general no obvious notion of a minimal bisimular model, contrary to the case of

provability logics. This causes the necessity of several occurrences of MCS’s.
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One complication in unfolding a MCS to a model lies in the incompactness of the
modal logics we consider. This, in turn, is due to the fact that some frame conditions
are not expressible in first order logic. As an example we can consider the following
set.6

Γ := {3p0} ∪ {2(pi → 3pi+1) | i ∈ ω}

Clearly, Γ is a GL-consistent set, as any finite part of it is satisfiable in some world
in some model. However, it is not hard to see that in no IL-model all of Γ can hold
simultaneously in some world in it.

If M is an ILX-model and x ∈ M , then {ϕ | M,x 
 ϕ} is a MCS. By definition
(and abuse of notation) we see that

∀x [x 
 ϕ iff. ϕ ∈ x].

We call this equivalence a truth lemma. (See for example Definition 4.5 for a more
precise formulation.) In all completeness proofs a model is defined or constructed
in which some form of a truth lemma holds. Now, by the observed incompactness
phenomenon, we can not expect that for every MCS, say Γ, we can find a model
“containing” Γ for which a truth lemma holds in full generality. There are various
ways to circumvent this complication. Often one considers truncated parts of maximal
consistent sets which are finite. In choosing how to truncate, one is driven by two
opposite forces.

On the one hand this truncated part should be small. It should be at least finite so
that the incompactness phenomenon is blocked. The finiteness is also a desideratum
if one is interested in the decidability of a logic.

On the other hand, the truncated part should be large. It should be large enough
to admit inductive reasoning to prove a truth lemma. For this, often closure under
subformulas and single negation suffices. Also, the truncated part should be large
enough so that MCS’s contain enough information to do the required calculation. For
this, being closed under subformulas and single negations does not, in general, suffice.
An examples of this sort of calculation is Lemma Lemma 6.19.

In our approach we take the best of both opposites. That is, we do not truncate at
all. Like this, calculation becomes uniform, smooth and relatively easy. However, we
demand a truth lemma to hold only for finitely many formulas.

The question is now, how to unfold the MCS containing ¬ϕ to a model where ¬ϕ
holds in some world. We would have such a model if a truth lemma holds w.r.t. a
finite set D containing ¬ϕ.

Proving that a truth lemma holds is usually done by induction on the complexity
of formulas. As such, this is a typical “bottom up” or “inside out” activity. On the
other hand, unfolding, or reading off, the truth value of a formula is a typical “top
down” or “outside in” activity.

Yet, we do want to gradually build up a model so that we get closer and closer to
a truth lemma. But, how could we possibly measure that we come closer to a truth
lemma? Either everything is in place and a truth lemma holds, or a truth lemma
does not hold, in which case it seems unclear how to measure to what extend it does
not hold.

6This example comes from Fine and Rautenberg and is treated in Chapter 7 of [5].
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The gradually building up a model will take place by consecutively adding bits and
pieces to the MCS we started out with. Thus somehow, we do want to measure that
we come closer to a truth lemma by doing so. Therefore, we switch to an alternative
forcing relation ‖∼ that follows the “outside in” direction that is so characteristic to
the evaluation of x 
 ϕ, but at the same time incorporates the necessary elements of
a truth lemma.

x‖∼p iff. p ∈ x for propositional variables p
x‖∼ϕ ∧ ψ iff. x‖∼ϕ & x‖∼ψ and likewise for

other boolean connectives
x‖∼ϕ� ψ iff. ∀y [xRy ∧ ϕ ∈ x→ ∃z (ySxz ∧ ψ ∈ z)]

If D is a set of sentences that is closed under subformulas and single negations, then
it is not hard to see that (see Lemma 4.9)

∀x∀ϕ∈D [x‖∼ϕ iff. ϕ ∈ x] (∗)

is equivalent to
∀x∀ϕ∈D [x 
 ϕ iff. ϕ ∈ x]. (∗∗)

Thus, if we want to obtain a truth lemma for a finite set D that is closed under single
negations and subformulas, we are done if we can obtain (∗). But now it is clear how
we can at each step measure that we come closer to a truth lemma. This brings us
to the definition of problems and deficiencies.

A problem is some formula ¬(ϕ � ψ) ∈ x ∩ D such that x‖6∼¬(ϕ � ψ). We define
a deficiency to be a configuration such that ϕ � ψ ∈ x ∩ D but x‖6∼ϕ � ψ. It now
becomes clear how we can successively eliminate problems and deficiencies.

A deficiency ϕ� ψ ∈ x∩D is a deficiency because there is some y (or maybe more
of them) with xRy, and ϕ ∈ y, but for no z with ySxz, we have ψ ∈ z. This can
simply be eliminated by adding a z with ySxz and ψ ∈ z.

A problem ¬(ϕ � ψ) ∈ x ∩ D can be eliminated by adding a completely isolated y
to the model with xRy and ϕ,¬ψ ∈ y. As y is completely isolated, ySxz ⇒ z = y
and thus indeed, it is not possible to reach a world where ψ holds. Now here is one
complication.

We want that a problem or a deficiency, once eliminated, can never re-occur. For
deficiencies this complication is not so severe, as the quantifier complexity is ∀∃. Thus,
any time “a deficiency becomes active”, we can immediately deal with it.

With the elimination of a problem, things are more subtle. When we introduced
y ∋ ϕ,¬ψ to eliminate a problem ¬(ϕ�ψ) ∈ x∩D, we did indeed eliminate it, as for
no z with ySxz we have ψ ∈ z. However, this should hold for any future expansion
of the model too. Thus, any time we eliminate a problem ¬(ϕ � ψ) ∈ x ∩ D, we
introduce a world y with a promise that in no future time we will be able to go to a
world z containing ψ via an Sx-transition. Somehow we should keep track of all these
promises throughout the construction and make sure that all the promises are indeed
kept. This is taken care of by our so called ψ-critical cones (see for example also [6]).
As ψ is certainly not allowed to hold in R-successors of y, it is reasonable to demand
that 2¬ψ ∈ y. (Where y was introduced to eliminate the problem ¬(ϕ�ψ) ∈ x∩D.)

Note that problems have quantifier complexity ∃∀. We have chosen to call them
problems due to their prominent existential nature.
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3.2 Some methods to obtain completeness

For modal logics in general, quite an arsenal of methods to obtain completeness is
available. For instance the standard operations on canonical models like path–coding
(unraveling), filtrations and bulldozing (see [4]). Or one can mention uniform methods
like the use of Shalqvist formulas or the David Lewis theorem [5]. A very secure
method is to construct counter models piece by piece. A nice example can be found
in [5], Chapter 10. In [15] and in [14] a step-by-step method is exposed in the setting
of universal algebras. New approximations of the model are given by moves in an
(infinite) game.

For interpretability logics the available methods are rather limited in number. In
the case of the basic logic IL a relatively simple unraveling works. Although ILM

does allow a same treatment, the proof is already much less clear. (For both proofs,
see [6]). However, for logics that contain ILM0 but not ILM it is completely unclear
how to obtain completeness via an unraveling and we are forced into more secure
methods like the above mentioned building of models piece by piece. And this is
precisely what we do in this paper.

Decidability and the finite model property are two related issues that more or less
seem to divide the landscape of interpretability logics into the same classes. That
is, the proof that IL has the finite model property is relatively easy. The same can
be said about ILM. For logics like ILM0 the issue seems much more involved and
a proper proof of the finite model property, if one exists at all, has not been given
yet. Alternatively, one could resort to other methods for showing decidability like the
Mosaic method [4].

4 The construction method

In this section we describe our construction method in full detail. Later sections are
applications of the construction method.

4.1 Preparing the construction

An ILX-labeled frame is just a Veltman frame in which every node is labeled by a
maximal ILX-consistent set and some R-transitions are labeled by a formula. R-
transitions labeled by a formula C indicate that some C-criticallity is essentially
present at this place.

Definition 4.1

An ILX-labeled frame is a quadruple 〈W,R, S, ν〉. Here 〈W,R, S〉 is an IL-frame and
ν is a labeling function. The function ν assigns to each x ∈ W a maximal ILX-
consistent set of sentences ν(x). To some pairs 〈x, y〉 with xRy, ν assigns a formula
ν(〈x, y〉).

If there is no chance of confusion we will just speak of labeled frames or even just
of frames rather than ILX-labeled frames. Labeled frames inherit all the terminology
and notation from normal frames. Note that an ILX-labeled frame need not be,
and shall in general not be, an ILX-frame. If we speak about a labeled ILX-frame
we always mean an ILX-labeled ILX-frame. To indicate that ν(〈x, y〉) = A we will
sometimes write xRAy or ν(x, y) = A.
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Formally, given F = 〈W,R, S, ν〉, one can see ν as a subset of (W ∪ (W ×W )) ×
(FormIL∪{Γ | Γ is a maximal ILX consistent set}) such that the following properties
hold.

- ∀x∈W (〈x, y〉 ∈ ν ⇒ y is a MCS)

- ∀ 〈x, y〉∈W ×W (〈〈x, y〉, z〉 ∈ ν ⇒ z is a formula)

- ∀x∈W∃y 〈x, y〉 ∈ ν

- ∀x, y, y′(〈x, y〉 ∈ ν ∧ 〈x, y′〉 ∈ ν → y = y′)

We will often regard ν as a partial function on W ∪ (W ×W ) which is total on W
and which has its values in FormIL ∪ {Γ | Γ is a maximal ILX consistent set}. Thus,
from now on, we shall stick to the notation ν(x, y) = C.

Remark 4.2

Every ILX-labeled frame F = 〈W,R, S, ν〉 can be transformed to an IL-model F in

a uniform way by defining for propositional variables p the valuation as F , x 
 p iff.
p ∈ ν(x). By Corollary 2.17 we can also regard any model M satisfying the ILX

frame condition7 as an ILX-labeled frame M by defining ν(m) := {ϕ |M,m 
 ϕ}.

We sometimes refer to F as the model induced by the frame F . Alternatively we
will speak about the model corresponding to F . Note that for ILX-models M, we

have M = M , but in general8 F 6= F for ILX-labeled frames F .
The following definition is tailored to follow C-critical successors that we will in-

troduce during our construction process. The critical cones will be used to guarantee
that some world that was introduced to be a C-critical successor, will always remain
C-critical.

Definition 4.3

Let x be a world in some ILX-labeled frame 〈W,R, S, ν〉. The C-critical cone above

x, we write CC
x , is defined inductively as

• ν(〈x, y〉) = C ⇒ y ∈ CC
x

• x′ ∈ CC
x & x′Sxy ⇒ y ∈ CC

x

• x′ ∈ CC
x & x′Ry ⇒ y ∈ CC

x

Definition 4.4

Let x be a world in some ILX-labeled frame 〈W,R, S, ν〉. The generalized C-cone

above x, we write GC
x , is defined inductively as

• y ∈ CC
x ⇒ y ∈ GC

x

• x′ ∈ GC
x & x′Swz ⇒ z ∈ GC

x for arbitrary w

• x′ ∈ GC
x & x′Ry ⇒ y ∈ GC

x

It follows directly from the definition that the C-critical cone above x is part of the
generalized C-cone above x. So, if GB

x ∩ GC
x = ∅, then certainly CB

x ∩ CC
x = ∅.

We also note that there is some redundancy in Definitions 4.3 and 4.4. The last
clause in the inductive definitions demands closure of the cone under R-successors.

7We could even say, any ILX-model.
8It is easily seen that the reason for this inequality is the fourth requirement in our formal definition of ν.
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But from Definition 2.9.5 closure of the cone under R follows from closure of the cone
under Sx. We have chosen to explicitly adopt the closure under the R. In doing so,
we obtain a notion that serves us also in the environment of so-called quasi frames
(see Definition 5.1) in which not necessarily (x↾)2 ∩R ⊆ Sx.

Definition 4.5

Let F = 〈W,R, S, ν〉 be a labeled frame and let F be the induced IL-model. Further-
more, let D be some set of sentences. We say that a truth lemma holds in F with

respect to D if ∀A∈D ∀x∈F

F , x 
 A⇔ A ∈ ν(x).

If there is no chance of confusion we will omit some parameters and just say “a
truth lemma holds at F” or even “a truth lemma holds”. The following definitions
give us a means to measure how far we are away from a truth lemma.

Definition 4.6 (Temporary definition)
9 Let D be some set of sentences and let F = 〈W,R, S, ν〉 be an ILX-labeled frame.
A D-problem is a pair 〈x,¬(A �B)〉 such that ¬(A �B) ∈ ν(x) ∩ D and for every y
with xRy we have [A ∈ ν(y) ⇒ ∃z (ySxz ∧B ∈ ν(z))].

Definition 4.7 (Deficiencies)
Let D be some set of sentences and let F = 〈W,R, S, ν〉 be an ILX-labeled frame. A
D-deficiency is a triple 〈x, y, C �D〉 with xRy, C �D ∈ ν(x)∩D, and C ∈ ν(y), but
for no z with ySxz we have D ∈ ν(z).

If the set D is clear or fixed, we will just speak about problems and deficiencies.

Definition 4.8

Let A be a formula. We define the single negation of A, we write ∼A, as follows. If
A is of the form ¬B we define ∼A to be B. If A is not a negated formula we set
∼A := ¬A.

The next lemma shows that a truth lemma w.r.t. D can be reformulated in the
combinatoric terms of deficiencies and problems. (See also the equivalence of (∗) and
(∗∗) in Section 3.)

Lemma 4.9

Let F = 〈W,R, S, ν〉 be a labeled frame, and let D be a set of sentences closed under
single negation and subformulas. A truth lemma holds in F w.r.t. D iff. there are no
D-problems nor D-deficiencies.

Proof. The proof is really very simple and precisely shows the interplay between all
the ingredients.

The labeled frames we will construct are always supposed to satisfy some minimal
reasonable requirements. We summarize these in the notion of adequacy.

Definition 4.10 (Adequate frames)
A frame is called adequate if the following conditions are satisfied.

1. xRy ⇒ ν(x) ≺ ν(y)

9We will eventually work with Definition 4.11.
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2. A 6= B ⇒ GA
x ∩ GB

x = ∅

3. y ∈ CA
x ⇒ ν(x) ≺A ν(y)

If no confusion is possible we will just speak of frames instead of adequate labeled
frames. As a matter of fact, all the labeled frames we will see from now on will be
adequate. In the light of adequacy it seems reasonable to work with a slightly more
elegant definition of a D-problem.

Definition 4.11 (Problems)
Let D be some set of sentences. A D-problem is a pair 〈x,¬(A � B)〉 such that

¬(A�B) ∈ ν(x) ∩D and for no y ∈ CB
x we have A ∈ ν(y).

From now on, this will be our working definition. Clearly, on adequate labeled
frames, if 〈x,¬(A�B)〉 is not a problem in the new sense, it is not a problem in the
old sense.

Remark 4.12

It is also easy to see that the we still have the interesting half of Lemma 4.9. Thus,
we still have, that a truth lemma holds if there are no deficiencies nor problems.

To get a truth lemma we have to somehow get rid of problems and deficiencies.
This will be done by adding bits and pieces to the original labeled frame. Thus the
notion of an extension comes into play.

Definition 4.13 (Extension)
Let F = 〈W,R, S, ν〉 be a labeled frame. We say that F ′ = 〈W ′, R′, S′, ν′〉 is an
extension of F , we write F ⊆ F ′, if W ⊆ W ′ and the relations in F ′ restricted to F
yield the corresponding relations in F .

More formally, the requirements on the restrictions in the above definition amount
to saying that for x, y, z ∈ F we have the following.

- xR′y iff. xRy

- yS′
xz iff. ySxz

- ν′(x) = ν(x)

- ν′(〈x, y〉) is defined iff. ν(〈x, y〉) is defined, and in this case ν′(〈x, y〉) = ν(〈x, y〉).

A problem in F is said to be eliminated by the extension F ′ if it is no longer a
problem in F ′. Likewise we can speak about elimination of deficiencies.

Definition 4.14 (Depth)
The depth of a finite frame F , we will write depth(F ) is the maximal length of se-
quences of the form x0R . . .Rxn. (For convenience we define max(∅) = 0.)

Definition 4.15 (Union of Bounded Chains)
An indexed set {Fi}i∈ω of labeled frames is called a chain if for all i, Fi ⊆ Fi+1. It is
called a bounded chain if for some number n, depth(Fi) ≤ n for all i ∈ ω. The union

of a bounded chain {Fi}i∈ω of labeled frames Fi is defined as follows.

∪i∈ωFi := 〈∪i∈ωWi,∪i∈ωRi,∪i∈ωSi,∪i∈ωνi〉

It is clear why we really need the boundedness condition. We want the union to
be an IL-frame. So, certainly R should be conversely well-founded. This can only be
the case if our chain is bounded.
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4.2 The main lemma

We now come to the main motor behind many results. It is formulated in rather
general terms so that it has a wide range of applicability. As a draw-back, we get
that any application still requires quite some work.

Lemma 4.16 (Main Lemma)
Let ILX be an interpretability logic and let C be a (first or higher order) frame
condition such that for any IL-frame F we have

F |= C ⇒ F |= X.

Let D be a finite set of sentences. Let I be a set of so-called invariants of labeled
frames so that we have the following properties.

• F |= IU ⇒ F |= C, where IU is that part of I that is closed under bounded unions
of labeled frames.

• I contains the following invariant: xRy → ∃A∈(ν(y) \ ν(x)) ∩ {2¬D | D a
subformula of some B ∈ D}.

• For any adequate labeled frame F , satisfying all the invariants, we have the follo-
wing.
– Any D-problem of F can be eliminated by extending F in a way that conserves

all invariants.
– Any D-deficiency of F can be eliminated by extending F in a way that conserves

all invariants.

In case such a set of invariants I exists, we have that any ILX-labeled adequate
frame F satisfying all the invariants can be extended to some labeled adequate ILX-
frame F̂ on which a truth-lemma with respect to D holds.

Moreover, if for any finite D that is closed under subformulas and single negations,
a corresponding set of invariants I can be found as above and such that moreover I
holds on any one-point labeled frame, we have that ILX is a complete logic.

Proof. We shall first give a short version of the proof which is more readable. Howe-
ver, as this lemma is key to this paper, we shall also present a version of the proof
including more detail.

Short version of the proof: By subsequently eliminating problems and deficien-
cies by means of extensions. These elimination processes have to be robust in the
sense that every problem or deficiency that has been dealt with, should not possibly
re-emerge. But, the requirements of the lemma almost immediately imply this.

For the second part of the Main Lemma, we suppose that for any finite set D
closed under subformulas and single negations, we can find a corresponding set of
invariants I. If now, for any such D, all the corresponding invariants I hold on
any one-point labeled frame, we are to see that ILX is a complete logic, that is,
ILX 0 A⇒ ∃M (M |= X & M |= ¬A).

But this just follows from the above. If ILX 0 A, we can find a maximal ILX-
consistent set Γ with ¬A ∈ Γ. Let D be the smallest set that contains ¬A and is closed
under subformulas and single negations and consider the invariants corresponding to
D. The labeled frame F := 〈{x},∅,∅, 〈x,Γ〉〉 can thus be extended to a labeled
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adequate ILX-frame F̂ on which a truth lemma with respect to D holds. Thus

certainly F̂ , x 
 ¬A, that is, A is not valid on the model induced by F̂ . This ends
the short version of the proof.

More detailed version of the proof: So, let ILX, D, C and I be given so that the
requirements of the lemma are satisfied. We first proof that every labeled adequate
frame F satisfying all the invariants can be extended to a labeled adequate ILX-frame
F̂ on which a truth lemma w.r.t. D holds.

In the light of Lemma 4.9 and of Remark 4.12 we are done if we can find an extension
of F where no D-problems nor D-deficiencies occur.

Actually, we will assume that D is closed under subformulas and single negations.
If D does not have these closure properties, we can first close D off to get a set D′ that
does have the closure properties. Clearly D′ is also a finite set. Thus, without loss of
generality we may assume that D is closed under subformulas and single negations.
In this case {2¬D | D a subformula of some B ∈ D} = {2¬D | D ∈ D} = {2D |
D ∈ D}, where the last equality is not really an equality but rather some sort of
equivalence.

The idea of the proof is very simple. We start with F0 := F and consider some
deficiency or problem in it. We eliminate this problem or deficiency by extending
F0 to F1. Next we consider some problem or deficiency in F1 and eliminate it by
extending F1 to F2. Proceeding like this we get a (possibly) infinite chain.

F = F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ ∪i∈ωFi =: F̂ (i)

As we shall see, this F̂ will be our required extension of F if we choose our intermediate
Fi right. At this moment we can point out four points of attention.

1. Newly created problems and deficiencies should also at some point be eliminated.

2. Problems and deficiencies that have been eliminated, should not come back at a
later stage.

3. The chain (i) should be a bounded chain.

4. The limit should be an adequate labeled ILX-frame containing no problems and
no deficiencies.

We now see how these points get incorporated in the construction.
Point 1 is really not problematic. We can just take care of it by fixing some

enumeration of problems and deficiencies. To this extend, we fix a countable infinite
set of names X := {x0, x1, . . .} for our current and future worlds. Every world in
some Fi will be some x ∈ X . Next we consider the set A := {〈x,¬(A � B)〉 | x ∈
X,¬(A�B) ∈ D}∪{〈x, y, C�D〉 | x, y ∈ X,C�D ∈ D} and we fix some enumeration
on A. If we are to choose at a certain stage some deficiency or problem to eliminate,
we just pick the least (with respect to the enumeration order) element of A that is
indeed a problem or a deficiency. If we now know that problems and deficiencies,
once dealt with, will never re-occur, we are sure that we come higher and higher in
the enumeration of A. Point 2 precisely deals with the robustness of the elimination
method.
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Point 2. It is easy to see that deficiencies, once eliminated by means of an extensi-
on, will never re-occur. Consider C�D ∈ ν(x) and C ∈ ν(y) and xRy. If 〈x, y, C�D〉
is a deficiency in Fi that is eliminated at this stage, it will be eliminated by adding
(at least) a new element z to Fi. Thus, Fi+1 will contain z with D ∈ ν(z) and ySxz.
This world z will also be in all extensions of Fi+1.

To see that we can eliminate problems in such a way, so that they will never re-
occur, we have to be a bit more precise. Let 〈x,¬(A � B)〉 be a problem of Fi that
will be eliminated in Fi+1. Thus, some y ∈ CB

x is added with A ∈ ν(y). We need to
see that in no Fj , j ≥ i + 1 there is a z with ySxz and B ∈ ν(z). But if ySxz, we
have by the definition of CB

x that z ∈ CB
x . By adequacy we see that10 x ≺B z and

thus ¬B ∈ ν(z).
Point 3. We should provide a bound on depth(()Fi) of the elements of our chain

(i). This is taken care of by the invariant xRy → ∃A∈(ν(y) \ ν(x)) ∩ {2¬D |
D a subformula of some B ∈ D}. Clearly, if in some Fi we have that x0Rx1R . . .Rxm

we have that m ≤ |D|.
Point 4. We should have that F̂ := ∪i∈ωFi is a labeled adequate ILX-frame.

For adequacy we should check a list of items. Amongst these are: transitivity of R,
conversely well-foundedness of R, reflexivity and transitivity of Sx, xRyRz → ySxz,
ySxz → xRz. It is completely straightforward to show that these properties are
preserved under taking bounded unions of chains. As F̂ |= IU , we get from our
assumption that F̂ |= C and thus F̂ is an ILX-frame. Clearly F̂ can not have any
problems or deficiencies and thus a truth lemma holds in F̂ with respect to D.

This proves the first part of the Main Lemma.

We will now prove the second part of the Main Lemma. Thus, we suppose that
for any finite set D closed under subformulas and single negations, we can find a
corresponding set of invariants I. If now, for any such D, all the corresponding
invariants I hold on any one-point labeled frame, we are to see that ILX is a complete
logic, that is, ILX 0 A ⇒ ∃M (M |= X & M |= ¬A). But this just follows from
the above. If ILX 0 A, we can find a maximal ILX-consistent set Γ with ¬A ∈ Γ.
Let D be the smallest set that contains ¬A and is closed under subformulas and
single negations and consider the invariants corresponding to D. The labeled frame
F := 〈{x},∅,∅, 〈x,Γ〉〉 can thus be extended to a labeled adequate ILX-frame F̂ on

which a truth lemma with respect to D holds. Thus certainly F̂ , x 
 ¬A, that is, A
is not valid on the model induced by F̂ .

The construction method can also be used to obtain decidability via the finite model
property. In such a case, one should re-use worlds that were introduced earlier in the
construction.

The following two lemmata indicate how good labels can be found for the elimina-
tion of problems and deficiencies.

Lemma 4.17

Let Γ be a maximal ILX-consistent set such that ¬(A�B) ∈ Γ. Then there exists a
maximal ILX-consistent set ∆ such that Γ ≺B ∆ ∋ A,2¬A.

10This is actually the only property of adequacy that is used in the proof of the main lemma.
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Proof. So, consider ¬(A �B) ∈ Γ, and suppose that no required ∆ exists. We can
then find a11 formula C for which C �B ∈ Γ such that

¬C,2¬C,A,2¬A ⊢ILX ⊥.

Consequently

⊢ILX A ∧ 2¬A→ C ∨ 3C

and thus, by Lemma 2.2, also ⊢ILX A� C. But as C �B ∈ Γ, also A�B ∈ Γ. This
clearly contradicts the consistency of Γ.

For deficiencies there is a similar lemma.

Lemma 4.18

Consider C �D ∈ Γ ≺B ∆ ∋ C. There exists ∆′ with Γ ≺B ∆′ ∋ D,2¬D.

Proof. Suppose for a contradiction that C �D ∈ Γ ≺B ∆ ∋ C and there does not
exist a ∆′ with Γ ≺B ∆′ ∋ D,2¬D. Taking the contraposition of Lemma 4.17 we get
that ¬(D �B) /∈ Γ, whence D�B ∈ Γ and also C �B ∈ Γ. This clearly contradicts
the consistency of ∆ as Γ ≺B ∆ ∋ C.

4.3 Completeness and the main lemma

The main lemma provides a powerful method for proving modal completeness. In
several cases it is actually the only known method available.

Remark 4.19

A modal completeness proof for an interpretability logic ILX is by the main lemma
reduced to the following four ingredients.

• Frame Condition Providing a frame condition C and a proof that

F |= C ⇒ F |= ILX.

• Invariants Given a finite set of sentences D (closed under subformulas and sin-
gle negations), providing invariants I that hold for any one-point labeled frame.
Certainly I should contain xRy → ∃A∈(ν(y) \ ν(x)) ∩ {2D | D ∈ D}.

• elimination

– Problems Providing a procedure of elimination by extension for problems in
labeled frames that satisfy all the invariants. This procedure should come with
a proof that it preserves all the invariants.

– Deficiencies Providing a procedure of elimination by extension for deficiencies
in labeled frames that satisfy all the invariants. Also this procedure should come
with a proof that it preserves all the invariants.

• Rounding up A proof that for any bounded chain of labeled frames that satisfy
the invariants, automatically, the union satisfies the frame condition C of the logic.

11Writing out the definition and by compactness, we get a finite number of formulas C1, . . . , Cn with Ci �B ∈ Γ,

such that ¬C1, . . . , ¬Cn, 2¬C1, . . . , 2¬Cn, A, 2¬A ⊢ILX ⊥. We can now take C := C1 ∨ . . . ∨ Cn. Clearly, as all

the Ci � B ∈ Γ, also C � B ∈ Γ.
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The completeness proofs that we will present will all have the same structure, also
in their preparations. As we will see, eliminating problems is more elementary than
eliminating deficiencies.

As we already pointed out, we eliminate a problem by adding some new world
plus an adequate label to the model we had. Like this, we get a structure that need
not even be an IL-model. For example, in general, the R relation is not transitive.
To come back to at least an IL-model, we should close off the new structure under
transitivity of R and S et cetera. This closing off is in its self an easy and elementary
process but we do want that the invariants are preserved under this process. Therefore
we should have started already with a structure that admitted a closure. Actually in
this paper we will always want to obtain a model that satisfies the frame condition
of the logic. In order to keep control over the closing off of a structure under certain
frame conditions, we shall resort to so-called quasi frames.

The preparations to a completeness proof in this paper thus have the following
structure.

• Determining a frame condition for ILX and a corresponding notion of an ILX-
frame.

• Defining a notion of a quasi ILX-frame.

• Defining some notions that remain constant throughout the closing of quasi ILX-
frames, but somehow capture the dynamic features of this process.

• Proving that a quasi ILX-frame can be closed off to an adequate labeled ILX-
frame.

• Preparing the elimination of deficiencies.

The most difficult job in a the completeness proofs we present in this paper, was in
finding correct invariants and in preparing the elimination of deficiencies. Once this
is fixed, the rest follows in a rather mechanical way. Especially the closure of quasi
ILX-frames to adequate ILX-frames is a very laborious enterprise.

5 The logic IL

The modal logic IL has been proved to be modally complete in [8]. We shall reprove
the completeness here using the main lemma.

The completeness proof of IL can be seen as the mother of all our completeness
proofs in interpretability logics. Not only does it reflect the general structure of
applications of the Main Lemma clearly, also it so that we can use large parts of the
preparations to the completeness proof of IL in other proofs too. Especially closability
proofs are cumulative. Thus, we can use the lemma that any quasi-frame is closable
to an adequate frame, in any other completeness proof.

5.1 Preparations

Definition 5.1

A quasi-frame G is a quadruple 〈W,R, S, ν〉. Here W is a non-empty set of worlds,
and R a binary relation on W . S is a set of binary relations on W indexed by elements
of W . The ν is a labeling as defined on labeled frames. Critical cones and generalized
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cones are defined just in the same way as in the case of labeled frames. G should
posess the following properties.

1. R is conversely well-founded

2. ySxz → xRy & xRz

3. xRy → ν(x) ≺ ν(y)

4. A 6= B → GA
x ∩ GB

x = ∅

5. y∈CA
x → ν(x) ≺A ν(y)

Clearly, adequate labeled frames are special cases of quasi frames. Quasi-frames
inherit all the notations from labeled frames. In particular we can thus speak of
chains and the like.

Lemma 5.2 (IL-closure)
Let G = 〈W,R, S, ν〉 be a quasi-frame. There is an adequate IL-frame F extending
G. That is, F = 〈W,R′, S′, ν〉 with R ⊆ R′ and S ⊆ S′.

Proof. We define an imperfection on a quasi-frame Fn to be a tuple γ having one of
the following forms.

(i) γ = 〈0, a, b, c〉 with Fn |= aRbRc but Fn 6|= aRc

(ii) γ = 〈1, a, b〉 with Fn |= aRb but Fn 6|= bSab

(iii) γ = 〈2, a, b, c, d〉 with Fn |= bSacSad but not Fn |= bSad

(iv) γ = 〈3, a, b, c〉 with Fn |= aRbRc but Fn 6|= bSac

Now let us start with a quasi-frame G = 〈W,R, S, ν〉. We will define a chain of quasi-
frames. Every new element in the chain will have at least one imperfection less than
its predecessor. The union will have no imperfections at all. It will be our required
adequate IL-frame.

Let <0 be the well-ordering on

C := ({0} ×W 3) ∪ ({1} ×W 2) ∪ ({2} ×W 4) ∪ ({3} ×W 3)

induced by the occurrence order in some fixed enumeration of C. We define our chain
to start with
F0 := G. To go from Fn to Fn+1 we proceed as follows. Let γ be the <0-minimal

imperfection on Fn. In case no such γ exists we set Fn+1 := Fn. If such a γ does
exist, Fn+1 is as dicted by the case distinctions.

(i) Fn+1 := 〈Wn, Rn ∪ {〈a, c〉}, Sn, νn〉

(ii) Fn+1 := 〈Wn, Rn, Sn ∪ {〈a, b, b〉}, νn〉

(iii) Fn+1 := 〈Wn, Rn, Sn ∪ {〈a, b, d〉}, νn〉

(iv) Fn+1 := 〈Wn, Rn ∪ {〈a, c〉}, Sn ∪ {〈a, b, c〉}, νn〉

By an easy but elaborate induction, we can see that each Fn is a quasi-frame. The
induction boils down to checking for each case (i)-(iv) that all the properties (1)-(5)
from Definition 5.1 remain valid.

Instead of proving (4) and (5), it is better to prove something stronger, that is,
that the critical and generalized cones remain unchanged.
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4’. ∀n [Fn+1 |= y∈GA
x ⇔ Fn |= y∈GA

x ]

5’. ∀n [Fn+1 |= y∈CA
x ⇔ Fn |= y∈CA

x ]

Next, it is not hard to prove that F := ∪i∈ωFi is the required adequate IL-frame.
To this extent, the following properties have to be checked. All properties have easy
proofs.

(a.) W is the domain of F (g.) F |= xRy → ySxy
(b.) R0 ⊆ ∪i∈ωRi (h.) F |= xRyRz → ySxz
(c.) S0 ⊆ ∪i∈ωSi (i.) F |= uSxvSxw → uSxw
(d.) R is conv. wellfounded on F (j.) F |= xRy ⇒ ν(x) ≺ ν(y)
(e.) F |= xRyRz → xRz (k.) A 6= B ⇒ F |= GA

x ∩ GB
x = ∅

(f.) F |= ySxz → xRy & xRz (l.) F |= y∈CA
x ⇒ ν(x) ≺A ν(y)

We note that the IL-frame F ⊇ G from above is actually the minimal one extending
G. If in the sequel, if we refer to the closure given by the lemma, we shall mean this
minimal one. Also do we note that the proof is independent on the enumeration
of C and hence the order <0 on C. The lemma can also be applied to non-labeled
structures. If we drop all the requirements on the labels in Definition 5.1 and in
Lemma 5.2 we end up with a true statement about just the old IL-frames.

Lemma 5.2 also allows a very short proof running as follows. Any intersection of
adequate IL-frames with the same domain is again an adequate IL-frame. There is
an adequate IL-frame extending G. Thus by taking intersections we find a minimal
one. We have chosen to present our explicit proof as they allow us, now and in the
sequel, to see which properties remain invariant.

Corollary 5.3

Let D be a finite set of sentences, closed under subformulas and single negations. Let
G = 〈W,R, S, ν〉 be a quasi-frame on which

xRy → ∃A∈((ν(y) \ νx) ∩ {2D | D ∈ D}) (∗)

holds. Then, property (∗) does also hold on the IL-closure F of G.

Proof. We can just take the property along in the proof of Lemma 5.2. In Case (i)
and (iv) we note that aRbRc→ ν(a) ⊆2 ν(c). Thus, if A∈((ν(c) \ ν(b)) ∩ {2D | D ∈
D}), then certainly A 6∈ ν(a).

We have now done all the preparations for the completeness proof. Normally, also a
lemma is needed to deal with deficiencies. But in the case of IL, Lemma 4.18 suffices.

5.2 Modal completeness

Theorem 5.4

IL is a complete logic.

Proof. We specify the four ingredients mentioned in Remark 4.19.
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Frame Condition For IL, the frame condition is empty, that is, every frame is an
IL frame.

Invariants Given a finite set of sentences D closed under subformulas and single
negation, the only invariant is xRy → ∃A∈(ν(y) \ ν(x)) ∩ {2D | D ∈ D}. Clearly
this invariant holds on any one-point labeled frame.

Elimination So, let F := 〈W,R, S, ν〉 be a labeled frame satisfying the invariant.
We will see how to eliminate both problems and deficiencies while conserving the
invariant.

Problems Any problem 〈a,¬(A�B)〉 of F will be eliminated in two steps.

1. With Lemma 4.17 we find ∆ with ν(a) ≺B ∆ ∋ A,2¬A. We fix some b /∈ W . We
now define

G′ := 〈W ∪ {b}, R ∪ {〈a, b〉}, S, ν ∪ {〈b,∆〉, 〈〈a, b〉, B〉}〉.

It is easy to see that G′ is actually a quasi-frame. Note that if G′ |= xRb, then
x must be a and whence ν(x) ≺ ν(b) by definition of ν(b). Also it is not hard to
see that if b ∈ CC

x for x6=a, that then ν(x) ≺C ν(b). For, b ∈ CC
x implies a ∈ CC

x

whence ν(x) ≺C ν(a). By ν(a) ≺ ν(b) we get that ν(x) ≺C ν(b). In case x=a we
see that by definition b ∈ CB

a . But, we have chosen ∆ so that ν(a) ≺B ν(b). We
also see that G′ satisfies the invariant as 2¬A ∈ ν(b) \ ν(a) and ∼ A ∈ D.

2. With Lemma 5.2 we extend G′ to an adequate labeled IL-frame G. Corollary 5.3
tells us that the invariant indeed holds at G. Clearly 〈a,¬(A�B)〉 is no longer a
problem in G.

Deficiencies. Again, any deficiency 〈a, b, C � D〉 in F will be eliminated in two
steps.

1. We first define B to be the formula such that b ∈ CB
a . If such a B does not

exist, we take B to be ⊥. Note that if such a B does exist, it must be unique
by Property 4 of Definition 5.1. By Lemma 4.18 we can now find a ∆′ such that
ν(a) ≺B ∆′ ∋ D,2¬D. We fix some c 6∈W and define

G′ := 〈W,R ∪ {a, c}, S ∪ {a, b, c}, ν ∪ {c,∆′}〉.

Again it is not hard to see that G′ is a quasi-frame that satisfies the invariant.
Clearly R is conversely well-founded. The only new S in G′ is bSac, but we also
defined aRc. We have chosen ∆′ such that ν(a) ≺B ν(c). Clearly 2¬D 6∈ ν(a).

2. Again, G′ is closed off under the frame conditions with Lemma 5.2. Again we
note that the invariant is preserved in this process. Clearly 〈a, b, C �D〉 is not a
deficiency in G.

Rounding up Clearly the union of a bounded chain of IL-frames is again an
IL-frame.
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It is well known that IL has the finite model property and whence is decidable. With
some more effort however we could have obtained the finite model property using the
Main Lemma. We have chosen not to do so, as for our purposes the completeness via
the construction method is sufficient.

Also, to obtain the finite model property, one has to re-use worlds during the
construction method. The constraints on which worlds can be re-used differ from logic
to logic. One aim of this section was to prove some results on a construction that is
present in all other completeness proofs too. Therefore we needed some uniformity
and did not want to consider re-using of worlds.

6 The logic ILM0

This section is devoted to showing the following theorem.

Theorem 6.1

ILM0 is a complete logic.

It turns out that the modal frame condition of ILM0 gives rise to a bewildering
structure of possible models that seems very hard to tame. As M0 is in IL(All), it is
important that the class of ILM0-frames is well understood. For a long time ILW∗

has been conjectured ([29]) to be IL(All). A first step in proving this conjecture
would have been a modal completeness proof of ILW∗.

It is well known that ILW∗ is the union of ILW and ILM0, see Lemma 7.3. The
modal completeness of ILW was proved in [9]. So, the missing link was a modal
completeness proof for ILM0. In [18] a proof sketch of this completeness result was
given. In this paper we give for the first time a fully detailed proof.

In the light of Remark 4.19 a proof of Theorem 6.1 boils down to giving the four
ingredients mentioned there. Sections 6.3, 6.4, 6.5, 6.6 and 6.7 below contain those
ingredients. Before these main sections, we have in Section 6.2 some preliminaries.
We start in Section 6.1 with an overview of the difficulties we encounter during the
application of the construction method to ILM0.

6.1 Overview of difficulties

In the construction method we repeatedly eliminate problems and deficiencies by
extensions that satisfy all the invariants. During these operations we need to keep
track of two things.

1. If x has been added to solve a problem in w, say ¬(A � B) ∈ ν(w). Then for all
y such that xSwy we have ν(w) ≺B ν(y).

2. If wRx then ν(w) ≺ ν(x)

Item 1. does not impose any direct difficulties. But some do emerge when we try
to deal with the difficulties concerning Item 2. So let us see why it is difficult to
ensure 2. Suppose we have wRxRySwy

′Rz. The M0–frame condition (Theorem 6.22)
requires that we also have xRz. So, from 2. and the M0–frame condition we obtain
wRxRySwy

′Rz → ν(x) ≺ ν(z). A sufficient (and in certain sense necessary) condition
is,

wRxRySwy
′ → ν(x) ⊆2 ν(y′).
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Fig. 1. A deficiency in w w.r.t. y

Let us illustrate some difficulties concerning this condition by some examples. Con-
sider the left model in Figure 1. That is, we have a deficiency in w w.r.t. y. Namely,
C � D ∈ ν(w) and C ∈ ν(y). If we solve this deficiency by adding a world y′, we
thus require that for all x such that wRxRy we have ν(x) ⊆2 ν(y′). This difficulty is
partially handled by Lemma 6.2 below. We omit a proof, but it can easily be given
by replacing in the corresponding lemma for ILM, applications of the M-axiom by
applications of the M0-axiom.

Lemma 6.2

Let Γ,∆ be MCS’s such that C �D ∈ Γ, Γ ≺A ∆ and 3C ∈ ∆. Then there exists
some ∆′ with Γ ≺A ∆′, 2¬D,D ∈ ∆′ and ∆ ⊆2 ∆′.

Let us now consider the right most model in Figure 1. We have at least for two
different worlds x, say x0 and x1, that wRxRy. Lemma 6.2 is applicable to ν(x0) and
ν(x1) separately but not simultaneously. In other words we find y′0 and y′1 such that
ν(x0) ⊆2 ν(y′0) and ν(x1) ⊆2 ν(y′1). But we actually want one single y′ such that
ν(x0) ⊆2 ν(y′) and ν(x1) ⊆2 ν(y′). We shall handle this difficulty by ensuring that
it is enough to consider only one of the worlds in between w and y. To be precise, we
shall ensure ν(x′) ⊆2 ν(x) or ν(x) ⊆2 ν(x′).

But now some difficulties concerning Item 1. occur. In the situations in Figure 1 we
were asked to solve a deficiency in w w.r.t. y. As usual, if w ≺A y then we should be
ably to choose a solution y′ such that w ≺A y′. But Lemma 6.2 takes only criticallity
of x w.r.t. w into account. This issue is solved by ensuring that wRxRy ∈ CA

w implies
ν(w) ≺A ν(x).

We are not there yet. Consider the leftmost model in Figure 2. That is, we have a
deficiency in w w.r.t. y′. Namely, C �D ∈ ν(w) and C ∈ ν(y′). If we add a world
y′′ to solve this deficiency, as in the middle model, then by transitivity of Sw we have
ySwy

′′, as shown in the rightmost model. So, we require that ν(x) ⊆2 ν(y′′). But we
might very well have 3C 6∈ ν(x). So the Lemma 6.2 is not applicable.

In Lemma 6.19 we formulate and prove a more complicated version of the Lemma
6.2 which basically says that if we have chosen ν(y′) appropriately, then we can choose
ν(y′′) such that ν(x) ⊆2 ν(y′′). And moreover, Lemma 6.19 ensures us that we can,
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indeed, choose ν(y′) appropriate.

6.2 Preliminaries

Definition 6.3 (T tr, T ∗, T ;T ′, T 1, T≥2, T ∪ T ′)
Let T and T ′ be binary relations on a set W . We fix the following fairly standard
notations. T tr is the transitive closure of T ; T ∗ is the transitive reflexive closure of
T ; xT ;T ′y ⇔ ∃t xT tT ′y; xT 1y ⇔ xTy ∧ ¬∃t xT tTy; xT≥2y ⇔ xTy ∧ ¬(xT 1y) and
xT ∪ T ′y ⇔ xTy ∨ xT ′y.

Definition 6.4 (Sw)
Let F = 〈W,R, S, ν〉 be a quasi–frame. For each w ∈W we define the relation Sw, of
pure Sw transitions, as follows.

xSwy ⇔ xSwy ∧ ¬(x = y) ∧ ¬(x(Sw ∪R)∗;R; (Sw ∪R)∗y)

Definition 6.5 (Adequate ILM0–frame)
Let F = 〈W,R, S, ν〉 be an adequate frame. We say that F is an adequate ILM0–frame
iff. the following additional properties hold.12

4. wRxRySwy
′Rz → xRz

5. wRxRySwy
′ → ν(x) ⊆2 ν(y′)

6. xSwy → x(Sw ∪R)∗y

7. xRy → x(R1)
tr
y

As usual, when we speak of ILM0–frames we shall actually mean an adequate
ILM0–frame. Below we will construct ILM0–frames out of frames belonging to a
certain subclass of the class of quasi–frames. (Namely the quasi–ILM0–frames, see
Definition 6.10 below.) We would like to predict on forehand which extra R relations
will be added during this construction. The following definition does just that.

12One might think that 6. is superfluous. In finite frame this is indeed the case, but in the general case we need

it as an requirement.
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Definition 6.6 (K(F ), K)
Let F = 〈W,R, S, ν〉 be a quasi–frame. We define K = K(F ) to be the smallest
binary relation on W such that

1. R ⊆ K,

2. K = Ktr,

3. wKxK1y(Sw)
tr
y′K1z → xKz.

Note that for ILM0–frames we have K = R. The following lemma shows that
K satisfies some stability conditions. The lemma will mainly be used to show that
whenever we extend R within K, then K does not change.

Lemma 6.7

Let F0 = 〈W,R0, S, ν〉 and F1 = 〈W,R1, S, ν〉 be quasi–frames. If R1 ⊆ K(F0) and
R0 ⊆ K(F1). Then K(F0) = K(F1).

In a great deal of situations we have a particular interest in K1. To determine some
of its properties the following lemma comes in handy. It basically shows that we can
compute K by first closing of under the M0–condition and then take the transitive
closure.

Lemma 6.8 (Calculation of K)
Let F = 〈W,R, S, ν〉 be a quasi–frame. Let K = K(F ) and suppose K conversely
well–founded. Let T be a binary relation on W such that

1. R ⊆ T tr ⊆ K,

2. wT trxT 1y(Sw)
tr
y′T 1z → xT trz.

Then we have the following.

(a) K = T tr

(b) xK1y → xTy

Proof. To see (a), it is enough to see that T tr satisfies the three properties of the
definition of K (Definition 6.6). Item (b) follows from (a).

Another entity that changes during the construction of an ILM0–frame out of a
quasi–frame is the critical cone In accordance with the above definition of K(F ), we
also like to predict what eventually becomes the critical cone.

Definition 6.9 (NC
w )

For any quasi–frame F we define NC
w to be the smallest set such that

1. ν(w, x) = C ⇒ x ∈ NC
w ,

2. x ∈ NC
w ∧ x(K ∪ Sw)y ⇒ y ∈ NC

w .

In accordance with the notion of a quasi–frame we introduce the notion of a quasi–
ILM0–frame. This gives sufficient conditions for a quasi–frame to be closeable, not
only under the IL–frameconditions, but under all the ILM0–frameconditions.

Definition 6.10 (Quasi–ILM0–frame)
A quasi–ILM0–frame is a quasi–frame that satisfies the following additional proper-
ties.
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6. K is conversely well–founded.

7. xKy → ν(x) ≺ ν(y)

8. x ∈ NA
w → ν(w) ≺A ν(x)

9. wKxKy(Sw ∪K)∗y′ → ν(x) ⊆2 ν(y′)

10. xSwy → x(Sw ∪R)∗y

11. wKxK1y(Sw)
tr
y′K1z → x(K1)

tr
z

12. xRy → x(R1)
tr
y

Lemma 6.11

If F is a quasi–ILM0–frame, then K = (K1)
tr

.

Proof. Using Lemma 6.8.

Lemma 6.12

Suppose that F is a quasi–ILM0–frame. Let K = K(F ). Let K ′, K ′′ and K ′′′ the
smallest binary relations on W satifying 1. and 2. of 6.6 and additionaly we have the
following.

3′. wK ′xK ′1y(Sw ∪K ′)∗y′K ′1z → xK ′z

3′′. wK ′′xK ′′y(Sw)
tr
y′K ′′z → xK ′′z

3′′′. wK ′′′xK ′′′y(Sw ∪K ′′′)∗y′K ′′′z → xK ′′′z

Then K = K ′ = K ′′ = K ′′′.

Proof. Using Lemma 6.11.

Before we move on, let us first sum up a few comments.

Corollary 6.13

If F = 〈W,R, S, ν〉 is an adequate ILM0–frame. Then we have the following.

1. K(F ) = R

2. F |= x ∈ NA
w ⇔ F |= x ∈ CA

w

3. F is a quasi–ILM0–frame

Lemma 6.14 (ILM0–closure)
Any quasi–ILM0–frame can be extended to an adequate ILM0–frame.

Proof. Given a quasi–ILM0–frame F we construct a sequence

F = F0 ⊆ F1 ⊆ · · ·

very similar to the sequence constructed for the IL closure of a quasi–frame (Lemma
5.2). The only difference is that we add a fifth entry to the list of imperfections.

(v) γ = 〈4, w, a, b, b′, c〉 with Fn |= wRaRbSwb
′Rc but Fn 6|= aRc

In this case we set, of course, Fn+1 := 〈Wn, Rn ∪ 〈a, c〉, Sn, νn〉. First we will show
by induction that each Fn is a quasi–ILM0–frame. Then we show that the union
F̂ =

⋃
n≥0 Fn, is quasi and satisfies all the ILM0 frame conditions.

We assume that Fn is a quasi-ILM0-frame and define Kn := K(Fn), Rn := RFn

and Sn := SFn . Quasi-ness of Fn+1 will follow from Claim 6.15, and from Claim 6.16
we may conlude that Fn+1 is indeed a quasi-ILM0-frame.
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Claim 6.15

For all w, x, y and A we have the following.

(a) Rn+1 ⊆ Kn

(b) x(Sn+1
w ∪Rn+1)∗y ⇒ x(Sn

w ∪Kn)∗y

(c) Fn+1 |= x ∈ CA
w ⇒ Fn |= x ∈ NA

w .

Proof. We distinguish cases according to which imperfection is dealt with in the step
from Fn to Fn+1. The only interesting case is the new imperfection which is dealt
with by Lemma 6.12, Item 3′′.

Claim 6.16

For all w, x and A we have the following.

1. Kn+1 ⊆ Kn.

2. x(Sn+1
w ∪Kn+1)∗y ⇒ x(Sn

w ∪Kn)∗y

3. Fn+1 |= x ∈ NA
w ⇒ Fn |= x ∈ NA

w .

Proof. Item 1. follows by Claim 6.15 and Lemma 6.7. Item 2. follows from Item 1.
and Claim 6.15-(b). Item 3. is an immediate corollary of item 2.

Again, it is not hard to see that F̂ =
⋃

n≥0 Fn is an adequate ILM0-frame.

Lemma 6.17

Let F = 〈W,R, S, ν〉 be a quasi–ILM0–frame and K = K(F ). Then

xKy → ∃z (ν(x) ⊆2 ν(z) ∧ x(R ∪ S)∗zRy).

Proof. We define T := {(x, y) | ∃z (ν(x) ⊆2 ν(z) ∧ x(R ∪ S)∗zRy)}. It is not hard
to see that T is transitive and that {(x, y) | ∃t (ν(x) ⊆2 ν(t)∧xT ; (S∪K)∗tT y)} ⊆ T .
We now define K ′ = K ∩T . We have to show that K ′ = K. As K ′ ⊆ K is trivial, we
will show K ⊆ K ′.

It is easy to see that K ′ satisfies properties 1., 2. and 3. of Definition 6.6; It follows
on the two observations on T we just made. Since K is the smallest binary relation
that satisfies these properties we conclude K ⊆ K ′.

The next lemma shows that K is a rather stable relation. We show that if we
extend a frame G to a frame F such that from worlds in F − G we cannot reach
worlds in G, then K on G does not change.

Lemma 6.18

Let F = 〈W,R, S, ν〉 be a quasi–ILM0–frame. And let G = 〈W−, R−, S−, ν−〉 be a
subframe of F (which means W− ⊆W , R− ⊆ R, S− ⊆ S and ν− ⊆ ν). If

(a) for each f ∈W −W− and g ∈ W− not f(R ∪ S)g and

(b) R↾W− ⊆ K(G).

Then K(G) = K(F )↾W− .

Proof. Clearly K(F )↾W− satisfies the properties 1., 2. and 3. of the definition of
K(G) (Definition 6.6). Thus, since KG is the smallest such relation, we get that
K(G) ⊆ K(F )↾W− .

Let K ′ = K(F ) − (K(F )↾W− − K(G)). Using Lemma 6.17 one can show that
K(F ) ⊆ K ′. From this it immediately follows that K(F )↾W− ⊆ K(G).
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We finish the basic preliminaries with a somewhat complicated variation of Lemma
4.18.

Lemma 6.19

Let Γ and ∆ be MCS’s. Γ ≺C ∆.

P �Q,S1 � T1, . . . , Sn � Tn ∈ Γ and 3P ∈ ∆.

There exist k ≤ n. MCS’s ∆0,∆1, . . . ,∆k such that

• Each ∆i lies C-critical above Γ,

• Each ∆i lies ⊆2 above ∆ (i.e. ∆ ⊆2 ∆i),

• Q ∈ ∆0,

• For all 1 ≤ j ≤ n, Sj ∈ ∆h ⇒ for some i ≤ k, Tj ∈ ∆i.

Proof. First a definition. For each I ⊆ {1, . . . , n} put

SI :⇔
∧

{¬Si | i ∈ I}.

The lemma can now be formulated as follows. There exists I ⊆ {1, . . . , n} such that

{Q,SI} ∪ {¬B,2¬B | B � C ∈ Γ} ∪ {2A | 2A ∈ ∆} 6⊢ ⊥

and, for all i 6∈ I,

{Ti, SI} ∪ {¬B,2¬B | B � C ∈ Γ} ∪ {2A | 2A ∈ ∆} 6⊢ ⊥.

So let us assume, for a contradiction, that this is false. Then there exist finite sets
A ⊆ {A | 2A ∈ ∆} and B ⊆ {B | B � C ∈ Γ} such that, if we put

A :⇔
∧

A, and B :⇔
∨

B,

then, for all I ⊆ {1, . . . , n},

Q,SI ,2A,¬B ∧ 2¬B ⊢ ⊥ (6.1)

or,
for some i 6∈ I, Ti, SI ,2A,¬B ∧ 2¬B ⊢ ⊥. (6.2)

We are going to define a permutation i1, . . . , in of {1, . . . , n} such that if we put
Ik = {ij | j < k} then

Tik
, SIk

,2A,¬B ∧ 2¬B ⊢ ⊥. (6.3)

Additionally, we will verify that for each k

(6.1) does not hold with Ik for I.

We will define ik with induction on k. We define I1 = ∅. And by Lemma 4.18, (6.1)
does not hold with I = ∅. Moreover, because of this, (6.2) must be true with I = ∅.
So, there exists some i ∈ {1, . . . , n} such that

Ti,2A,¬B ∧ 2¬B ⊢ ⊥.
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It is thus sufficient to take for i1, for example, the least such i.
Now suppose ik has been defined. We will first show that

Q,SIk+1
,2A,¬B ∧ 2¬B 6⊢ ⊥. (6.4)

Let us suppose that this is not so. Then

⊢ 2(Q→ 3¬A ∨B ∨ 3B ∨ Si1 ∨ · · · ∨ Sik
). (6.5)

So,

Γ ⊢ P �Q

� 3¬A ∨B ∨ 3B ∨ Si1 ∨ · · · ∨ Sik−1
∨ Sik

by (6.5)

� 3¬A ∨B ∨ 3B ∨ Si1 ∨ · · · ∨ Sik−1
∨ Tik

� 3¬A ∨B ∨ 3B ∨ Si1 ∨ · · · ∨ Sik−1
∨ (Tik

∧ 2A ∧ ¬B ∧ 2¬B ∧ SIk
)

� 3¬A ∨B ∨ 3B ∨ Si1 ∨ · · · ∨ Sik−1
by (6.3)

...

� 3¬A ∨B ∨ 3B ∨ Si1

� 3¬A ∨B ∨ 3B ∨ Ti1

� 3¬A ∨B ∨ 3B ∨ (Ti1 ∧ 2A ∧ ¬B ∧ 2¬B)

� 3¬A ∨B ∨ 3B. by (6.3), with k = 1.

So by M0,
3P ∧ 2A� (3¬A ∨B ∨ 3B) ∧ 2A ∈ Γ.

But 3P ∧2A ∈ ∆. So, by Lemma 4.18 there exists some MCS ∆ with Γ ≺C ∆ that
contains B ∨ 3B. This is a contradiction, so we have shown (6.4).

But now, since (6.4) is indeed true, and thus (6.1) with Ik+1 for I is false, (6.2)
must hold. Thus there must exist some i 6∈ Ik+1 such that

Ti, SIk+1
,2A,¬B ∧ 2¬B ⊢ ⊥.

So we can take for ik+1, for example, the smallest such i.
It is clear that for I = {1, 2, . . . , n}, (6.2) cannot be true. Thus, for I = {1, 2, . . . , n},

(6.1) must be true. This implies

⊢ 2(Q→ 3¬A ∨B ∨ 3B ∨ Si1 ∨ · · · ∨ Sin
).

Now exactly as above we can show Γ ⊢ P �3¬A∨B ∨3B. And again as above, this
leads to a contradiction.

In order to formulate the invariants needed in the main lemma applied to ILM0,
we need one more definition and a corollary.

Definition 6.20 (⊂1, ⊂)
Let F = 〈W,R, S, ν〉 be a quasi–frame. Let K = K(F ). We define ⊂1 and ⊂ as
follows.

1. x ⊂1 y ⇔ ∃wy′wKxK1y′(Sw)
tr
y
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2. x ⊂ y ⇔ x(⊂1 ∪K)∗y

Corollary 6.21

Let F = 〈W,R, S, ν〉 be a quasi–frame. And let K = K(F ).

1. x ⊂ y ∧ yKz → xKz

2. If F is a quasi–ILM0–frame, then x ⊂ y ⇒ ν(x) ⊆2 ν(y).

6.3 Frame condition

The following theorem is well known.

Theorem 6.22

For an IL-frame F = 〈W,R, S, ν〉 we have

∀wxyy′z (wRxRySwy
′Rz → xRz) ⇔ F |= M0.

6.4 Invariants

Let D be some finite set of formulas, closed under subformulas and single negation.
During the construction we will keep track of the following main–invariants.

I2 for all y, {ν(x) | xK1y} is linearly ordered by ⊆2

Id wK
1x ∧ wK≥2x′(Sw ∪K)∗x→ ‘there does not exists a deficiency in w w.r.t. x’

IS wKxKy(Sw ∪K)∗y′ →
‘the ⊆2-max of {ν(t) | wKtK1y′}, if it exists, is ⊆2-larger than ν(x)’

IN wKxKy ∧ y ∈ NA
w → x ∈ NA

w

ID xRy → ∃A∈(ν(y) \ ν(x)) ∩ {2D | D ∈ D}

IM0
All conditions for an adequate ILM0–frame hold

In order to ensure that the main–invariants are preserved during the construction
we need to consider the following sub–invariants.13

Ju wK
≥2x(Sw)try ∧ wK≥2x′(Sw)try → x = x′

JK1 wKxK1y(Sw)
tr
y′K1z → xK1z

J⊂ y ⊂ x ∧ x ⊂ y → y = x

JN1
x(Sv)

tr
y ∧wKy ∧ x ∈ NA

w → y ∈ NA
w

JN2
x(Sw)

tr
y ∧ y ∈ NA

w → x ∈ NA
w

Jν1
‘ν(w, y) is defined’ ∧ vKy → v ⊂ w

Jν2
‘ν(w, y) is defined’ → wK1y

Jν4
If x(Sw)try, then ν(w, y) is defined

Jν3
If ν(v, y) and ν(w, y) are defined then w = v

What can we say about these invariants? I2, IS , IN and Id were discussed in
Section 6.1. IM0

is there to ensure that our final frame is an ILM0–frame. About the

13We call them sub–invariants since they merely serve the purpose of showing that the main-invariants are, indeed,

invariant.
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sub–invariants there is not much to say. They are merely technicalities that ensure
that the main–invariants are invariant.

Let us first show that if we have a quasi–ILM0–frame that satisfies all the invariants,
possibly IM0

excluded, then we can assume, nevertheless, that IM0
holds as well.

Corollary 6.23

Any quasi–ILM0–frame that satisfies all of the above invariants, except possibly IM0
,

can be extended to an ILM0–frame that satisfies all the invariants.

Proof. Only ID and Id need some attention. All the other invariants are given in
terms of relations that do not change during the construction of the ILM0-closure
(Lemma 6.14).

Lemma 6.24

Let F = 〈W,R, S, ν〉 be a quasi–ILM0–frame. Then F |= x ∈ NA
w iff. one of the

following cases applies.

1. ν(w, x) = A

2. There exists t ∈ NA
w such that tKx

3. There exists t ∈ NA
w such that tSwx

Corollary 6.25

Let F be a quasi–ILM0–frame that satisfies Jν4
. Let w, x ∈ F and let A be a formula.

Then x ∈ NA
w implies ν(w, x) = A or there exists some t ∈ NA

w such that tKx.

Lemma 6.26

Let F be a quasi–frame which satisfies JN2
, Jν1

, Jν3
and Jν4

. Then xSvy, y ∈ NA
w ⇒

x ∈ NA
w .

Proof. Suppose xSvy and y ∈ NA
w . Then, by Corollary 6.25, ν(w, y) = A or, for

some t ∈ NA
w , tKy. In the first case we obtain w = v by Jν3

and Jν4
. And thus by

JN2
, x ∈ NA

w . In the second case we have, by Jν4
and Jν1

that t ⊂ v. Which implies,
by Lemma 6.21–1., tKx.

6.5 Solving problems

Let F = 〈W,R, S, ν〉 be a quasi–ILM0–frame that satisfies all the invariants. Let
(a,¬(A�B)) be a D-problem in F . We fix some b 6∈ W . Using Lemma 4.17 we find
a MCS ∆b, such that ν(a) ≺B ∆b and A,2¬A ∈ ∆b. We put

F̂ = 〈Ŵ , R̂, Ŝ, ν̂〉

= 〈W ∪ {b}, R ∪ {〈a,b〉}, S, ν ∪ {〈b,∆b〉, 〈〈a,b〉, B〉}〉,

and define K̂ = K(F̂ ). The frames F and F̂ satisfy the conditions of Lemma 6.18.
Thus we have

∀xy∈F xKy ⇔ xK̂y. (6.6)

Since Ŝ=S, this implies that all simple enough properties expressed in K̂ and Ŝ using
only parameters from F are true if they are true with K̂ replaced by K.

Claim 6.27

F̂ is a quasi–ILM0–frame.
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Proof. A simple check of Properties (1.–5.) of Definition 5.1 (quasi–frames) and
Properties (6.–10.) of Definition 6.10 (quasi–ILM0–frames) and the remaining ones
in Definition 5.1 (quasi–frames). Let us comment on two of them.
xK̂y → ν̂(x) ≺ ν̂(y) follows from Lemma 6.17 and (6.6).
Let us show F̂ |= x ∈ NC

w ⇒ ν̂(w) ≺C ν̂(x). We have ∀xw∈F F |= x ∈ NC
w ⇔

F̂ |= x ∈ NC
w . So we only have to consider the case F̂ |= b ∈ NC

w . If w = a then
we are done by choice of ν̂(b). Otherwise, by Lemma 6.26, we have for some x ∈ F ,
F |= x ∈ NC

w and xK̂b. By the first property we proved, we get ν̂(x) ≺ ν̂(b). So,
since ν̂(w) ≺C ν̂(x) we have ν̂(w) ≺C ν̂(b).

Before we show that F̂ satisfies all the invariants we prove some lemmata.

Lemma 6.28

If for some x 6= a, xK̂1b. Then there exist unique u and w (independent of x) such

that wK≥2u(Sw)tra.

Proof. If such w and u do not exists then T = K ∪ {a,b} satisfies the conditions of
Lemma 6.8. In which case xK1b gives xTb which implies x = a. The uniqueness of
w follows from Jν3

and Jν4
. The uniqueness of u follows from Ju and the uniqueness

of w.

In what follows we will denote these w and u, if they exist, by w and u.

Lemma 6.29

For all x. If xK̂1b then x ⊂ a.

Proof. Let K ′ = K ∪{(x,b) | xK̂b∧x ⊂ a}. It is not hard to show that K ′ satisfies
the conditions of T in Lemma 6.8.

Lemma 6.30

Suppose the conditions of Lemma 6.28 are satisfied and let u be the u asserted to

exist. Then for all x 6= a, if xK̂1b, then xK1u.

Proof. By Lemma 6.29 we have x ⊂ a. Let

x = x0(⊂1 ∪K)x1(⊂1 ∪K) · · · (⊂1 ∪K)xn = a.

First we show x = x0 ⊂1 x1 ⊂1 · · · ⊂1 xn = a. Suppose, for a contradiction,
that for some i < n, xiKxi+1. Then, by Lemma 6.21, xKxi+1Kb. So, xK≥2b. A
contradiction. The lemma now follows by showing, with induction on i and using
F |= JK1 , that for all i ≥ 0, xn−(i+1)K

1u.

Lemma 6.31

F̂ satisfies all the sub-invariants.

Proof. We only comment on JK1 and Jν1
. Let K = K(F̂ ).

Jν1
follows from Lemma 6.29, so let us treat JK1 . Suppose wK̂xK̂1y(Ŝw)

tr
y′K̂1z.

We can assume that at least one of w, x, y, y′, z is not in F and the only candidate
for this is z. So we have z = b. We can assume that x 6= y′ (otherwise we are done
at once), so the conditions of Lemma 6.28 are fulfilled and thus w and u as stated
there exist.
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Suppose now, for a contradiction, that for some t, xK̂tK̂1b. Then by Lemma 6.30,
t = a or tK̂1u. Suppose we are in the case t = a. Since ν(w,a) is defined and xK̂a

we obtain by Jν1
, that x ⊂ w. Since wK̂≥2u we obtain by Lemma 6.21 that xK̂≥2u.

In the case tK̂1u we have xK̂≥2u trivially. So in any case we have

xK̂≥2u.

However, by Lemma 6.30 and since y′K̂1z we have y′K̂1u or y′ = a. In the first
case, since F |= JK1 , we have xK̂1u. In the second case we obtain, by the uniqueness
of u, that y = u and thus xK̂1u. So in any case we have

xK̂1u.

A contradiction.

Lemma 6.32

Possibly with the exception of IM0
, F̂ satisfies all the main-invariants.

Proof. Let K = K(F̂ ). We only comment on I2 and IN .
First we treat I2. So we have to show that for all y, {ν̂(x) | xK̂1y} is linearly

ordered by ⊆2. We only need to consider the case y = b. If {a} = {x | xK̂1b} then
the claim is obvious. So we can assume that the condition of Lemma 6.28 is fulfilled
and we fix u as stated. The claim now follows by F |= I2 (with y = u) and noting
that, by Lemma 6.17, xK̂1b ⇒ x ⊆2 a.

Now we look at IN : wK̂xK̂y ∧ F̂ |= y ∈ NA
w → F̂ |= x ∈ NA

w . Suppose wK̂xK̂y
and F̂ |= y ∈ NA

w . We only have to consider the case y = b. Then, by Lemma 6.24,
ν̂(w,b) = A or for some t ∈ NA

w we have tŜwb or tK̂1b. The first case is impossible
by Jν2

. The second is also clearly not so. Thus we have

tK̂1b. (6.7)

We suppose that the conditions of Lemma 6.28 are fulfilled (the other case is easy).
If tK̂1u and xK̂∗u then we are done simmilarly as the case above. So assume tK̂1a

or xK̂∗a. Since wRt and wRx in any case we have wK̂a. Now by Lemma 6.26 and
JN1

we have u ∈ NA
w ⇔ a ∈ NA

w . Also, by (6.7), u ∈ NA
w ∨ a ∈ NA

w . So since xK̂u

or x = a or xK̂a we obtain x ∈ NA
w by F |= IN .

To finish this subsection we note that by Lemma 6.14 and Corollary 6.23 we can
extend F̂ to an adequate ILM0–frame that satisfies all invariants.

6.6 Solving deficiencies

Let F = 〈W,R, S, ν〉 be an ILM0–frame satisfing all the invariants. Let (a,b, C �D)
be a D-deficiency in F .

Suppose aR≥2b (the case aR1b is easy). Let x be the ⊆2-maximum of {x |
aKxK1b}. This maximum exists by I2. Pick some A such that b ∈ NA

a . (If such an
A exists, then by adequacy of F , it is unique. If no such A exists, take A = ⊥.) By
IN and adequacy we have ν(a) ≺A ν(x). So we have C �D ∈ ν(a) ≺A ν(x) ∋ 3C.



38 Modal Matters for Interpretability Logics

We apply Lemma 6.19 to obtain, for some set Y , disjoint from W , a set {∆y | y ∈ Y }
of MCS’s with all the properties as stated in that lemma. We define

F̂ = 〈W ∪ Y,R ∪ {〈a, y〉 | y ∈ Y },

S ∪ {〈a,b, y〉 | y ∈ Y } ∪ {〈a, y, y′〉 | y, y′ ∈ Y, y 6= y′},

ν ∪ {〈y,∆y〉, 〈〈a, y〉, A〉 | y ∈ Y }〉.

Claim 6.33

F̂ is a quasi–ILM0–frame.

Proof. An easy check of Properties (1.–5.) of Definition 5.1 (quasi–frames) and
Properties (6.–10.) of Definition 6.10 (quasi–ILM0–frames). Let us comment on two
cases.

First we see that xK̂y → ν̂(x) ≺ ν̂(y). We can assume y ∈ Y . By Lemma 6.17 we
obtain some z with ν̂(x) ⊆2 ν̂(z) and x(R̂∪ Ŝ)∗zR̂y. This z can only be a. By choice
of ν̂(y) we have ν̂(a) ≺ ν̂(y). And thus ν̂(x) ≺ ν̂(y).

We now see that wK̂xK̂y(Ŝw ∪ K̂)∗y′ → ν̂(x) ⊆2 ν̂(y′). We can assume at least
one of w, x, y, y′ is in Y . The only candidates for this are y and y′. If both are in Y
then w = a and an x as stated does not exists. So only y′ ∈ Y and thus in particular
y 6= y′. Now there are two cases to consider.

The first case is that for some t, wK̂xK̂y(Ŝw ∪ K̂)∗tK̂y′. But, ν̂(y′) is ⊆2-larger
than ν̂(t) by xK̂y → ν̂(x) ≺ ν̂(y). Also we have wKxKy(Sw ∪ K)∗t. So, ν̂(x) =
ν(x) ⊆2 ν(t) = ν̂(t).

The second case is wK̂xK̂y(Ŝw ∪ K̂)∗bŜwy
′. In this case we have w = a. y′

is chosen to be ⊆2–larger than the ⊆2-maximum of {ν(r) | aKrK1b}. We have
wKxKy(Sw ∪K)∗b So, by F |= IS , this ⊆2–maximum is ⊆2–larger than ν(x).

Lemma 6.34

For any x ∈ F̂ and y ∈ Y we have xK̂1y → x ⊂ a.

Proof. We put K ′ = K∪{(x, y) | y ∈ Y, xK̂y, x ⊂ a}. By showing that K ′ satisfies
the conditions of T in Lemma 6.8. we obtain xK̂1y → xK ′y. So if xK̂1y then xK ′y.
But if y ∈ Y then xKy does not hold. Thus we have x ⊂ a.

Lemma 6.35

Suppose y ∈ Y and aK̂1z. Then for all x, xK̂1y → xK̂1z.

Proof. Suppose xK1y. By Lemma 6.34 we have x ⊂ a. There exist x0, x1, x2, . . . , xn

such that x = x0(⊂1 ∪K)x1(⊂1 ∪K) · · · (⊂1 ∪K)xn = a. First we show that x =
x0 ⊂1 x1 ⊂1 · · · ⊂1 a. Suppose, for a contradiction that for some i < n, we have
xiKxi+1. Then xKxi+1Ky and thus xK≥2y. A contradiction. The lemma now
follows by showing, with induction on i, using JK1 , that for all i ≤ n, xn−iK

1z.

Lemma 6.36

F̂ satisfies all the sub-invariants.

Proof. The proofs are rather straightforward. We give two examples.

First we show Ju: wK̂≥2x(Ŝw)
tr
y ∧ wK̂≥2x′(Ŝw)

tr
y → x = x′. Suppose that

wK̂≥2x(Ŝw)
tr
y and wK̂≥2x′(Ŝw)

tr
y. We can assume that y ∈ Y . (Otherwise all of

w, x, x′, y are in F and we are done by F |= Ju.) We clearly have w ∈ F . If x ∈ Y
then w = a and thus wK̂1x. So, x 6∈ Y . Next we show that both x, x′ 6= b.
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Assume, for a contradiction, that at least one of them equals b. W.l.o.g. we
assume it is x. But then wK≥2b and wK≥2x′(Sw)

tr
b. By F |= Jν4

we now obtain
that ν(w,b) is defined. And thus by F |= Jν2

, wK1b. A contradiction.
So, both x, x′ 6= b. But now wK≥2x(Sw)trb and wK≥2x′(Sw)trb. So, by F |= Ju,

we obtain x = x′.
Now let us see that JK1 holds, that is wK̂xK̂1y(Ŝw)

tr
y′K̂1z → xK̂1z. Suppose

wK̂xK̂1y(Ŝw)
tr
y′K̂1z. We can assume that z ∈ Y . (Otherwise all of w, x, y, y′, z are

in F and we are done by F |= JK1 .) Fix some a1 ∈ F for which aK1a1. By Lemma
6.35 we have y′K1a1 and thus, since F |= JK1 , xK1a1. By definition of K̂ we have
xK̂z. Now, if for some t, we have xK̂tK̂1z, then similarly as above,tK1a1. So, this
implies xK≥2a1. A contradiction, conclusion: xK1z.

Lemma 6.37

Except for IM0
, F̂ satisfies all main-invariants.

Proof. We only comment on I2 and IN .
First we show I2: For all y, {ν̂(x) | xK̂1y} is linearly ordered by ⊆2. Let y ∈ F̂

and consider the set {x | xK1y}. Since K̂ ↾F = K and for all y ∈ Y there does not
exists z with yK̂1z we only have to consider the case y ∈ Y . Fix some a1 such that
aK1a1K

∗b. By Lemma 6.34 for any such y we have

{x | xK1y} ⊆ {x | xK1a1}.

And by F |= I2 with a1 for y, we know that {ν(x) | xK1a1} is linearly ordered by
⊆2.

Now let us see IN : wK̂xK̂y ∧ F̂ |= y ∈ NA
w → F̂ |= x ∈ NA

w . Suppose wK̂xK̂y
F̂ |= y ∈ NA

w . We can assume y ∈ Y . By Lemma 6.34, x ⊂ a. So, wKxKb. By
Lemma 6.26, F |= b ∈ NA

w and thus F̂ |= x ∈ NA
w .

To finish this section we noting that by Lemma 6.14 and Corollary 6.23 we can
extend F̂ to an adequate ILM0–frame that satisfies all invariants.

6.7 Rounding up

It is clear that the union of a bounded chain of ILM0–frames is itself an ILM0–frame.

7 The logic ILW
∗

In this section we are going to prove the following theorem.

Theorem 7.1

ILW∗ is a complete logic.

For a long time ILW∗ has been conjectured ([29]) to be IL(All). A first step in proving
this conjecture would have been a modal completeness result. However, the modal
completeness of ILW∗ resisted many attempts as the modal completeness of ILM0,
which is an essential part of ILW∗, was so hard and involved. (In [9] a completeness
proof for ILW was given.)

Finally, now that all the machinery has been developed, a modal completeness proof
for ILW∗ can be given. The completeness proof of ILW∗ lifts almost completely along
with the completeness proof for ILM0. We only need some minor adaptations.
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7.1 Preliminaries

The frame condition of W is well known.

Theorem 7.2

For any IL-frame F we have that F |= W ⇔ ∀w (Sw;R) is conversely well-founded.

We can define a new principle M∗
0

that is equivalent to W∗, as follows.

M∗
0 : A�B → 3A ∧ 2C �B ∧ 2C ∧ 2¬A

Lemma 7.3

ILM0W = ILW∗ = ILM∗
0

Proof. The proof we give consists of four natural parts.
First we see ILW∗ ⊢ M0. We reason in ILW∗ and assume A � B. Thus, also

A � (B ∨ 3A). Applying the W∗ axiom to the latter yields (B ∨ 3A) ∧ 2C � (B ∨
3A) ∧ 2C ∧ 2¬A. From this we may conclude

3A ∧ 2C � (B ∨ 3A) ∧ 2C
� (B ∨ 3A) ∧ 2C ∧ 2¬A
� B ∧ 2C

Secondly, we see that ILW∗ ⊢ W. Again, we reason in ILW∗. We assume A � B
and take the C in the W∗ axiom to be ⊤. Then we immediately see that A�B�B∧
2⊤ �B ∧ 2⊤ ∧ 2¬A�B ∧ 2¬A.

We now easily see that ILM0W ⊢ M∗
0
. For, reason in ILM0W as follows. By W∗,

A � B � B ∧ 2¬A. Now an application of M0 on A � B ∧ 2¬A yields 3A ∧ 2C �

B ∧ 2C ∧ 2¬A.
Finally we see that ILM∗

0
⊢ W∗. So, we reason in ILM∗

0
and assume A�B. Thus,

we have also 3A∧2C �B ∧2C ∧2¬A. We now conclude B ∧2C �B ∧2C ∧2¬A
easily as follows. B ∧ 2C � (B ∧ 2C ∧ 2¬A) ∨ (2C ∧ 3A) �B ∧ 2C ∧ 2¬A.

Corollary 7.4

For any IL-frame we have that F |= W∗ iff. both (for each w, (Sw;R) is conversely
well-founded) and (∀w, x, y, y′, z (wRxRySwy

′Rz → xRz)).

The frame condition of W∗ tells us how to correctly define the notions of adequate
ILW∗-frames and quasi-ILW∗-frames.

Definition 7.5 ((D
2

)
Let D be a finite set of formulas. Let (D

2
be a binary relation on MCS’s defined as

follows. ∆ (D
2

∆′ iff.

1. ∆ ⊆2 ∆′,

2. For some 2A ∈ D we have 2A ∈ ∆′ − ∆.

Lemma 7.6

Let F be a quasi-frame and D be a finite set of formulas. If wRxRySwy
′ → ν(x) (D

2

ν(y′) then (R;Sw) is conversely well-founded.

Proof. By the finiteness of D.
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Lemma 7.7

Let F be a quasi-ILM0-frame. If wRxRySwy
′ → ν(x) (D

2
ν(y′) then wRxRy(Sw ∪

R)∗y′ → ν(x) (D
2
ν(y′)

Proof. Suppose wRxRy(Sw ∪ R)∗y′. ν(x) (D
2
ν(y′) follows with induction on the

minimal number of R-steps in the path from y to y′.

Definition 7.8 (Adequate ILW∗-frame)
Let D be a set of formulas. We say that an adequate ILM0-frame is an adequate
ILW∗-frame (w.r.t. D) iff. the following additional property holds.

8. wRxRy(Sw)
tr
y′ → x (D

2
y′

Definition 7.9 (Quasi-ILW∗-frame)
Let D be a set of formulas. We say that a quasi-ILM0-frame is a quasi-ILW∗-frame
(w.r.t. D) iff. the following additional property holds.

13. wKxKy(Sw)
tr
y′ → x (D

2
y′

In what follows we might simply talk of adequate ILW∗-frames and quasi-ILW∗ In
these cases D is clear from context.

Lemma 7.10

Any quasi-ILW∗-frame can be extended to an adequate ILW∗-frame. (Both w.r.t.
the same set of formulas D.)

Proof. Let F be a quasi-ILW∗-frame. Then in particular F is a quasi-ILM0-frame.
So consider the proof of Lemma 6.14. There we constructed a sequence of quasi-
ILM0-frames F = F0 ⊆ F1 ⊆

⋃
i<ω Fi = F̂ . What we have to do, is to show that

if F0(= F ) is a quasi-ILW∗-frame, then each Fi is as well. Additionally we have to
show that F̂ is an adequate ILW∗-frame.

But this is rather trivial. As noted in the proof of Lemma 6.14, The relation K
and the relations (Sw)tr are constant throughout the whole process. So clearly each
Fi is a quasi-ILW∗-frame.

Also the extra property of quasi-ILW∗-frames is preserved under unions of bounded
chains. So, F̂ is an adequate ILW∗-frame.

Lemma 7.11

Let Γ and ∆ be MCS’s with Γ ≺C ∆,

P �Q,S1 � T1, . . . , Sn � Tn ∈ Γ and 3P ∈ ∆.

There exist k ≤ n. MCS’s ∆0,∆1, . . . ,∆k such that

• Each ∆i lies C-critical above Γ,

• Each ∆i lies ⊆2 above ∆,

• Q ∈ ∆0,

• For each i ≥ 0, 2¬P ∈ ∆i,

• For all 1 ≤ j ≤ n, Sj ∈ ∆h ⇒ for some i ≤ k, Tj ∈ ∆i.

Proof. The proof is a straightforward adaptation of the proof of Lemma 6.19. In
that proof, a trick was to postpone an application of M0 as long as possible. We
do the same here but let an application of M0 on P � 3P ∨ ψ be preceded by an
application of W to obtain P � ψ.
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7.2 Completeness

Again, we specify the four ingredients from Remark 4.19. The Frame condition is
contained in Corollary 7.4.

The Invariants are all those of ILM0 and additionally

Iw∗ wKxKy(Sw)
tr
y′ → x (D

2
y′

Here, D is some finite set of formulas closed under subformulas and single negation.
Problems. We have to show that we can solve problems in an adequate ILW∗-

frame in such a way that we end up with a quasi-ILW∗-frame. If we have such a frame
then in particular it is an ILM0-frame. So, as we have seen we can extend this frame
to a quasi-ILM0-frame. It is easy to see that whenever we started with an adequate
ILW∗-frame we end up with a quasi ILW∗-frame. (This is basically Lemma 7.10.)

Deficiencies. We have to show that we can solve any deficiency in an adequate
ILW∗-frame such that we end up with an quasi-ILW∗-frame. It is easily seen that
the process as described in the case of ILM0 works if we use Lemma 7.11 instead of
Lemma 6.19.

Rounding up. We have to show that the union of a bounded chain of quasi-
ILW∗-frames that satisfy all the invariants is an ILW∗-frame. The only novelty is
that we have to show that in this union for each w we have that (R;Sw) is conversely
well-founded. But this is ensured by Iw∗ and Lemma 7.6.
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