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Chapter 1

Introduction

Once upon a Venus transition . . .

1.1 Meta-mathematics and interpretations

As with all sciences, mathematics aims at a better description and understand-
ing of reality. Now, the logician asks: what is mathematical reality? Mathe-
matics deals with numbers, functions, shapes, circles, sets, etc. But who has
ever touched a number? Who has ever seen a real circle?

The firm and unwavering mathematician answers: who cares? We have
clear intuitions about what our mathematical entities are, and we use whatever
evident properties (axioms) we get from our intuitions to build up mathematical
knowledge. And in a sense, the mathematician is right. We all believe in
certain basic mathematical truths, and the applicability of mathematics to other
scientific disciplines only lends support to this belief.

Of course, some questions arise. How do we know that our axioms are all
true? Which truths can we prove from these axioms? And again, what does
true mean? If one wants to study these questions, one comes quite naturally
to the study of those formal systems where well-defined parts of mathematical
reasoning is captured.

Our questions then translate to questions about correctness and strength of
these formal systems. Of course, these questions now become relative to other
formal systems.

The next question is, how do we compare formal systems? Let us speak of
theories from now on. We want to express that a theory S is at least as strong
as a theory T . Clearly, this is the case if S proves all the theorems of T . But S
and T might speak completely different languages.

In this case, the idea of a translation arises naturally. And translations
combined with provability give rise to interpretations. In this dissertation, we

3



4 CHAPTER 1. INTRODUCTION

shall use interpretations to compare theories. Furthermore, we shall also study
interpretations as meta-mathematical entities.

Roughly, an interpretation j of a theory T into a theory S (we write j : S¤T )
is a structure-preserving map, mapping axioms of T to theorems of S. Structure-
preserving means that the map should commute with proof constructions and
with logical connectives. For example, the constraints on the map should exclude
the possibility that we simply map all axioms of T to some tautology of S, say
1 = 1. Since an interpretation commutes with all proof constructions, it can
easily be extended to a map sending all theorems of T to theorems of S.

A moment’s reflection tells us that this is indeed a very reasonable way to
say that a theory S is at least as strong as a theory T . And in mathematics and
meta-mathematics, interpretations turn up time and again in different guises
and for different purposes.

A famous and well known example is an interpretation of hyperbolic geom-
etry in Euclidean geometry (e.g., the Beltrami-Klein model, see, for example,
[Gre96]) to show the relative consistency of non-Euclidean geometry.

Another example, no less famous, is Gödel’s interpretation of the theory of
elementary syntax in arithmetic ([Göd31]) to show the incompleteness of, for
example, Peano arithmetic.

Interpretations have also been used in partial realizations of Hilbert’s pro-
gramme and other attempts to settle foundational questions ([Sim88], [Fef88],
[Nel86]).

For another occurrence of interpretations, we can think of translations of
classical propositional calculus into intuitionistic propositional calculus. In this
thesis, however, we will only consider interpretations between first order theo-
ries.

The notion of interpretability that we shall work with is the notion of rel-
ativized interpretability as studied by Tarski et al. in [TMR53]. They use
interpretations to show undecidability of certain theories. It is not hard to see
that U is undecidable if U interprets some essentially undecidable theory V .

However, it is not the case that U ¤ V implies that U is undecidable when-
ever V is. For example, the undecidable theory of groups is interpretable in
the decidable theory of Abelian groups. But all the theories we will be inter-
ested in are essentially undecidable anyway. Moreover, there is a notion, faithful
interpretability, that does preserve undecidability. A theory V is faithfully in-
terpretable in a theory U if there is a map which is an interpretation so that
only theorems of V map to theorems of U .

As a matter of fact, there are many other variants of interpretations which
will not be covered in this thesis, such as interpretations with parameters and
many-dimensional interpretations. However, as we shall see, the notion of rela-
tivized interpretability we choose to work with has many desirable properties.
We can distinguish four different approaches to the study of interpretability.

(A) To use interpretations in a series of case studies to relate the proof-
theoretic strength of various theories to each other.
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(B) To study the nature of interpretability, for example, by relating it to other
meta-mathematical notions, like proof-theoretical ordinals, Π1-conservati-
vity, etc.

(C) To study the general behavioral properties of interpretability and to try
to find logics describing this. This line of thinking leads to the study of
interpretability logics.

(D) Interpretability induces a preorder on theories. This can be studied as such
or by dividing it out to a partial order. This leads to the study of degrees
or chapters (e.g., [Mon58], [Myc77], [Šve78]). We can also consider the
category of theories where the interpretations (modulo some appropriate
identification) are morphisms.

In this thesis, we shall touch on all four approaches. The emphasis, however,
will be on interpretability logics. Two leading questions here concern the inter-
pretability logic of all reasonable arithmetical (we shall call them numberized)
theories, and the interpretability logic of Primitive Recursive Arithmetic.

1.1.1 Overview of this dissertation

Part I deals primarily with Items (B) and (C). To a lesser extent, we shall also
touch on Item (D). The material from Part I comes in large part from [JV04a]
and [JV04b].

Part II is completely dedicated to a modal study of interpretability logics.
This part is joint work with Evan Goris with some contributions from Marta
Bilkova. Chapters 5-7 are taken from [GJ04] and Chapter 8 contains results
from [BGJ04].

In Part III we use interpretations in a case study on PRA. Also, we shall
make some comments on the interpretability logic of PRA. Results from [Joo02],
[Joo03a] and [Joo03b] have been included in this part. Subsection 12.3 is joint
work with Lev Beklemishev and Marco Vervoort.

1.2 Preliminaries

As we already mentioned, our notion of interpretability is the one studied by
Tarski et al in [TMR53]. The theories that we study in this dissertation are
theories formulated in first order predicate logic. All theories have a finite
signature that contains identity. For simplicity we shall assume that all our
theories are formulated in a purely relational way. Here is the formal definition
of a relative interpretation.

Definition 1.2.1. A relative interpretation k of a theory S into a theory T is
a pair 〈δ, F 〉 for which the following holds. The first component δ, is a formula
in the language of T with a single free variable. This formula is used to specify
the domain of our interpretation. The second component, F , is a finite map
that sends relation symbols R (including identity) from the language of S, to
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formulas F (R) in the language of T . We demand for all R that the number
of free variables of F (R) equals the arity of R.1 Recursively we define the
translation ϕk of a formula ϕ in the language of S as follows.

• (R(~x))
k
= F (R)(~x)

• (ϕ ∧ ψ)k = ϕk∧ψk and likewise for other boolean connectives (this implies
⊥k = ⊥)

• (∀x ϕ(x))k = ∀x (δ(x)→ ϕk) and analogously for the existential quantifier

Finally, we demand that T ` ϕk for all axioms ϕ of S.

We assume the reader to have some familiarity with basic arithmetical the-
ories like Buss’s S12, EA (= I∆0 + exp), IΣ1, PA etcetera. We also assume some
familiarity with arithmetical hierarchies as the Σn-sentences and the bounded
arithmetical hierarchies like the Σbn. (See for example, [Bus98] or [HP93].)

Moreover, we shall employ techniques and concepts necessary for the arith-
metization of syntax. Thus, we shall work with provability predicates 2U cor-
responding uniformly to arithmetical theories U .

We shall always write the formalized version of a concept in sans-serif style.
For example, ProofU (p, ϕ) stands for the formalization of “p is a U -proof of ϕ”,
Con(U) stands for the formalization of “U is a consistent theory” and so forth.
Occasionally we shall employ truth predicates. Again, [Bus98] and [HP93] are
adequate references.

1.2.1 A short word on coding

There are many good reasons to switch to formalized interpretability for our
study. As we shall see, we can use formalized interpretability, just like Gödel
used formalized provability, to study a theory and its limitations.

In a formalized setting it is straightforward to give a meaning to expressions
involving iterated provability and interpretability statements. Moreover, by
formalization we get access to powerful reasoning like the fixed-point lemma for
arithmetic and so on.

Formalization calls for coding of syntax. At some places in this paper we
shall need estimates of codes of syntactical objects. Therefore it is good to
discuss the nature of the coding process we will employ. However we shall not
consider the implementation details of our coding.

We shall code strings over some finite alphabet A with cardinality a. First
we define an alphabetic order on A. Next we enumerate all finite strings over A
in the following way. First we enumerate all strings of length 0, then of length
1, etcetera. For every n, we enumerate the strings of length n in alphabetic
order. The coding of a finite string over A will just be its ordinal number in
this enumeration. We shall now see some easy arithmetical properties of this
coding. We shall often refrain from distinguishing syntactical objects and their
codes.

1Formally, we should be more precise and specify our variables.
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1. There are an many strings of length n.

2. There are an + an1 · · ·+ 1 = an+1−1
a−1 many strings of length ≤ n.

3. From (2) it follows that the code of a syntactical object of length n, is

O(a
n+1−1
a−1 ) = O(an) big.

4. Conversely, the length of a syntactical object that has code ϕ is O(|ϕ|)
(logarithm of ϕ) big.

5. If ϕ and ψ are codes of syntactical objects, the concatenation ϕ ? ψ of ϕ
and ψ is O(ϕ · ψ) big. For, |ϕ ? ψ| = |ϕ| + |ψ|, whence by (3), ϕ ? ψ ≈
a|ϕ|+|ψ| = a|ϕ| · a|ψ| = ϕ · ψ.

6. If ϕ and t are (codes of) syntactical objects, then ϕx(t) is O(ϕ|t|) big.
Here ϕx(t) denotes the syntactical object that results from ϕ by replacing
every (unbounded) occurrence of x by t. The length of ϕ is about |ϕ|. In
the worst case, these are all x-symbols. In this case, the length of ϕx(t)
is |ϕ| · |t| and thus ϕx(t) is O(a

|ϕ|·|t|) = O(t|ϕ|) = O(ϕ|t|) big.

We want to represent numbers by terms and then consider the code of the term.

It is not a good idea to represent a number n by

n times︷ ︸︸ ︷
S . . . S 0. For, the length of this

object is n+1 whence its code is about 2n+1 and we would like to avoid the use
of exponentiation. In the setting of weaker arithmetics it is common practice
to use so-called efficient numerals. These numerals are defined by recursion as
follows. 0 = 0; 2·n = (SS0) · n and 2·n+ 1 = S((SS0) · n). Clearly, these
numerals implement the system of dyadic notation.

1.2.2 Arithmetical theories

In this paper, we shall be mainly concerned with arithmetical theories. In doing
so, formalization of interpretability becomes a routine matter. Moreover, it
facilitates us to relate interpretability to other meta-mathematical notions that
typically use arithmetic.

We do not demand that our theories are formulated in the language of arith-
metic. Instead, we demand that some sufficiently strong fragment of number
theory should be embeddable, viz. interpretable in our theories.

Reasonable arithmetical theories

As we have just agreed, our theories should contain a sufficient amount of arith-
metic. Sufficient means here, enough to do coding and elementary arguments.
On the other hand, we do not want to exclude many interesting weaker theories
by demanding too much arithmetic.

In Subsection 1.2.1 we have seen that a substitution operation on codes of
syntactical objects asks for a function of growth rate x|x|. Reasonable arith-
metical theories should thus also have such a function. In Buss’s S1

2 this is the
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smash function ]. In the theory I∆0 + Ω1 this is the function ω1(x). In this
paper we choose2 to work with S12.

Definition 1.2.2. We will call a pair 〈U, k〉 a numberized theory if k : U ¤ S12.
A theory U is numberizable or arithmetical if for some j, 〈U, j〉 is a numberized
theory.

From now on, we shall only consider numberizable or numberized theories.
Often however, we will fix a numberization j and reason about the theory 〈U, j〉
as if it were formulated in the language of arithmetic. Moreover, we shall most
of the times work with sequential theories. Basically, sequentiality means that
any finite sequence of objects can be coded.

As we want to do arithmetization of syntax, our theories should be coded in
a simple way. We will assume that all our theories U have an axiom set that is
decidable in polynomial time. That is, there is some formula AxiomU (x) which
is ∆b

1 in S12, with

- S12 ` AxiomU (ϕ) iff ϕ is an axiom of U .

The choice of ∆b
1-axiomatizations is also motivated by Lemma 1.2.3.

For already really weak theories we have Σ1-completeness. However, proofs
of Σ1-sentences σ are multi-exponentially big, that is, 2σn for some n depending
on σ. (See e.g., [HP93].)

However, for ∃Σb1-formulas we do have a completeness theorem (see [Bus98]).
From now on, we shall often write a sup-index to a quantifier to specify the
domain of quantification.

Lemma 1.2.3. If α(x) ∈ ∃Σb1, then there is some standard natural number n
such that

S12 ` ∀x [α(x)→ ∃ p<ωn1 (x) ProofU (p, α(ẋ))].

This holds for any reasonable arithmetical theory U . Moreover, we have also a
formalized version of this statement.

S12 ` ∀
∃Σb

1α ∃n 2S1
2
(∀x [α(x)→ ∃ p<ωn1 (x) ProofU (p, α(ẋ))]).

Reflexive theories

Many meta-mathematical statements involve the notion of reflexivity. A theory
is reflexive if it proves the consistency of all of its finite subtheories. There exist
various ways in which reflexivity can be formalized, and throughout literature
we can find many different formalizations. For stronger theories, all these for-
malizations coincide. But for weaker theories, the differences are essential. We
give some formalizations of reflexivity.

2The choice of S12 is motivated as follows. Robinson’s arithmetic Q is too weak for some of
our arguments. On the other hand I∆0+Ω1 aka S2 is not known to be finitely axiomatizable.
However, with some care, we could have used I∆0 +Ω1 as well.
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1. ∀n U ` Con(U [n]) where U [n] denotes the conjunction of the first n axioms
of U .

2. ∀n U ` Con(U¹n) where Con(U¹n) denotes that there is no proof of falsity
using only axioms of U with Gödel numbers ≤ n.

3. ∀n U ` Conn(U) where Conn(U) denotes that there is no proof of falsity
with a proof p where p has the following properties. All non-logical axioms
of U that occur in p have Gödel numbers ≤ n. All formulas ϕ that occur
in p have a logical complexity ρ(ϕ) ≤ n.
Here ρ is some complexity measure that basically counts the number of
quantifier alternations in ϕ. Important features of this ρ are that for every
n, there are truth predicates for formulas with complexity n. Moreover,
the ρ-measure of a formula should be more or less (modulo some poly-time
difference, see Remark 1.2.8) preserved under translations. An example
of such a ρ is given in [Vis93].

It is clear that (1) ⇒ (2) ⇒ (3). For the corresponding provability notions,
the implications reverse. In this paper, our notion of reflexivity shall be the
third one.

We shall write 2U,nϕ for ¬Conn(U + ¬ϕ) or, equivalently, ∃p ProofU,n(p, ϕ).
Here, ProofU,n(p, ϕ) denotes that p is a U -proof of ϕ with all axioms in p are
≤ n and for all formulas ψ that occur in p, we have ρ(ψ) ≤ n.

Remark 1.2.4. An inspection of the proof of provable Σ1-completeness (Lemma
1.2.3) gives us some more information. The proof p that witnesses the prov-
ability in U of some ∃Σb1-sentence α, can easily be taken cut-free. Moreover, all
axioms occurring in p are about as big as α. Thus, from α, we get for some n
(depending linearly on α) that ProofU,n(p, α).

If we wish to emphasize the fact that our theories are not necessarily in
the language of arithmetic, but just can be numberized, our formulations of
reflexivity should be slightly changed. For example, (3) will for some 〈U, j〉 look
like j : U ¤ S12 + {Conn(U) | n ∈ ω}. This also explains the prominent role of
the reflexivization functor 0(·) as studied in Subsection 2.2.

If U is a reflexive theory, we do not necessarily have any reflection principles.
That is, we do not have U ` 2V ϕ → ϕ for some natural V ⊂ U and for some
natural class of formulae ϕ. We do have, however, a weak form of ∀Πb1-reflection.
This is expressed in the following lemma.

Lemma 1.2.5. Let U be a reflexive theory. Then

S12 ` ∀
∀Πb

1π ∀n 2U∀x (2U,nπ(ẋ)→ π(x)).

Proof. Reason in S12 and fix π and n. Let m be such that we have (see Lemma
1.2.3 and Remark 1.2.4)

2U∀x (¬π(x)→ 2U,m¬π(ẋ)).
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Furthermore, let k := max{n,m}. Now, reason in U , fix some x and assume
2U,nπ(x). Thus, clearly also 2U,kπ(x). If now ¬π(x), then also 2U,k¬π(x),
whence 2U,k⊥. This contradicts the reflexivity, whence π(x). As x was arbitrary
we get ∀x (2U,nπ(x)→ π(x)). a

We note that this lemma also holds for the other notions of restricted provability
we introduced in this subsection.

1.2.3 Interpretability in a weak meta-theory

To formalize insights about interpretability in weak meta-theories like S12 we
need to be very careful. Definitions of interpretability that are unproblemati-
cally equivalent in a strong theory like, say, IΣ1 diverge in weak theories. As
we shall see, the major source of problems is the absence of BΣ1.

Here BΣ1 is the so-called collection scheme for Σ1-formulae. Roughly, BΣ1

says that the range of a Σ1-definable function on a finite interval is again finite.
A mathematical formulation is ∀x≤u∃y σ(x, y)→ ∃z ∀x≤u∃ y≤z σ(x, y) where
σ(x, y) ∈ Σ1 may contain other variables too. In this subsection, we study
various divergent definitions of interpretability.

We start by making an elementary observation on interpretations. Basically,
the next definition and lemma say that interpretations transform proofs into
translated proofs.

Definition 1.2.6. Let k be a translation. By recursion on a proof p in natural
deduction we define the translation of p under k, we write pk. For this purpose,
we first define k(ϕ) for formulae ϕ to be3

∧
xi∈FV(ϕ)

δ(xi) → ϕk. Here FV(ϕ)
denotes the set of free variables of ϕ. Clearly, this set cannot contain more than
|ϕ| elements, whence k(ϕ) will not be too big. Obviously, for sentences ϕ, we
have k(ϕ) = ϕk.

If p is just a single assumption ϕ, then pk is k(ϕ). The translation of the
proof constructions are defined precisely in such a way that we can prove Lemma
1.2.7 below. For example, the translation of

ϕ ψ

ϕ ∧ ψ

will be

[
∧
xi∈FV(ϕ∧ψ)

δ(xi)]1
∧
xi∈FV(ϕ)

δ(xi)
∧
xi∈FV(ϕ)

δ(xi)→ ϕk

ϕk
D

ψk

ϕk ∧ ψk∧
xi∈FV(ϕ∧ψ)

δ(xi)→ ϕk ∧ ψk
→ I, 1

3To be really precise we should say that, for example, we let smaller xi come first in∧
xi∈FV(ϕ) δ(xi).
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Figure 1.1: Transitivity of interpretability

where D is just a symmetric copy of the part above ϕk. We note that the
translation of the proof constructions is available4 in S12, as the number of free
variables in ϕ ∧ ψ is bounded by |ϕ ∧ ψ|.

Lemma 1.2.7. If p is a proof of a sentence ϕ with assumptions in some set of
sentences Γ, then for any translation k, pk is a proof of ϕk with assumptions in
Γk.

Proof. Note that the restriction on sentences is needed. For example

∀x ϕ(x) ∀x (ϕ(x)→ ψ(x))

ψ(x)

but
(∀x ϕ(x))k (∀x (ϕ(x)→ ψ(x)))k

δ(x)→ ψk(x)

and in general 0 (δ(x) → ψk) ↔ ψk. The lemma is proved by induction on p.
To account for formulas in the induction, we use the notion k(ϕ) from Definition
1.2.6, which is tailored precisely to let the induction go through. a

Remark 1.2.8. The proof translation leaves all the structure invariant. Thus,
there is a provably total (in S12) function f such that , if p is a U, n-proof of ϕ,
then pk is a proof of ϕk, where pk has the following properties. All axioms in
pk are ≤ f(n, k) and all formulas ψ in pk have ρ(ψ) ≤ f(n, k).

There are various reasons to give, why we want the notion of interpretability
to be transitive, that is, S ¤ U whenever S ¤ T and T ¤ U . The obvious way
of proving this would be by composing (doing the one after the other) two

4More efficient translations on proofs are also available. However they are less uniform.
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j : U ¤sa V

j : U ¤t V

j : U ¤a V

j : U ¤st V

exp

BΣ1

In S1
2:

Figure 1.2: Versions of relative interpretability

interpretations. Thus, if we have j : S¤T and k : T ¤U we would like to have5

j ◦ k : S ¤ U .
If we try to perform this proof as depicted in Figure 1.1, at a certain point

we would like to collect the S-proofs p1, · · · , pm of the j-translated T -axioms
used in a proof of a k-translation of an axiom u of U , and take the maximum
of all such proofs. But to see that such a maximum exists, we precisely need
Σ1-collection.

However, it is desirable to also reason about interpretability in the absence
of BΣ1. A trick is needed to circumvent the problem of the unprovability of
transitivity (and many other elementary desiderata).

One way to solve the problem is by switching to a notion of interpretability
where the needed collection has been built in. This is the notion of smooth
(axioms) interpretability as in Definition 1.2.9. In this thesis we shall mean by
interpretability, unless mentioned otherwise, always smooth interpretability. In
the presence of BΣ1 this notion will coincide with the earlier defined notion of
interpretability, as Theorem 1.2.10 tells us.

Definition 1.2.9. We define the notions of axioms interpretability ¤a, theo-
rems interpretability ¤t, smooth axioms interpretability ¤sa and smooth theo-
rems interpretability ¤st.

j : U ¤a V := ∀v ∃p (AxiomV (v)→ ProofU (p, v
j))

j : U ¤t V := ∀ϕ∀p∃p′ (ProofV (p, ϕ)→ ProofU (p
′, ϕj))

j : U ¤sa V := ∀x∃y ∀ v≤x∃ p≤y (AxiomV (v)→ ProofU (p, v
j))

j : U ¤st V := ∀x∃y ∀ϕ≤x∀ p≤x∃ p′≤y (ProofV (p, ϕ)→ ProofU (p
′, ϕj))

Theorem 1.2.10. In S12 we have all the arrows as depicted in Figure 1.2: Ver-
sions of relative interpretability. The dotted arrows indicate that an additional

5A formal definition of j ◦ k is given in Section 3.1.
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condition is needed in our proof; the condition written next to it. The arrow
with a cross through it, indicates that we know that the implication fails in S1

2.

Proof. We shall only comment on the arrows that are not completely trivial.

• T ` j : U ¤a V → j : U ¤sa V , if T ` BΣ1. So, reason in T and suppose
∀v ∃p (AxiomV (v)→ ProofU (p, v

j)). If we fix some x, we get
∀ v≤x∃p (AxiomV (v)→ ProofU (p, v

j)). By BΣ1 we get the required
∃y ∀ v≤x∃ p≤y (AxiomV (v)→ ProofU (v

j)). It is not clear if T ` BΣ−1 , parameter-
free collection, is a necessary condition.

• S12 6` j : U ¤a V → j : U ¤t V . A counter-example is given in [Vis91].

• T ` j : U ¤t V → j : U ¤sa V , if T ` exp. If T is reflexive, we
get by Corollary 2.1.9 that ` U ¤t V ↔ U ¤sa V . However, different inter-
pretations are used to witness the different notions of interpretability in this
case. If T ` exp, we reason as follows. We reason in T and suppose that
∀ϕ∀p∃p′ (ProofV (p, ϕ)→ ProofU (p

′, ϕj)). We wish to see

∀x∃y ∀ v≤x∃ p≤y (AxiomV (v)→ ProofU (v
j)). (1.1)

So, we pick x arbitrarily and consider6 ν :=
∧

AxiomV (vi)∧vi≤x

vi. Notice that in

the worst case, for all y ≤ x, we have AxiomV (y), whence the length of ν can be
bounded by x · |x|. Thus, ν itself can be bounded by xx, which exists whenever
T ` exp. Clearly, ∃p ProofV (p, ν) whence by our assumption ∃p′ ProofU (p

′, νj).
In a uniform way, with just a slightly larger proof p′′, every vi

j can be extracted
from the proof p′ of νj . We may take this p′′ ≈ y to obtain (1.1). It is not clear
if T ` exp is a necessary condition.

• S12 ` j : U ¤sa V → j : U ¤st V . So, we wish to see that

∀x∃y ∀ϕ≤x∀ p≤x∃ p′≤y (ProofV (p, ϕ)→ ProofU (p
′, ϕj))

from the assumption that j : U ¤sa V . So, we pick x arbitrarily. If now for
some p ≤ x we have ProofV (p, ϕ), then clearly ϕ ≤ x and all axioms vi of V
that occur in p are ≤ x. By our assumption, we can find a y0 such that we can
find proofs pi ≤ y0 for all the vi

j . Now, with some sloppy notation, (pj)vi
j (pi)

is a proof for ϕj . This proof can be estimated (again with sloppy notations).

(pj)vi
j (pi) ≤ (pj)vi

j (y0) ≤ (pj)|y0| ≤ (xj)|y0|

The latter bound is clearly present in S12. a

We note that we have many admissible rules from one notion of interpretability
to another. For example, by Buss’s theorem on the provably total recursive

6To see that ν exists, we seem to also use some collection; we collect all the vi ≤ x for which
AxiomV (vi). However, it is not hard to see that we can consider ν also without collection.
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functions of S12, it is not hard to see that

S12 ` j : U ¤a V ⇒ S12 ` j : U ¤t V.

In the rest of this thesis, we shall at most places no longer write subscripts to the
¤’s. Our reading convention is then that we take that notion of interpretability
that is best to perform the argument. Often this is just smooth interpretability
¤s, which from now on is the name for ¤sa.

Moreover, in [Vis91] some sort of conservation result concerning ¤a and
¤s is proved. For a considerable class of formulas ϕ and theories T , and for
a considerable class of arguments we have that T ` ϕa ⇒ T ` ϕs. Here ϕa
denotes the formula ϕ using the notion ¤a and likewise for ϕs. Thus indeed, in
many cases a sharp distinction between the notions involved is not needed.

We could also consider the following notion of interpretability.

j : U ¤st1 V := ∀x∃y ∀ϕ≤x∃ p′≤y (2V ϕ→ ProofU (p
′, ϕj))

Clearly, j : U ¤st1 V → U ¤st V . However, for the reverse implication one seems
to need BΠ−1 . Also, a straightforward proof of U ` id : U ¤st1 U seems to need
BΠ−1 . Thus, the notion ¤st1 seems to say more on the nature of a theory than
on the nature of interpretability.

1.2.4 Interpretations and models

We can view interpretations j : U ¤ V as a way of defining uniformly a model
N of V inside a modelM of U . Interpretations in foundational papers mostly
bear the guise of a uniform model construction.

Definition 1.2.11. Let j : U ¤ V with j = 〈δ, F 〉. If M |= U , we denote by
Mj the following model.

• |Mj | = {x ∈ |M| | M |= δ(x)}/ ≡, where a ≡ b iffM |= a =j b.

• Mj |= R(α1, . . . , αn) iff M |= F (R)(a1, . . . , an), for some a1 ∈ α1, . . . ,
an ∈ αn.

The fact that j : U ¤ V is now reflected in the observation that, whenever
M |= U , thenMj |= V .

On many occasions viewing interpretations as uniform model constructions
provides the right heuristics.

1.3 Cuts and induction

Inductive reasoning is a central feature of everyday mathematical practice. We
are so used to it, that it enters a proof almost unnoticed. It is when one
works with weak theories and in the absence of sufficient induction, that its all
pervading nature is best felt.
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A main tool to compensate for the lack of induction are the so-called de-
finable cuts. They are definable initial segments of the natural numbers that
possess some desirable properties that we could not infer for all numbers to hold
by means of induction.

The idea is really simple. So, if we can derive ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1))
and do not have access to an induction axiom for ϕ, we just consider J(x) :
∀ y≤x ϕ(y). Clearly J now defines an initial segment on which ϕ holds. As
we shall see, for a lot of reasoning we can restrict ourselves to initial segments
rather than quantifying over all numbers.

1.3.1 Basic properties of cuts

Throughout the literature one can find some variations on the definition of
a cut. At some places, a cut is only supposed to be an initial segment of
the natural numbers. At other places some additional closure properties are
demanded. By a well known technique due to Solovay (see for example [HP93])
any definable initial segment can be shortened in a definable way, so that it has
a lot of desirable closure properties. Therefore, and as we almost always need
the closure properties, we include them in our definition.

Definition 1.3.1. A definable U -cut is a formula J(x) with only x free, for
which we have the following.

1. U ` J(0) ∧ ∀x (J(x)→ J(x+ 1))

2. U ` J(x) ∧ y≤x→ J(y)

3. U ` J(x) ∧ J(y)→ J(x+ y) ∧ J(x · y)

4. U ` J(x)→ J(ω1(x))

We shall sometimes also write x ∈ J instead of J(x). A first fundamental
insight about cuts is the principle of outside big, inside small. Although not
every number x is in J , we can find for every x a proof px that witnesses x ∈ J .

Lemma 1.3.2. Let T and U be reasonable arithmetical theories and let J be a
U -cut. We have that

T ` ∀x 2UJ(x).

Actually, we can have the quantifier over all cuts within the theory T , that is

T ` ∀U-CutJ ∀x 2UJ(x).

Proof. Let us start by making the quantifier ∀U-CutJ a bit more precise. By
∀U-CutJ we shall mean ∀J (2UCut(J) → . . . ). Here Cut(J) is the definable
function that sends the code of a formula χ with one free variable to the code
of the formula that expresses that χ defines a cut.

For a number a, we start with the standard proof of J(0). This proof is
combined with a−1 many instantiations of the standard proof of ∀x (J(x) →
J(x+1)). In the case of weaker theories, we have to switch to efficient numerals
to keep the bound of the proof within range. a
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Remark 1.3.3. The proof sketch actually tells us that (provably in S1
2) for

every U -cut J , there is an n ∈ ω such that ∀x 2U,nJ(x).

Lemma 1.3.4. Cuts are provably closed under terms, that is

T ` ∀U-CutJ ∀Termt 2U∀ ~x∈J t(~x) ∈ J.

Proof. By an easy induction on terms, fixing some U -cut J . Prima facie this
looks like a Σ1-induction but it is easy to see that the proofs have poly-time (in
t) bounds, whence the induction is ∆0(ω1). a

As all U -cuts are closed under ω1(x) and the smash function ], simply relativiz-
ing all quantors to a cut is an example of an interpretation of S12 in U . We shall
always denote both the cut and the interpretation that it defines by the same
symbol.

1.3.2 Cuts and the Henkin construction

It is well known that we can perform the Henkin construction in a rather weak
meta-theory. As the Henkin model has a uniform description, we can link it to
interpretations. The following theorem makes this precise.

Theorem 1.3.5. If U ` Con(V ), then U ¤ V .

Early treatments of this theorem were given in [Wan51] [HB68]. A first fully
formalized version was given in [Fef60]. A proof of Theorem 1.3.5 would closely
follow the Henkin construction.

Thus, first the language of V is extended so that it contains a witness c∃xϕ(x)
for every existential sentence ∃x ϕ(x). Then we can extend V to a maximal
consistent V ′ in the enriched language, containing all sentences of the form
∃xϕ(x)→ ϕ(c∃xϕ(x)). This V

′ can be seen as a term model with a corresponding
truth predicate. Clearly, if V ` ϕ then ϕ ∈ V ′. It is not hard to see that V ′ is
representable (close inspection yields a ∆2-representation) in U .

At first sight the argument uses quite some induction in extending V to
V ′. Miraculously enough, the whole argument can be adapted to S1

2. The
trick consists in replacing the use of induction by employing definable cuts as
is explained in Section 1.3. We get the following theorem. With 2JUϕ we shall
denote that ϕ has a U -proof p with p ∈ J . Similarly we know how to read 3JUϕ.

Theorem 1.3.6. For any numberizable theories U and V , we have that

S12 ` 2UCon(V )→ ∃k (k : U ¤ V & ∀ϕ 2U (2V ϕ→ ϕk)).

Proof. A proof can be found in [Vis91]. Actually something stronger is proved
there. Namely, that for some standard number m we have

∀ϕ∃ p≤ωm1 (ϕ) ProofU (p,2V ϕ→ ϕk).

a
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As cuts have nice closure properties, many arguments can be performed
within that cut. The numbers in the cut will so to say, play the role of the
normal numbers. It turns out that the whole Henkin argument can be carried
out using only the consistency on a cut.

We shall write 2JTϕ for ∃ p∈J ProofT (p, ϕ). Thus, it is also clear what 3JTϕ

and ConJ (V ) mean.

Theorem 1.3.7. We have Theorem 1.3.6 also in the following form.

T ` 2UConI(V )→ ∃k (k : U ¤ V & ∀ϕ 2U (2V ϕ→ ϕk))

Here I is any (possibly non-standard) U -cut that is closed under ω1(x).

Proof. By close inspection of the proof of Theorem 1.3.6. All operations on
hypothetical proofs p can be bounded by some ωk1 (p), for some standard k. As
I is closed under ω1(x), all the bounds remain within I. a

We conclude this subsection with two asides, closely related to the Henkin con-
struction.

Lemma 1.3.8. Let U contain S12. We have that U ` Con(Pred). Here, Con(Pred)
is a natural formalization of the statement that predicate logic is consistent.

Proof. By defining a simple (one-point) model within S12. a

Remark 1.3.9. If U has full induction, then it holds that U ¤ V iff V is inter-
pretable in U by some interpretation that maps identity to identity.

Proof. Suppose j : U ¤ V with j = 〈δ, F 〉. We can define j ′ := 〈δ′, F ′〉 with
δ′(x) := δ(x) ∧ ∀ y<x (δ(y) → y 6=jx). F ′ agrees with F on all symbols except
that it maps identity to identity. By the minimal number principle we can prove
∀x (δ(x) → ∃x′ (x′=jx) ∧ δ′(x)), and thus ∀~x (δ′(~x) → (ϕj(~x) ↔ ϕj

′

(~x))) for
all formulae ϕ. a

It is not the case that the implication in Remark 1.3.9 can be reversed. For,
if U is reflexive, contains I∆2 (or L∆2) and U ¤ V , the following reasoning
can be performed. By reflexivity of U (and the totality of exp), we get by
Lemma 2.1.2 of the Orey-Hájek characterization that ∀x 2UConx(V ). We can
now perform the Henkin construction (Lemma 2.1.1). This yields an interpre-
tation where all symbols of V get a ∆2-translation. Thus, by I∆2 we can prove
∀x (δ(x)→ ∃x′ (x′=jx)∧δ′(x)) and obtain an interpretation that maps identity
to identity. There exist plenty of reflexive extensions of I∆2 that do not contain
full induction. An example is IΣR3 .

1.3.3 Pudlák’s lemma

Pudlák’s lemma is central to many arguments in the field of interpretability
logics. It provides a means to compare a model M of U and its internally
defined modelMj of V if j : U ¤ V . If U has full induction, this comparison is
fairly easy.
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Theorem 1.3.10. Suppose j : U ¤ V and U has full induction. Let M be a
model of U . We have thatM¹endM

j via a definable embedding.

Proof. If U has full induction and j : U ¤ V , we may by Remark 1.3.9 actually
assume that j maps identity in V to identity in U . Thus, we can define the
following function.

f :=

{
0 7→ 0j

x+ 1 7→ f(x)+j1j

Now, by induction, f can be proved to be total. Note that full induction
is needed here, as we have a-priori no bound on the complexity of 0j and +j .
Moreover, it can be proved that f(a + b) = f(a)+jf(b), f(a · b) = f(a) ·jf(b)
and that y≤jf(b)→ ∃ a<b f(a) = y. In other words, that f is an isomorphism
between its domain and its co-domain and the co-domain is an initial segment
ofMj . a

If U does not have full induction, a comparison betweenM andMj is given
by Pudlák’s lemma, first explicitly mentioned in [Pud85]. Roughly, Pudlák’s
lemma says that in the general case, we can find a definable U -cut I ofM and
a definable embedding f : I −→Mj such that f [I] ¹endMj .

In formulating the statement we have to be careful as we can no longer
assume that identity is mapped to identity. A precise formulation of Pudlák’s
lemma in terms of an isomorphism between two initial segments can for example
be found in [JV00]. We have chosen here to formulate and prove the most
general syntactic consequence of Pudlák’s lemma, namely that I and f [I], as
substructures ofM andMj respectively, make true the same ∆0-formulas.

In the proof of Pudlák’s lemma we shall make the quantifier ∃j,J-functionh
explicit. It basically means that h defines a function from a cut J to the =j-
equivalence classes of the numbers defined by the interpretation j.

Lemma 1.3.11 (Pudlák’s Lemma).

S12 ` j : U ¤ V → ∃
U-CutJ ∃j,J-functionh∀∆0ϕ 2U∀ ~x ∈ J (ϕj(h(~x))↔ ϕ(~x))

Moreover, the h and J can be obtained uniformly from j by a function that is
provably total in S12.

Proof. Again, by ∃U-CutJ we shall mean ∃J 2UCut(J), where Cut(J) is the
definable function that sends the code of a formula χ to the code of a formula
that expresses that χ defines a cut. We apply a similar strategy for quantifying
over j, J-functions. The defining property for a relation H to be a j, J-function
is

∀ ~x, y, y′∈J (H(~x, y) & H(~x, y′)→ y=jy′).

We will often consider H as a function and write for example ψ(h(~x)) instead
of ∀y (H(~x, y)→ ψ(y)).
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The idea of the proof is very easy. Just map the numbers of U via h to
the numbers of V so that 0 goes to 0j and the mapping commutes with the
successor relation. If we want to prove a property of this mapping, we might
run into problems as the intuitive proof appeals to induction. And sufficient
induction is precisely what we lack in weaker theories.

The way out here is to just put all the properties that we need our function
h to possess into its definition. Of course, then the work is in checking that we
still have a good definition. The definition being good means here that the set
of numbers on which h is defined induces a definable U -cut.

In a sense, we want an (definable) initial part of the numbers of U to be iso-
morphic under h to an initial part of the numbers of V . Thus, h should definitely
commute with successor, addition and multiplication. Moreover, the image of
h should define an initial segment, that is, be closed under the smaller than
relation. All these requirements are reflected in the definition of Goodsequence.

Goodsequence(σ, x, y) := lh(σ) = x+ 1 ∧ σ0=j0j ∧ σx=jy
∧ ∀ i≤x δ(σi)
∧ ∀ i<x (σi+1=

jσi+
j1j)

∧ ∀ k+l≤x (σk+
jσl=

jσk+l)
∧ ∀ k·l≤x (σk·

jσl=
jσk·l)

∧ ∀a (a≤jy → ∃ i≤x σi=ja)

H(x, y) := ∃σ Goodsequence(σ, x, y)
∧ ∀σ′ ∀y′ (Goodsequence(σ′, x, y′)→ y=jy′)

J ′(x) := ∀x′≤x∃y H(x′, y)

Finally, we define J to be the closure of J ′ under +, · and ω1(x). Now that
we have defined all the machinery we can start the real proof. The reader is
encouraged to see at what place which defining property is used in the proof.
We do note here that the defining property ∀ i≤x δ(σi) is not used in the proof
here. We shall need it in the proof of Lemma 2.1.6.

We first note that J ′(x) indeed defines a U -cut. For 2UJ
′(0) you basically

need sequentiality of U , and the translations of the identity axioms and prop-
erties of 0.

To see 2U∀x (J ′(x) → J ′(x + 1)) is also not so hard. It follows from the
translation of basic properties provable in V , like x = y → x + 1 = y + 1 and
x+ (y + 1) = (x+ y) + 1, etc.

We should now see that h is a j, J-function. This is actually quite easy, as
we have all the necessary conditions present in our definition. Thus, we have

2U∀x, y∈J (h(x)=jh(y)↔ x = y) (1.2)

The ← direction reflects that h is a j, J-function. The → direction follows
from elementary reasoning in U using the translation of basic arithmetical facts
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provable in V . So, if x 6= y, say x < y, then x+(z+1) = y whence h(x)+jh(z+
1)=jh(y) which implies h(x)6=jh(y).

We are now to see that for our U -cut J and for our j, J-function h we indeed
have that7

∀∆0ϕ 2U∀ ~x∈J (ϕj(h(~x))↔ ϕ(~x)).

First we shall proof this using a seemingly Σ1-induction. A closer inspection
of the proof shall show that we can provide at all places sufficiently small bounds,
so that actually an ω1(x)-induction suffices. We first proof the following claim.

Claim 1. ∀Termt 2U∀ ~x, y ∈ J (tj(h(~x))=jh(y)↔ t(~x) = y)

Proof. The proof is by induction on t. The basis is trivial. To see for example
2U∀ y∈J (0j=jh(y)↔ 0 = y) we reason in U as follows. By the definition of h,
we have that h(0)=j0j , and by (1.2) we moreover see that 0j=jh(y) ↔ 0 = y.
The other basis case, that is, when t is an atom, is precisely (1.2).

For the induction step, we shall only do +, as · goes almost completely the
same. Thus, we assume that t(~x) = t1(~x) + t2(~x) and set out to prove

2U∀ ~x, y∈J (t1
j(h(~x))+jt2

j(h(~x))=jh(y)↔ t1(~x) + t2(~x) = y).

Within U :

← If t1(~x) + t2(~x) = y, then by Lemma 1.3.4, we can find y1 and y2 with
t1(~x) = y1 and t2(~x) = y2. The induction hypothesis tells us that
t1
j(h(~x))=jh(y1) and t2

j(h(~x))=jh(y2). Now by (1.2), h(y1 + y2)=
jh(y)

and by the definition of h we get that

h(y1 + y2) =j h(y1)+
jh(y2)

=j i.h. t1
j(h(~x))+jt2

j(h(~x))

=j (t1(h(~x)) + t2(h(~x)))
j
.

→ Suppose now t1
j(h(~x))+jt2

j(h(~x))=jh(y). Then clearly t1
j(h(~x))≤jh(y)

whence by the definition of h we can find some y1 ≤ y such that t1
j(h(~x))=j

h(y1) and likewise for t2 (using the translation of the commutativity of
addition). The induction hypothesis now yields t1(~x) = y1 and t2(~x) = y2.
By the definition of h, we get
h(y)=jh(y1)+

jh(y2)=
jh(y1 + y2), whence by (1.2), y1 + y2 = y, that is,

t1(~x) + t2(~x) = y.

a

We now prove by induction on ϕ ∈ ∆0 that

2U∀ ~x∈J (ϕj(h(~x))↔ ϕ(~x)). (1.3)

7We use h(~x) as short for h(x0), · · · , h(xn).
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For the basis case, we consider that ϕ ≡ t1(~x) + t2(~x). We can now use
Lemma 1.3.4 to note that

2U∀ ~x∈J (t1(~x) = t2(~x)↔ ∃ y∈J (t1(~x) = y ∧ t2(~x) = y))

and then use Claim 1, the transitivity of = and its translation to obtain the
result.

The boolean connectives are really trivial, so we only need to consider
bounded quantification. We show (still within U) that

∀ y, ~z∈J (∀x≤jh(y) ϕj(x, h(~z))↔ ∀x≤y ϕ(x, ~z)).

← Assume ∀x≤y ϕ(x, ~z) for some y, ~z ∈ J . We are to show
∀x≤jh(y) ϕj(x, h(~z)). Now, pick some x≤jh(y) (the translation of the universal
quantifier actually gives us an additional δ(x) which we shall omit for the sake
of readability). Now by the definition of h we find some y′ ≤ y such that
h(y′) = x. As y′ ≤ y, by our assumption, ϕ(y′, ~z) whence by the induction
hypothesis ϕj(h(y′), h(~z)), that is ϕj(x, h(~z)). As x was arbitrarily ≤jh(y), we
are done.
→ Suppose ∀x≤jh(y) ϕj(x, h(~z)). We are to see that ∀x≤y ϕ(x, ~z)). So,

pick x ≤ y arbitrarily. Clearly h(x)≤jh(y), whence, by our assumption
ϕj(h(x), h(~z)) and by the induction hypothesis, ϕ(x, ~z).

In the proof of Lemma 1.3.11 we have used twice a Σ1-induction; In Claim
1 and in proving (1.3). But in both cases, at every induction step, a constant
piece p′ of proof is added to the total proof. This piece looks every time the
same. Only some parameters in it have to be replaced by subterms of t. So, the
addition to the total proof can be estimated by p′a(t) which is about O(tk) for
some standard k. Consequently there is some standard number l such that

∀ϕ∈∆0 ∃ p≤ϕ
l ProofU (p,∀ ~x∈J (ϕj(h(~x))↔ ϕ(~x)))

and indeed, our induction was really but a bounded one. Note that we dealt
with the bounded quantification by appealing to the induction hypothesis only
once, followed by a generalization. So, fortunately we did not need to apply
the induction hypothesis to all x≤y, which would have yielded an exponential
blow-up. a

Remark 1.3.12. Pudlák’s lemma is valid already if we employ the notion of
theorems interpretability rather than smooth interpretability. If we work with
theories in the language of arithmetic, we can do even better. In this case,
axioms interpretability can suffice. In order to get this, all arithmetical facts
whose translations were used in the proof of Lemma 1.3.11 have to be promoted
to the status of axiom. However, a close inspection of the proof shows that these
facts are very basic and that there are not so many of them.

If j is an interpretation with j : α ¤ β, we shall sometimes call the corre-
sponding isomorphic cut that is given by Lemma 1.3.11, the Pudlák cut of j
and denote it by the corresponding upper case letter J .
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Chapter 2

Characterizations of
interpretability

In this chapter we shall relate the notion of relative interpretability to other
notions, familiar in the context of meta-mathematics, like consistency assertions
and Π1-conservativity. Typically, these notions are formulated using arithmetic.
Thus, our theories should be related to arithmetic too. In this section we employ
two ways of relating our original theory U to arithmetic.

In the first section we do so by fixing some interpretation (numberization)
j of S12 in U . In the second section we use a map 0(·) assigning arithmetical
theories 0U to arbitrary theories U .

In Section 2.1 we are mainly concerned with the so-called Orey-Hájek charac-
terizations of interpretability. We give detailed proofs and study the conditions
needed in them. We shall work with theories as if they were formulated in the
language of arithmetic. That is, we consider theories U with a fixed numberiza-
tion n : U ¤ S12.

A disadvantage of doing so is clearly that our statements may be somehow
misleading; when we think of, e.g., ZFC we do not like to think of it as coming
with a fixed numberization.

On the other hand, there is the advantage of perspicuity and readability. For
example, our notion of Π1-conservativity refers to arithmetical Π1-sentences and
thus makes explicit use of some fixed interpretation.

In Section 2.2 we consider our map 0U and study it as a functor between
categories. In doing so, many characterizations get a more elegant formulation
and proof. Our results have a direct bearing on the categories we study. In this
subsection we shall be explicit about the numberizations used.

Finally, in Section 2.3 we give a model-theoretic characterization of inter-
pretability.

23
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U ¤ V

∀∀Π
b
1π (2V π → 2Uπ)

∀n U ` Conn(V )2.1.1

2.1.2

2.1.32.1.5 2.1.42.1.6

Figure 2.1: Characterizations of interpretability

2.1 The Orey-Hájek characterizations

We consider the diagram from Figure 2.1. It is well known that all the im-
plications hold when both U and V are reflexive. This fact is referred to as
the Orey-Hájek characterizations ([Fef60], [Ore61], [Háj71], [Háj72]) for inter-
pretability. However, for the Π1-conservativity part, we should also mention
work by Guaspari, Lindström and Pudlák ([Gua79], [Lin79], [Lin84], [Pud85]).

In this section we shall comment on all the implications in Figure 2.1, and
study the conditions on U , V and the meta-theory, that are necessary or suffi-
cient.

Lemma 2.1.1. In S12 we can prove ∀n 2UConn(V )→ U ¤ V .

Proof. The only requirement for this implication to hold, is that U ` Con(Pred).
But, by our assumptions on U and by Lemma 1.3.8 this is automatically satis-
fied.

Let us first give the informal proof. Thus, let AxiomV (x) be the formula that
defines the axiom set of V .

We now apply a trick due to Feferman and consider the theory V ′ that
consists of those axioms of V up to which we have evidence for their consistency.
Thus, AxiomV ′(x) := AxiomV (x) ∧ Conx(V ).
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We shall now prove that U ¤ V in two steps. First, we will see that

U ` Con(V ′). (2.1)

Thus, by Theorem 1.3.5 we get that U ¤ V ′. Second, we shall see that

V = V ′. (2.2)

To see (2.1), we reason in U , and assume for a contradiction that ProofV ′(p,⊥)
for some proof p. We consider the largest axiom v that occurs in p. By assump-
tion we have (in U) that AxiomV ′(v) whence Conv(V ). But, as clearly V ′ ⊆ V ,
we see that p is also a V -proof. We can now obtain a cut-free proof p′ of ⊥.
Clearly ProofV,v(p

′,⊥) and we have our contradiction.
If V ′ is empty, we cannot consider v. But in this case, Con(V ′)↔ Con(Pred),

and by assumption, U ` Con(Pred).
We shall now see (2.2). Clearly N |= AxiomV ′(v) → AxiomV (v) for any

v ∈ N. To see that the converse also holds, we reason as follows.
Suppose N |= AxiomV (v). By assumption U ` Conv(V ), whence Conv(V )

holds on any model M of U . We now observe that N is an initial segment of
(the numbers of) any modelM of U , that is,

N ¹endM. (2.3)

As M |= Conv(V ) and as Conv(V ) is a Π1-sentence, we see that also N |=
Conv(V ). By assumption we had N |= AxiomV (v), thus we get that N |=
AxiomV ′(v). We conclude that

N |= AxiomV (x)↔ AxiomV ′(x) (2.4)

whence, that V = V ′. As U ` Con(V ′), we get by Theorem 1.3.5 that U ¤ V ′.
We may thus infer the required U ¤ V .

It is not possible to directly formalize the informal proof. At (2.4) we con-
cluded that V = V ′. This actually uses some form of Π1-reflection which is
manifested in (2.3). The lack of reflection in the formal environment will be
compensated by another sort of reflection, as formulated in Theorem 1.3.6.

Moreover, to see (2.1), we had to use a cut elimination. To avoid this, we
shall need a sharper version of Feferman’s trick.

Let us now start with the formal proof sketch. We shall reason in U . With-
out any induction we conclude ∀x (Conx(V ) → Conx+1(V )) or ∃x (Conx(V ) ∧
2V,x+1⊥). In both cases we shall sketch a Henkin construction.

If ∀x (Conx(V )→ Conx+1(V )) and also Con0(V ), we can find a cut J(x) with
J(x)→ Conx(V ). We now consider the following non-standard proof predicate.

2
∗
Wϕ := ∃x∈J 2W,xϕ

We note that we have Con∗(V ), where Con∗(V ) of course denotes ¬(∃x∈J 2V,x⊥).
As always, we extend the language on J by adding witnesses and define a series
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of theories in the usual way. That is, by adding more and more sentences (in
J) to our theories while staying consistent (in our non-standard sense).

V = V0 ⊆ V1 ⊆ V2 ⊆ · · ·with Con∗(Vi) (2.5)

We note that 2∗Vi
ϕ and 2∗Vi

¬ϕ is not possible, and that for ϕ ∈ J we can
not have Con∗(ϕ∧¬ϕ). These observations seem to be too trivial to make, but
actually many a non-standard proof predicate encountered in the literature does
prove the consistency of inconsistent theories.

As always, the sequence (2.5) defines a cut I ⊆ J , that induces a Henkin set
W and we can relate our required interpretation k to this Henkin set as was,
for example, done in [Vis91].

We now consider the case that for some fixed b we have Conb(V )∧2V,b+1⊥.
We note that we can see the uniqueness of this b without using any substantial
induction. Basically, we shall now do the same construction as before only that
we now possibly stop at b.

For example the cut J(x) will now be replaced by x ≤ b. Thus, we may end
up with a truncated Henkin set W . But this set is complete with respect to
relatively small formulas. Moreover, W is certainly closed under subformulas
and substitution of witnesses. Thus,W is sufficiently large to define the required
interpretation k.

In both cases we can perform the following reasoning.

2V ϕ → ∃x 2V,xϕ
→ ∃x 2U (Conx(V ) ∧2V,xϕ)
→ 2U2

∗
V ϕ

→ 2Uϕ
k

The remarks from [Vis91] on the bounds of our proofs are still applicable and
we thus obtain a smooth interpretation. a

Lemma 2.1.2. In the presence of exp, we can prove that for reflexive U , U ¤
V → ∀x 2UConx(V ).

Proof. The informal argument is conceptually very clear and we have depicted
it in Figure 2.2. The accompanying reasoning is as follows.

We assume U ¤ V , whence for some k we have k : U ¤ V . Thus, for axioms
interpretability we find that ∀u∃p (AxiomV (u) → ProofU (p, u

k)). We are now
to see that ∀x U ` Conx(V ). So, we fix some x. By our assumption we get that
for some l, that

∀u≤x∃p (AxiomV (u)→ ProofU,l(p, u
k)). (2.6)

This formula is actually equivalent to the Σ1-formula

∃n∀u≤x∃ p≤n (AxiomV (u)→ ProofU,l(p, u
k)) (2.7)
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v1k . . . vmk

⊥

v1k . . . vmk

⊥

u1 . . . ulm

In U :

. . .

⊥

v1 . . . vm

k

u1 . . . ul1

pmp1

Figure 2.2: Transformations on proofs

from which we may conclude by provable Σ1-completeness,

U ` ∃n∀u≤x∃ p≤n (AxiomV (u)→ ProofU,l(p, u
k)). (2.8)

We now reason in U and suppose that there is some V, x-proof p of ⊥. The
assumptions in p are axioms v1 . . . vm of V , with each vi ≤ x. Moreover, all the
formulas ψ in p have ρ(ψ) ≤ x. By Lemma 1.2.7, p transforms to a proof pk of
⊥k which is again ⊥.

The assumptions in pk are now among the v1
k . . . vm

k. By Remark 1.2.8 we
get that for some n′ depending on x and k, we have that all the axioms in pk

are ≤ n′ and all the ψ occurring in pk have ρ(ψ) ≤ n′.
Now by (2.8), we have U, l-proofs pi ≤ n of vi

k. The assumptions in the
pi are axioms of U . Clearly all of these axioms are ≤ l. We can now form
a U, l+n′-proof p′ of ⊥ by substituting all the pi for the (vi)

k. Thus we have
shown ProofU,l+n′(p

′,⊥). But this clearly contradicts the reflexivity of U .
The informal argument is readily formalized to obtain T ` U ¤ V →

∀x 2UCon(V, x). However there are some subtleties.
First of all, to conclude that (2.6) is equivalent to (2.7), a genuine application

of BΣ1 is needed. If U lacks BΣ1, we have to switch to smooth interpretability
to still have the implication valid. Smoothness then automatically also provides
the l that we used in 2.6.

In addition we need that T proves the totality of exponentiation. For weaker
theories, we only have provable ∃Σb1-completeness. But if AxiomV (u) is ∆

b
1, we

can only guarantee that ∀u≤m∃ p≤n (AxiomV (u) → ProofU (p, u
k)) is Πb2. As

far as we know, exponentiation is needed to prove ∃Πb2-completeness.
All other transformations of objects in our proof only require the totality of

ω1(x). a

The assumption that U is reflexive can in a sense not be dispensed with.
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That is, if

∀V (U ¤ V → ∀x 2UConx(V )), (2.9)

then U is reflexive, as clearly U ¤ U . In a similar way we see that if

∀U (U ¤ V → ∀x 2UConx(V )), (2.10)

then V is reflexive. However, V being reflexive could never be a sufficient
condition for (2.10) to hold, as we know from [Sha97] that interpreting reflexive
theories in finitely many axioms is complete Σ3.

Lemma 2.1.3. In S12 we can prove ∀x 2UConx(V )→ ∀∀Π
b
1π (2V π → 2Uπ).

Proof. There are no conditions on U and V for this implication to hold. We
shall directly give the formal proof as the informal proof does not give a clearer
picture.

Thus, we reason in S12 and assume ∀x 2UConx(V ). Now we consider any
π ∈ ∀Πb1 such that 2V π. Thus, for some x we have 2V,xπ. We choose x large
enough, so that we also have (see Remark 1.2.4)

2U (¬π → 2V,x¬π). (2.11)

As 2V,xπ → 2U2V,xπ, we also have that

2U2V,xπ. (2.12)

Combining (2.11), (2.12) and the assumption that ∀x 2UConx(V ), we see that
indeed 2Uπ. a

Lemma 2.1.4. In S12 we can prove that for reflexive V we have

∀∀Π
b
1π (2V π → 2Uπ)→ ∀x 2UConx(V ).

Proof. If V is reflexive and ∀∀Π
b
1π (2V π → 2Uπ) then, as for every x, Conx(V )

is a ∀Πb1-formula, also ∀x 2UConx(V ). a

It is obvious that

∀U [∀∀Π
b
1π (2V π → 2Uπ)→ ∀x 2UConx(V )] (2.13)

implies that V is reflexive. Likewise,

∀V [∀∀Π
b
1π (2V π → 2Uπ)→ ∀x 2UConx(V )] (2.14)

implies that U is reflexive. However, U being reflexive can never be a sufficient
condition for (2.14) to hold. An easy counterexample is obtained by taking U
to be PRA and V to be IΣ1. (See for example Chapter 11.)

Lemma 2.1.5. (In S12:) For reflexive V we have ∀∀Π
b
1π (2V π → 2Uπ) →

U ¤ V .
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Proof. We know of no direct proof of this implication. Also, all proofs in the
literature go via Lemmata 2.1.4 and 2.1.1, and hence use reflexivity of V . a

Again, by [Sha97] and Lemma 2.1.6 we see that U being reflexive can not

be a sufficient condition for ∀∀Π
b
1π (2V π → 2Uπ)→ U ¤ V to hold.

In our context, the reflexivity of V is not necessary, as ∀U U ¤ S1
2 and S12 is

not reflexive.

Lemma 2.1.6. Let U be a reflexive and sequential theory. We have in S1
2 that

U ¤ V → ∀∀Π
b
1π (2V π → 2Uπ).

If moreover U ` exp we also get U ¤ V → ∀Π1π (2V π → 2Uπ). If U is not
reflexive, we still have that U ¤ V → ∃U-CutJ ∀Π1π (2V π → 2Uπ

J).
For these implications, it is actually sufficient to work with the notion of

theorems interpretability.

Proof. The intuition for the formal proof comes from Pudlák’s lemma, which
in turn is tailored to compensate a lack of induction. We shall first give an
informal proof sketch if U has full induction. Then we shall give the formal
proof using Pudlák’s lemma.

If U has full induction and j : U ¤ V , we may assume by Remark 1.3.9
assume that j maps identity to identity. By Theorem 1.3.10 we now see that
M ¹end Mj . If for some π ∈ Π1, 2V π then by soundness Mj |= π, whence
M |= π. AsM was arbitrary, we get by the completeness theorem that 2Uπ.

To transform this argument into a formal one, valid for weak theories, there
are two major adaptations to be made. First, the use of the soundness and
completeness theorem has to be avoided . This can be done by simply staying in
the realm of provability. Secondly, we should get rid of the use of full induction.
This is done by switching to a cut in Pudlák’s lemma.

Thus, the formal argument runs as follows. Reason in T and assume U ¤V .
We fix some j : U ¤ V . By Pudlák’s lemma, Lemma 1.3.11, we now find1 a

definable U -cut J and a j, J-function h such that

∀∆0ϕ 2U∀ ~x∈J (ϕj(h(~x))↔ ϕ(~x)).

We shall see that for this cut J we have that

∀Π1π (2V π → 2Uπ
J). (2.15)

Therefore, we fix some π ∈ Π1 and assume 2V π. Let ϕ(x) ∈ ∆0 be such that
π = ∀x ϕ(x). Thus we have 2V ∀x ϕ(x), hence by theorems interpretability

2U∀x (δ(x)→ ϕj(x)). (2.16)

We are to see 2U∀x (J(x)→ ϕ(x)). To see this, we reason in U and fix x such
that J(x). By definition of J , h(x) is defined. By the definition of h, we have

1Remark 1.3.12 ensures us that we can find them also in the case of theorems interpretabil-
ity.



30 CHAPTER 2. CHARACTERIZATIONS OF INTERPRETABILITY

δ(h(x)), whence by (2.16), ϕj(h(x)). Pudlák’s lemma now yields the desired
ϕ(x). As x was arbitrary, we have proved (2.16).

So far, we have not used the reflexivity of U . We shall now see that

∀∀Π
b
1π (2Uπ

J → 2Uπ)

holds for any U -cut J whenever U is reflexive. For this purpose, we fix some π ∈
∀Πb1, some U -cut J and assume 2Uπ

J . Thus, ∃n 2U,nπ
J and also ∃n 2U2U,nπ

J .
If π = ∀x ϕ(x) with ϕ(x) ∈ Πb1, we get ∃n 2U2U,n∀x (x ∈ J → ϕ(x)), whence
also

∃n 2U∀x 2U,n(x ∈ J → ϕ(x)).

By Lemma 1.3.2 and Remark 1.3.3, for large enough n, this implies

∃n 2U∀x 2U,nϕ(x)

and by Lemma 1.2.5 (only here we use that π ∈ ∀Πb1) we obtain the required
2U∀x ϕ(x). a

U being reflexive and sequential is a sufficient condition for U ¤ V →

∀∀Π
b
1π (2V π → 2Uπ) to hold. For sequential (or even `-reflexive, as defined

in Subsection 2.2) theories, reflexivity is also a necessary condition. That is to
say, that for such theories,

∀V [U ¤ V → ∀∀Π
b
1π (2V π → 2Uπ)], (2.17)

implies that U is reflexive.2 For, if U is sequential, we get by Lemma 2.2.2 that
for every n, U ¤ S12 + Conn(U). Thus, by (2.17) we get that ∀n U ` Conn(U).

The sequentiality is essentially used here: we can exhibit a non-sequential
non-reflexive U which satisfies (2.17).

By a result of Hanf [Han65] we can find a finitely axiomatized decidable
theory T with PA + Con(T ) ` Con(PA). We now let U := PA ¢ T with the
numberization corresponding to the PA-summand. Here, ¢ is the disjoint union
as defined in Appendix A of [JV04a] and as studied in [MPS90]. We make two
observations of U .

First, U satisfies (2.17). Suppose that PA¢T¤V and 2V π. Then V ¤S12+π
whence PA¢ T ¤ S12 + π. As we have pairing in S12 + π, we can apply Theorem
A.5 from [JV04a] and obtain that PA¤S12+π or T ¤S12+π. By the decidability
of T and by the essentially undecidability of S12, we see that PA ¤ S12 + π. By
Lemma 2.1.6 we conclude that PA ` π, whence PA¢ T ` π.

Second, we see that PA¢T cannot be reflexive. Suppose, for a contradiction,
that ∀n PA¢ T ` Conn((PA¢ T )). Then, for all n, PA ` Conn((PA¢ T )) and
thus, for sufficiently large n, PA ` Conn(T ). Since T is finitely axiomatizable
and PA proves cut-elimination, PA ` Con(T ). But this would imply that PA `
Con(PA) which is a contradiction.

2Note that the tempting fixed point ϕ(π)↔ (S1
2 + ∀

Π1π ϕ(π)¤ S1
2 + π ↔ TrueΠ1

(π)) also
yields a reflexive (inconsistent) theory S1

2 + ∀
Π1π ϕ(π).
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Again, by [Sha97] we note that V being reflexive can never be a sufficient

condition for ∀U [U ¤ V → ∀∀Π
b
1π (2V π → 2Uπ)].

The main work on the Orey-Hájek characterization has now been done. We
can easily extract some useful, mostly well-known corollaries.

Corollary 2.1.7. If U is a reflexive theory, then

T ` U ¤ V ↔ ∀x 2UConx(V ).

Here T contains exp and ¤ denotes smooth interpretability.

Corollary 2.1.8. (In S12:) If V is a reflexive theory, then the following are
equivalent.

1. U ¤ V

2. ∃U-CutJ ∀Π1π (2V π → 2Uπ
J)

3. ∃U-CutJ ∀x 2UConJx(V )

Proof. This is part of Theorem 2.3 from [Sha97]. (1) ⇒ (2) is already proved
in Lemma 2.1.6, (2)⇒ (3) follows from the transitivity of V and (3)⇒ (1) is a
sharpening of Lemma 2.1.1. which closely follows Theorem 1.3.7. Note that ¤
may denote denote smooth or theorems interpretability. a

Corollary 2.1.9. If V is reflexive, then

S12 ` U ¤t V ↔ U ¤s V.

Proof. By Remark 1.3.12 and Corollary 2.1.8. a

Corollary 2.1.10. If U and V are both reflexive theories we have that the fol-
lowing are provably equivalent in S12.

1. U ¤ V

2. ∀∀Π
b
1π (2V π → 2Uπ)

3. ∀x 2UConx(V )

Proof. If we go (1) ⇒ (2) ⇒ (3) ⇒ (1) we do not need the totality of exp that
was needed for (1)⇒ (3). a

As an application we can, for example, see3 that PA¤ PA + InCon(PA). It
is well known that PA is essentially reflexive, so we use Corollary 2.1.10. Thus,
it is sufficient to show that PA + InCon(PA) is Π1-conservative over PA.

So, suppose that PA + InCon(PA) ` π for some Π1-sentence π. In other
words PA ` 2⊥ → π. We shall now see that PA ` 2π → π, which by Löb’s
Theorem gives us PA ` π.

Thus, in PA, assume 2π. Suppose for a contradiction that ¬π. By Σ1-
completeness we also get 2¬π, which yields 2⊥ with the assumption 2π. But
we have 2⊥ → π and we conclude π. A contradiction.

3By using ILW, we see that actually for all T we have T ¤ T + InCon(T ).
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2.2 Characterizations and functors

In this section, we rearrange the material to make it look more mathematical.
We reformulate such notions as reflexivity in terms of functors between appro-
priate degree structures, viewed as pre-ordering categories. Theorems like the
Orey-Hájek characterization receive a natural formulations in this framework.
Also the precise relation between the Orey-Hájek and the Friedman characteri-
zation becomes fully perspicuous.

We shall work extensively with the notion of local interpretability. A the-
ory U interprets a theory V locally if it interprets all of its finite subtheories.
Again, in weak meta-theories there are various divergent notions possible.4 In
this section we will not worry about these subtle distinctions, assuming that
our meta-theory is EA plus Σ1-collection. Moreover, we shall always explicitly
mention our numberizations.

Let THRY be the structure of theories ordered by ⊆. Let DEG be the degrees
of interpretability between theories. Let DEGloc be the degree structure of local
interpretability. The ordering of DEG will be written as U¢V or U −→ V . The

ordering of DEGloc will be written as U ¢loc V or U
loc
−→ V .

We will not divide out the preorders, treating the degree structures as pre-
order categories. If we want to restrict, e.g., DEG to a subclass of theories, we
use a subscript to signal that. Consider a theory V . We define:

• 0V := S12 + {Conn(V ) | n ∈ ω}.
(We pronounce this as ‘mho of V ’, where ‘mho’ rhymes with ‘Joe’.)

• 0+V := EA + {Conn(V ) | n ∈ ω} = 0V + exp.

We will call the operation V 7→ 0V : reflexivization. The name is motivated by
Lemma 2.2.6, which says that 0V is, in a sense, the smallest reflexive theory
in which V is interpretable. We will later see that 0 and 0+ give us functors
between appropriate categories.

Lemma 2.1.1 expressed the following basic insight. Here, hV denotes the
‘Henkin interpretation’ which is the syntactic variant of the Henkin model.

Theorem 2.2.1. hV : 0V ¤ V .

In this subsection we distinguish three kinds of reflexivity.

• A numberized theory 〈U, j〉 is reflexive iff j : U ¤0U .

• A theory U is existentially reflexive, or e-reflexive iff, for some j, j : U ¤
0U . (In other words, U is e-reflexive iff it has a reflexive numberization.)

• A theory V is locally reflexive, or `-reflexive iff V ¤loc 0V .

4Two such notions are U ¤loc,t V : ⇐⇒ ∀φ (2V φ → ∃k 2Uφ
k) and U ¤loc,s V : ⇐⇒

∀x∃y ∀α∈axiomsV [x] ∃p, k<y ProofU (p, αk).



2.2. CHARACTERIZATIONS AND FUNCTORS 33

By a sharpened version of the second incompleteness theorem, one can show
that e-reflexive theories cannot be finitely axiomatizable. (This result is due to
Pudlák, see [Pud85] or [Vis93].)

Sequential theories are important in our study. A useful feature of them is
that they allow for truth predicates. Moreover, they are easily seen to inter-
pret S12, by taking for 0, e.g., the empty sequence, etc. Here is a basic insight
concerning sequential theories.

Lemma 2.2.2. Sequential theories are `-reflexive. I.o.w., if V is sequential,
then V ¤loc 0V .

Proof. Given some fixed n ∈ ω, we are to interpret S12 + Conn(V ). Going from
a V, n-proof p to a cut-free V, n-proof p′ can cause a multi-exponential blow-up.
However, the multi-exponent is linear in n (see [Ger03]).

By Solovay’s techniques on shortening of cuts we can find a V -cut J for
which this multi-exponent is always defined. Thus, for every proof p in J , there
is a cut-free proof p′.

The idea is now to prove, by using the truth predicates, that at any step in
p′, a true formula is obtained. As always, we compensate a lack of induction in
V by shortening J even further. a

Note that if U is `-reflexive, then so is U ¢ U (see Appendix A of [JV04a]).
Since U ¢ U is not sequential, we see that there are non-sequential `-reflexive
theories.

2.2.1 Reflexivization as a Functor

In this subsection, we treat a basic insight (Theorem 2.2.3), from which, in
combination with Theorem 2.2.1, many others will follow by simple semi-modal
arguments. Theorem 2.2.3 also tells us that 0(·) can act as a functor between
various categories.

Theorem 2.2.3. Suppose U ¤loc V . Then, 0U ⊇ 0V .

Proof. Suppose U ¤loc V . Consider any n. By assumption there is an inter-
pretation j such that j : U ¤ V ¹n, where V ¹n denotes the theory axioma-
tized by all axioms of V with Gödel numbers ≤ n. So, ∀φ∈αV,n ∃r r:2Uφ

j .
By Σ1-collection, we can find a k, such that ∀φ∈αV,n ∃r<k r:2Uφ

j . Taking
m := |k|, we find:5 ∀φ∈αV,n ∃r<k r:2U,mφ

j . Hence, by Σ1-completeness,
0U ` ∀φ∈αV,n ∃r<k r:2U,mφ

j .
Reason in 0U . Suppose p : 2V,n⊥. Using j, we can transform p into a

proof q : 2U,m?⊥, where m? is a sufficiently large standard number, depending
only on n, j and k. Note that q exists because the proofs of the translations of
axioms that we plug in are bounded by the standard number k. But Conm?(U).
Hence, Conn(V ). a

5We see that a ‘carefree meta-theory’ for this argument should be something like EA plus
Σ1-collection. This is by a result of Slaman ([Sla04]) nothing but I∆1.
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Theorem 2.2.3 tells us that reflexivization can be considered as a functor from
DEGloc to THRY. It follows that also 0+ can also be considered as a functor
from DEGloc to THRY.

It would be appropriate to call 0 the Orey-Hájek functor and 0+ the Fried-
man functor, because of their connection (see below) to resp. the Orey-Hájek
characterization and the Friedman characterization.

Note that Theorem 2.2.3 tells us a.o. that reflexivization can be considered
as an operation that works on theories-as-sets-of-theorems. We may contrast
this with an ‘intensional’ operation like6 U 7→ S12 + Con(U). We collect some
immediate consequences of Theorem 2.2.3.

Lemma 2.2.4.
(i) e-Reflexiveness is preserved under mutual interpretability.
(ii) `-Reflexiveness is preserved under mutual local interpretability.

Proof. Ad (i). Suppose U is e-reflexive and U ≡ V . Using Theorem 2.2.3, we
find that: V ≡ U ≡ 0U ≡ 0V . Hence V is e-reflexive.

Ad (ii). Suppose U is `-reflexive and U ≡loc V . Using Theorem 2.2.1 and
2.2.3, we find that: V ≡loc U ≡loc 0U ≡ 0V . Hence V is `-reflexive. a

Lemma 2.2.5. Suppose U is e-reflexive. Then, U ¤loc V iff U ¤ V .

Proof. Suppose U is e-reflexive and U ¤loc V . Then, U ¤ 0U ¤ 0V ¤ V . The
other direction is (even more) trivial. a

Lemma 2.2.6. Suppose U is `-reflexive. Then, 〈0U , id〉 is the smallest reflexive
theory in DEG that interprets U .

Proof. By Theorem 2.2.1 indeed 0U ¤ U . By the `-reflexivity of U we get
that U ≡loc 0U , whence, by Theorem 2.2.3 0U = 00U

and indeed 〈0U , id〉 is
reflexive.

If for some reflexive T we have T ¤locU , we get by Lemma 2.2.5 that T ¤U .
By Theorem 2.2.3 we get 0T ⊇ 0U . But, using the reflexivity of T we now get
T ¤0T ⊇ 0U and we are done. a

Note that the reflexivization of the theory of pure identity is S12, which is
finitely axiomatizable and, hence, not reflexive. Since 0V is itself `-reflexive, we
always have that 〈00V

, id〉 is reflexive.

Question 2.2.7. Give an example of a U that is not `-reflexive, but where
〈0U , id〉 is reflexive.

Lemma 2.2.8. Suppose U is `-reflexive. Then, U ¤loc V iff 0U ⊇ 0V .

6A similar observation is also made in [Sha97]. For example, let U be a theory in the
language of pure identity. The non-logical axioms of U are given by α, where α(x) expresses:
for some n < |x|, x is an an n-fold conjunction (associating to the right) of ⊥ and n is the
smallest ZF-proof of ⊥. We see that U is, in a weak sense, finitely axiomatized, that U is
co-extensional with the theory of pure identity, but that S12 + Con(U) is far stronger than S12.
Moreover, S12 proves the consistency of the theory of pure identity.
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Proof. Suppose 0U ⊇ 0V . Then, U ¤loc 0U ⊇ 0V ¤ V . a

Let DEGlr be the degrees of interpretability between `-reflexive theories. Let
DEGloc

lr be the degree structure of local interpretability restricted to `-reflexive
theories.

Lemma 2.2.8 tells us that reflexivization is an embedding of DEGloc
lr in THRY.

2.2.2 The Orey-Hájek Characterization

We can now reformulate the Orey-Hájek characterizations using local inter-
pretability. All the characterizations are direct consequences of Theorem 2.2.3.
Here is the first Orey-Hájek characterization.

Theorem 2.2.9 (Orey-Hájek 1).
Suppose 〈U, j〉 is reflexive. Then, U ¤ V iff j : U ¤0V .

Note that the conclusion of this theorem, universally quantified over V ,
implies that 〈U, j〉 is reflexive. If V is e-reflexive, then V ≡ 0V . Thus, the
following theorem is a triviality.

Theorem 2.2.10 (Orey-Hájek 2).
Suppose V is e-reflexive. Then, U ¤ V iff U ¤0V .

Again, the conclusion of Orey-Hájek 2, universally quantified over U , is equiv-
alent to the premise. It is by now folklore that we also have an Orey-Hájek
characterization for local interpretability. It is contained in the following theo-
rem.

Theorem 2.2.11. For `-reflexive U we have the following.

U ¤loc V ⇔ 0U ⊇ 0V
⇔ 0U ¤ V
⇔ U ¤loc 0V .

As a corollary to Theorem 2.2.11, we shall now see that reflexivization can be
viewed, modulo mutual relative interpretability, as the right adjoint of the em-
bedding functor between the degrees of global interpretability of locally reflexive
theories and the degrees of local interpretability of locally reflexive theories. Let
us therefore single out one of the equivalences7 of Theorem 2.2.11.

U ¤loc V ⇔ 0U ¤ V (2.18)

We reformulate this equivalence a bit, to make the adjunction fully explicit. We
now treat, par abus de langage, 0 as a functor from DEGloc

lr to DEGlr. Let emb

7Again we note that the conclusion of the equivalence, universally quantified over V , is
equivalent with the premise, that is, the `-reflexivity of U .
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be the embedding functor of DEGlr in DEGloc
lr . Now (2.18) tells us that 0(·) is

the right adjoint of emb. We may represent this fact in the following picture.

emb(V )
loc - U

V
glob

- 0U

It is immediate from general facts about adjoints that, for `-reflexive U , 0U ≡
00U

. Note, however, that Lemma 2.2.6 is more informative.

2.2.3 Variants of 0

As long as we are working modulo relative interpretability there are many in-
teresting variants of 0. In this subsection, we shall discuss three such variants.

Recall that U [n] denotes the theory axiomatized by the first n axioms of U .
Let Ω∞ := S12 + {Ωi | i ∈ ω}, where Ωi expresses the totality of the function
ωi(x) (see [HP93]). zU is our first variant of 0U .

• zU := Ω∞ + {Cutfree-Con(U [n]) | n ∈ ω}.

We have the following lemma.

Lemma 2.2.12. zU ≡ 0U .

The essence of the proof is given in [Vis93], Subsection 3.2. Note that, for finitely
axiomatized theories U , we have zU = Ω∞+Cutfree-Con(U). Inspection of the
results, gives Ω∞ ≡ 0S1

2
. (See again [Vis93].) It follows that Ω∞, being an

e-reflexive theory, is not finitely axiomatizable.
We proceed to the next variant of 0U . Let U be sequential and suppose

j : U ¤ S12. We define a new theory ∇U,j as follows. We add a new unary
predicate I to the language of U . The theory ∇U,j is axiomatized by U plus
the axiom Cutj(I) plus all axioms of the form:

Cutj(A)→ ∀x (I(x)→ A(x)),

where A is a U -formula having only x free. Clearly U ≡loc ∇U,j .

Lemma 2.2.13. Suppose 〈U, j〉 is a numberized theory and suppose that U is
sequential. Then, ∇U,j ≡ 0U .

Proof. We first see that ∇U,j ¤ 0U . By sequentiality of U , we can find for

any n a 〈U, j〉-cut I such that U ` ConIn(U). We have ∇U,j ` I ⊆ I. Hence,

∇U,j ` ConIn(U). It follows that I : ∇U,j ¤0U .
Conversely, by a simple compactness argument we find that 0U ` 0∇U,j

.
Hence 0U ¤∇U,j . a

Before we can give the third variant of 0U , we first have to agree on some
notation. Let Γ be some set of sentences in the language of arithmetic. We
define, for arbitrary U , and for 〈V, j〉 a numberized theory, the Γ-content of
that theory as follows.
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• CntΓ(U) := S12 + {φ∈Γ | U ¤ (S12 + φ)}

• CntΓ(〈V, j〉) := S12 + {φ∈Γ | j : V ¤ (S12 + φ)},

These definitions do not give us a bona fide theories with sufficiently simple
axiomatizations. We can handle this problem by employing a variant of Craig’s
trick. (See for example Definition 4.2.6.)

Note that CntΓ(U) might be inconsistent, where U is not. E.g., there is
an Orey-sentence O which is of complexity ∆2, such that PA ¤ (S12 + O) and
PA¤ (S12 + ¬O). So, CntΣ2

(PA) is inconsistent.

Lemma 2.2.14. If U ¤loc V , then CntΓ(U) ⊇ CntΓ(V ).

Lemma 2.2.14 tells us that CntΓ(·) is a functor from DEGloc to THRY.

Lemma 2.2.15.

1. Cnt∀Πb
1
(U) ⊆ 0U .

2. Suppose that U is `-reflexive. Then, Cnt∀Πb
1
(U) = 0U .

3. CntΠ1
(U) ≡ Cnt∀Πb

1
(U).

Proof. Ad (1). Suppose we have j : U ¤ (S12 + π). We show that 0U ` π. We
have, for sufficiently large n,

0U ` ¬π → 2U,n¬π
j

→ 2U,n⊥

→ ⊥.

So, indeed, 0U ` π.

Ad (2). Suppose U is `-reflexive. Then, clearly, 0U ⊆ Cnt∀Πb
1
(U), since the

conn(U) are ∀Πb1.

Ad (3). We claim that there is a definable S12-cut J , such that, for any Π1-
sentence π, there is a ∀Πb1-sentence π

?, such that S12 ` π → π? and S12 ` π
? → πJ .

Using this claim, we see that

id : CntΠ1
(U)¤ Cnt∀Πb

1
(U) and J : Cnt∀Πb

1
(U)¤ CntΠ1

(U).

The claim can be proved in a fancy way by invoking the formalization by
Gaifman and Dimitracopoulos (see [GD82]) of Matijacevič’s Theorem in EA aka
I∆0 + exp.

A simpler argument is as follows. Suppose π = ∀~x π0~x, where π0 is ∆0.
Take π? := ∀~x π0(|~x|) and let J be some cut such that S12 ` ∀z∈J 2z↓. a
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2.2.4 The Friedman Functor

In this subsection we study the Friedman functor 0+.

Lemma 2.2.16. Suppose U is `-reflexive. Then, 0+U and 0U prove the same
∀Πb1-sentences.

Proof. Consider π ∈ ∀Πb1. Suppose 0
+
U ` π, Then, for some n, EA+ Conn(U) `

π. By a results of Wilkie and Paris (see [WP87], or see [Vis90a] or [Vis92a]),
we have, for some cut J , S12 + conn(U) ` πJ . Let k : U ¤ (S12 + conn(U)). We
have, for sufficiently large m,

0U ` ¬π → 2U,m(¬πJ)k

→ 2U,m(2U,n⊥)
k

→ 2U,m⊥

→ ⊥.

Hence, 0U ` π. a

Lemma 2.2.17. Suppose U is `-reflexive. Then,

U ¤loc V ⇔ 0
+
U ⊇ 0

+
V .

Proof. Suppose U is `-reflexive. It is sufficient to show that, if 0+U ⊇ 0
+
V , then

0U ⊇ 0V . But this is immediate by Lemma 2.2.16. a

By cut elimination (see [Ger03]) we can show that over EA we may replace the
Conn(U) by Cutfree-Con(U [n]).

In case U is finitely axiomatized, we have the following simplifications.

• U is `-reflexive iff U ¤ (S12 + Cutfree-Con(U)).

• 0+U = EA + Cutfree-Con(U).

Putting things together, we get a version of the Friedman characterization.

Theorem 2.2.18. Suppose U and V are finitely axiomatized and `-reflexive,
then:

U ¤ V ⇔ EA + Cutfree-Con(U) ` Cutfree-Con(V ).

Wilkie and Paris show in [WP87] that EA ` Cutfree-Con(S12). It follows
that EA = 0+

S1
2
. Hence, EA ≡∀Πb

1
0S1

2
. (This is approximately Theorem 8.15 of

[WP87].) Thus, if we ‘measure’ the complexity of theories using the Friedman
functor, then S12 is of the lowest complexity.
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2.3 End-extensions

We have a model-theoretic characterization of interpretability between exten-
sions of PA in the language of PA(see Theorem 1.3.10). It is simply that U ¤ V
iff every modelM of U has an endextension N satisfying V . In this section we
generalize this result as far as possible.

It seems to us that the rules of the game are to formulate the characterization
as much as possible in terms of the structure of the models without mentioning
syntax. In this respect our result is not quite perfect, since we have to mention
a definable inner model.

Consider a modelM of signature Σ and a model N of signature Θ. Suppose
m is a relative interpretation such thatMm |= S12. We say that N is an m-end-
extension of M, or m : M ¹end N , iff, for all relative interpretations n with
Nn |= S12, there is an initial embedding of Mm in N n. We say that N is an
end-extension ofM orM¹end N iff, for some m, m :M¹end N .

Here are some basic facts on m-end-extensions.

1. If m :M¹end N and n : N ¹end K, then m :M¹end K.

2. If Mm satisfies full induction in M, then m : M ¹end M. (We do not
know whether the converse holds.) Moreover, any internal model N ofM
is an m-end-extension ofM.

Theorem 2.3.1. Suppose U is sequential and e-reflexive. We can find an m :
U ¤ S12 such that, for any `-reflexive V , the following are equivalent:

1. U ¤ V ;

2. for allM∈ Mod(U), there is an N ∈ Mod(V ) such that m :M¹end N ;

3. there is an l : U ¤ S12 such that, for all M ∈ Mod(U), there is an N ∈
Mod(V ) such that l :M¹end N .

Proof. Suppose U is sequential and e-reflexive. We first find m. Pick any
l : U ¤ S12. By Lemma 2.2.13, we can find p : U ¤ ∇U,l. Recall that ∇U,l
contains U . We take m := p ◦ I.

(1)⇒ (2). Suppose k : U¤V . We can ‘lift’ k in the obvious way to k? : ∇U,l¤V .
We consider q := p◦k? : U¤V . LetM∈ Mod(U) be given. We take N :=Mq.
Suppose that for some interpretation n, N n |= S12. We want to show that there
is an initial embedding fromMm to N n.

We will use Figure 2.3 to support our argument. Let us first resume the list
of interpretations that will be used in our proof.

l : U ¤ S12
I : ∇U,l ¤ S12
k : U ¤ V

q := p ◦ k? : U ¤ V

p : U ¤∇U,l
m := p ◦ I : U ¤ S12

k? : ∇U,l ¤ V
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Nn |= S1
2

N := Mq |= V

I

M |= U
M? := Mp |= ∇U,l

J

J

(M?)l |= S1
2

Figure 2.3: End extension theorem

Now we consider the internal model M? := Mp of M. We note that:
M? |= ∇U,l. Our main characters N ,Mm and N n exist as internal models of
M?:

• N =Mq =M(p◦k?) = (Mp)k
?

= (M?)k
?

,

• Mm =M(p◦I) = (Mp)I = (M?)I ,

• Nn = ((M?)k
?

)n = (M?)(k
?◦n)

So we only have to show that there is an initial embedding from (M?)I to
(M?)(k

?◦n).
Let us consider (M?)l and (M?)(k

?◦n). Since U is sequential andM? |= U ,
we can, with Pudlák’s lemma, find a definable cut J of (M?)l isomorphic to a
cut of (M?)(k

?◦n). Both k? and l only involve the language of U , so we find that
J is given by a U -formula. Hence, by the definition of I, we have that (M?)I

is a cut of J . We may conclude that there is an initial embedding from (M?)I

to (M?)(k
?◦n).

(2)⇒ (3). This one is trivial.

(3) ⇒ (1). Suppose that V is `-reflexive, l : U ¤ S12, and, for allM ∈ Mod(U),
there is an N ∈ Mod(V ) such that l : M ¹end N . For any n ∈ ω, there
is a k : V ¤ S12 such that V ` Conkn(V ). Since Ml has an initial embedding
in N k, it follows that Ml |= Conn(V ). Since M was arbitrary, we have, by
the completeness theorem, that U ` Conln(V ). Hence l : U ¤ 0V , and, thus
U ¤ V . a



Chapter 3

Interpretability logics

One possible way to study interpretability is by means of modal logics. With
such an approach we can capture a large part of the structural behavior of
interpretations.1 Let us consider such a structural rule.

For any theories U , V and W we have that, if U ¤ V and V ¤W , then also
U ¤W . It is not hard to catch this in a modal logic. But modal logics talk
about propositions and interpretability talks about theories.

It does not seem to be a good idea to directly translate propositional vari-
ables to theories. For what does the negation of a theory mean? And how to
read implication? And how to translate modal statements involving iterated
modalities?

The usual way to relate modal logics to interpretability is to translate propo-
sitional variables to arithmetical sentences that are added to some base theory
T . Of course, the meta-theory should be strong enough to allow for arithmeti-
zation. As we shall see, by this approach, we get quite an expressive formalism
in which the logic of provability is naturally embedded.

We shall work with a modal language containing two modalities, a unary
modality 2 and a binary modality ¤. As always, we shall use 3A as short for
¬2¬A. Apart from propositional variables we also have two constants > and
⊥ in our language.

In this dissertation we thus use the same symbol ¤ both for formalized
interpretability and for our binary modal operator. The same holds for 2. But
the context will always decide on how to read the symbol.

Definition 3.0.2. An arithmetical T -realization is a map ∗ sending proposi-
tional variables p to arithmetical sentences p∗. The realization ∗ is extended to
a map that is defined on all modal formulae as follows.

It is defined to commute with all boolean connectives. Moreover (A¤B)∗ =
(T ∪ {A∗})¤ (T ∪ {B∗}) (we shall write A∗ ¤T B

∗) and (2A)∗ = 2TA
∗. Here

¤T and 2T denote the formulas expressing formalized interpretability and for-
malized provability respectively, over T , as defined in Section 1.2.

1Some pioneering work on this, is in [Šve83] and [Háj81].

41
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We shall reserve the symbol ∗ to range over T -realizations. Moreover, we
will speak just of realizations if the T is clear from the context. In the literature
realizations are also referred to as interpretations or translations. As these
words are already reserved for other notions in our paper, we prefer to talk of
realizations.

Definition 3.0.3. Amodal formula A is an interpretability principle of a theory
T , if ∀ ∗ T ` A∗. The interpretability logic of a theory T , we write IL(T), is the
set of all the interpretability principles of T or a logic that generates it.

Likewise, we can talk of the set of all provability principles of a theory T ,
denoted by PL(T). Since the famous result by Solovay, PL(T) is known for a
large class of theories T . (Below we will define GL.)

Theorem 3.0.4 (Solovay [Sol76]). PL(T) = GL for any Σ1-sound theory T
containing exp.

Definition 3.0.5. The interpretability logic of all reasonable arithmetical the-
ories, we write IL(All), is the set of formulas ϕ such that ∀T ∀ ∗ T ` ϕ∗. Here
the T ranges over all the reasonable arithmetical theories.

3.1 The logic IL

The logic IL that we shall present below, is a sort of core logic. It is contained
in all other interpretability logics that we shall consider. We shall see that
IL ⊂ IL(T) for any reasonable T .

In writing formulas we shall omit brackets that are superfluous according
to the following reading conventions. We say that the operators 3, 2 and ¬
bind equally strong. They bind stronger than the equally strong binding ∧ and
∨ which in turn bind stronger than ¤. The weakest (weaker than ¤) binding
connectives are → and ↔. We shall also omit outer brackets. Thus, we shall
write A¤B → A∧2C¤B∧2C instead of ((A¤B)→ ((A∧(2C))¤(B∧(2C)))).

A schema of interpretability logic is syntactically like a formula. They are
used to generate formulae that have a specific form. We will not be specific
about the syntax of schemata as this is similar to that of formulas. Below, one
can think of A, B and C as place holders.

The rule of Modus Ponens allows one to conclude B from premises A → B
and A. The rule of Necessitation allows one to conclude 2A from the premise
A.

Definition 3.1.1. The logic IL is the smallest set of formulas being closed un-
der the rules of Necessitation and of Modus Ponens, that contains all tautological
formulas and all instantiations of the following axiom schemata.

L1 2(A→ B)→ (2A→ 2B)

L2 2A→ 22A
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L3 2(2A→ A)→ 2A

J1 2(A→ B)→ A¤B

J2 (A¤B) ∧ (B ¤ C)→ A¤ C

J3 (A¤ C) ∧ (B ¤ C)→ A ∨B ¤ C

J4 A¤B → (3A→ 3B)

J5 3A¤A

Sometimes we will write IL ` ϕ→ ψ → χ as short for IL ` ϕ→ ψ & IL ` ψ →
χ. Similarly for ¤. We adhere to a similar convention when we employ binary
relations. Thus, xRySxz ° B is short for xRy & ySxz & z ° B, and so on.

Sometimes we will consider the part of IL that does not contain the ¤-
modality. This is the well-known provability logic GL, whose axiom schemata
are L1-L3. The axiom schema L3 is often referred to as Löb’s axiom.

Some elementary reasoning in IL is captured in the following lemma.

Lemma 3.1.2.

1. IL ` 2A↔ ¬A¤⊥

2. IL ` A¤A ∧2¬A

3. IL ` A ∨3A¤A

Proof. All of these statements have very easy proofs. We give an informal proof
of the second statement. Reason in IL. It is easy to see A¤(A∧2¬A)∨(A∧3A).
By L3 we get 3A→ 3(A ∧2¬A). Thus, A ∧3A¤3(A ∧2¬A) and by J5 we
get 3(A ∧ 2¬A) ¤ A ∧ 2¬A. As certainly A ∧ 2¬A ¤ A ∧ 2¬A we have that
(A ∧ 2¬A) ∨ (A ∧ 3A) ¤ A ∧ 2¬A and the result follows from transitivity of
¤. a

We shall now briefly argue that all the axioms of IL are indeed sound. That
is, we shall see that they are provable in any theory under any realization.

The principles L1-L3 are the familiar provability conditions. They are well
known to hold (be sound) in S12. The principle J1 is easy to prove by taking the
identity translation.

To see the soundness of J2, we should describe how we can code the com-
position of two interpretations into a single interpretation. Let k : U ¤ V and
j : V ¤W with k := 〈δk, Fk〉 and j := 〈δj , Fj〉. We define k ◦ j to be 〈δk◦j , Fk◦j〉
with

• δk◦j := δk ∧ (δj)
k
,

• Fk◦j(R) := (Fj(R))
k
.
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By an easy formula induction, we now see that S12 ` (ϕj)
k
↔ ϕk◦j and we are

done.
To see the soundness of J3, we reason as follows. We suppose that j : α¤T γ

and k : β ¤T γ. We need to construct an interpretation j ∨ k that uses the
translation of j in case α and the translation of k otherwise. We thus define

• δj∨k := (δj ∧ α) ∨ (δk ∧ ¬α),

• Fj∨k(R) := (Fj(R) ∧ α) ∨ (Fk(R) ∧ ¬α).

We note that j ∨ k can be very different from k ∨ j. Again by easy formula
induction we now see that S12 ` ϕ

j∨k ↔ (α ∧ ϕj) ∨ (¬α ∧ ϕk) and we are done.
J4 is very easy. For, if j : α ¤T β, we certainly have that 2T (α → βj). If

now 2T¬β then 2T (α→ ¬β
j) and we get 2T¬α.

The only principle of IL that needs some serious argument is J5. In proving
the soundness of J5, thinking about interpretability in terms of uniform model
constructions yields the right heuristics. If we know the consistency of T+α, we
should be able to construct, in a uniform way, a model of T + α. This uniform
construction is just the Henkin construction. Theorem 1.3.6 tells us that indeed
we have access to the Henkin construction.

3.2 More logics

The interpretability logic IL is a sort of basic interpretability logic. All other in-
terpretability logics we consider shall be extensions of IL with further principles.
Principles we shall consider in this paper are amongst the following.2

F := A¤3A→ 2¬A
W := A¤B → A¤B ∧2¬A
M0 := A¤B → 3A ∧2C ¤B ∧2C
W∗ := A¤B → B ∧2C ¤B ∧2C ∧2¬A
P0 := A¤3B → 2(A¤B)
R := A¤B → ¬(A¤ ¬C)¤B ∧2C
R∗ := A¤B → ¬(A¤ ¬C)¤B ∧2C ∧2¬A
M := A¤B → A ∧2C ¤B ∧2C
PR := A¤B → 2(3A→ 3B)
P := A¤B → 2(A¤B)

If X is a set of axiom schemata we will denote by ILX the logic that arises by
adding the axiom schemata in X to IL. Thus, ILX is the smallest set of formulas
being closed under the rules of Modus Ponens and Necessitation and containing
all tautologies and all instantiations of the axiom schemata of IL (L1-J5) and
of the axiom schemata of X. For a schema Y, we write ILX ` Y if ILX proves
every instantiation of Y.

2In [GJ04] the modal principle A ¤ B → ¬(A ¤ ¬C) ∧ (D ¤ C) ¤ B ∧ 2C was called R.
This principle and the one called R here, are easily seen to be equivalent over IL.
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A central theme in the study of formalized interpretability is to determine
IL(T) for a specific T . For two classes of theories, IL(T) is known.

Definition 3.2.1. A theory T is essentially reflexive if all of its finite sentential
extensions are reflexive.

Theorem 3.2.2 (Berarducci [Ber90], Shavrukov [Sha88]). If T is an es-
sentially reflexive theory, then IL(T) = ILM.

Theorem 3.2.3 (Visser [Vis90a]). If T is finitely axiomatizable and contains
supexp, then IL(T) = ILP.

Definition 3.2.4. The interpretability logic of all reasonable numberized the-
ories –we write IL(All)– is the set of formulas ϕ such that ∀T ∀ ∗ T ` ϕ∗. Here
the T ranges over all numberized theories.

For sure IL(All) should be in the intersection of ILM and ILP. Up to
now, IL(All) is unknown. It is one of the major open problems in the field of
interpretability logics, to characterize IL(All) in a modal way.

Definition 3.2.5. Let Γ be a set of formulas. We say that ϕ is provable from
Γ in ILX and write Γ `ILX ϕ, iff there is a finite sequence of formulae ending
on ϕ, each being a theorem of ILX, a formula from Γ, or the result of applying
Modus Ponens to formulas earlier in the sequence.

Clearly we have ∅ `ILX ϕ⇔ ILX ` ϕ. In the sequel we will often write just
Γ ` ϕ instead of Γ `ILX ϕ if the context allows us to do so. It is well known
that we have a deduction theorem for this notion of derivability.

Lemma 3.2.6 (Deduction Theorem). Γ, A `ILX B ⇔ Γ `ILX A→ B

Proof. “⇐” is obvious and “⇒” goes by induction on the length n of the ILX-
proof σ of B from Γ, A.

If n>1, then σ = τ,B, where B is obtained from some C and C → B
occurring earlier in τ . Thus we can find subsequences τ ′ and τ ′′ of τ such that
τ ′, C and τ ′′, C → B are ILX-proofs from Γ, A. By the induction hypothesis
we find ILX-proofs from Γ of the form σ′, A → C and σ′′, A → (C → B). We
now use the tautology (A → (C → B)) → ((A → C) → (A → B)) to get an
ILX-proof of A→ B from Γ. a

Definition 3.2.7. A set Γ is ILX-consistent iff Γ 6`ILX ⊥. An ILX-consistent
set is maximal ILX-consistent if for any ϕ, either ϕ ∈ Γ or ¬ϕ ∈ Γ.

Lemma 3.2.8. Every ILX-consistent set can be extended to a maximal ILX-
consistent one.

Proof. This is Lindebaum’s lemma for ILX. We can just do the regular argu-
ment as we have the deduction theorem. Note that there are countably many
different formulas. a
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We will often abbreviate “maximal consistent set” by MCS and refrain from
explicitly mentioning the logic ILX when the context allows us to do so. We
define three useful relations on MCS’s, the successor relation ≺, the C-critical
successor relation ≺C and the Box-inclusion relation ⊆2.

Definition 3.2.9. Let Γ and ∆ denote maximal ILX-consistent sets.

• Γ ≺ ∆ := 2A ∈ Γ⇒ A,2A ∈ ∆

• Γ ≺C ∆ := A¤ C ∈ Γ⇒ ¬A,2¬A ∈ ∆

• Γ ⊆2 ∆ := 2A ∈ Γ⇒ 2A ∈ ∆

It is clear that Γ ≺C ∆ ⇒ Γ ≺ ∆. For, if 2A ∈ Γ then ¬A ¤ ⊥ ∈ Γ. Also
⊥ ¤ C ∈ Γ, whence ¬A ¤ C ∈ Γ. If now Γ ≺C ∆ then A,2A ∈ ∆, whence
Γ ≺ ∆. It is also clear that Γ ≺C ∆ ≺ ∆′ ⇒ Γ ≺C ∆′.

Lemma 3.2.10. Let Γ and ∆ denote maximal ILX-consistent sets. We have
Γ ≺ ∆ iff Γ ≺⊥ ∆.

Proof. Above we have seen that Γ ≺A ∆ ⇒ Γ ≺ ∆. For the other direction
suppose now that Γ ≺ ∆. If A ¤ ⊥ ∈ Γ then, by Lemma 3.1.2.1, 2¬A ∈ Γ
whence ¬A,2¬A ∈ ∆. a

3.3 Semantics

Interpretability logics come with a Kripke-like semantics. As the signature of
our language is countable, we shall only consider countable models.

Definition 3.3.1. An IL-frame is a triple 〈W,R, S〉. Here W is a non-empty
countable universe, R is a binary relation on W and S is a set of binary re-
lations on W , indexed by elements of W . The R and S satisfy the following
requirements.

1. R is conversely well-founded3

2. xRy & yRz → xRz

3. ySxz → xRy & xRz

4. xRy → ySxy

5. xRyRz → ySxz

6. uSxvSxw → uSxw

3A relation R on W is called conversely well-founded if every non-empty subset of W has
an R-maximal element.
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IL-frames are sometimes also called Veltman frames. We will on occasion
speak of R or Sx transitions instead of relations. If we write ySz, we shall mean
that ySxz for some x. W is sometimes called the universe, or domain, of the
frame and its elements are referred to as worlds or nodes. With x¹ we shall
denote the set {y ∈ W | xRy}. We will often represent S by a ternary relation
in a canonical way, writing 〈x, y, z〉 for ySxz.

Definition 3.3.2. An IL-model is a quadruple 〈W,R, S,°〉. Here 〈W,R, S〉 is
an IL-frame and ° is a subset of W × Prop. We write w ° p for 〈w, p〉 ∈ °. As

usual, ° is extended to a subset °̃ of W × FormIL by demanding the following.

• w°̃p iff w ° p for p ∈ Prop

• w 6 °̃⊥

• w°̃A→ B iff w 6 °̃A or w°̃B

• w°̃2A iff ∀v (wRv ⇒ v°̃A)

• w°̃A¤B iff ∀u (wRu ∧ u°̃A⇒ ∃v (uSwv°̃B))

Note that °̃ is completely determined by °. Thus we will denote °̃ also by
°. We call ° a forcing relation. The °-relation depends on the model M . If
necessary, we will write M,w ° ϕ, if not, we will just write w ° ϕ. In this case
we say that ϕ holds at w, or that ϕ is forced at w. We say that p is in the
range of ° if w ° p for some w.

If F = 〈W,R, S〉 is an IL-frame, we will write x ∈ F to denote x ∈ W and
similarly for IL-models. Attributes on F will be inherited by its constituent
parts. For example Fi = 〈Wi, Ri, Si〉. Often however we will write Fi |= xRy
instead of Fi |= xRiy and likewise for the S-relation. This notation is consis-
tent with notation in first order logic where the symbol R is interpreted in the
structure Fi as Ri.

If M = 〈W,R, S,°〉, we say that M is based on the frame 〈W,R, S〉 and we
call 〈W,R, S〉 its underlying frame.

If Γ is a set of formulas, we will write M,x ° Γ as short for ∀ γ∈Γ M,x ° γ.
We have similar reading conventions for frames and for validity.

Definition 3.3.3 (Generated submodel). Let M = 〈W,R, S,°〉 be an IL-
model and let m ∈ M . We define m¹∗ to be the set {x ∈ W | x=m ∨mRx}.
By M¹m we denote the submodel generated by m defined as follows.

M¹m := 〈m¹∗, R ∩ (m¹∗)2,
⋃

x∈m¹∗

Sx ∩ (m¹∗)2,° ∩(m¹ ∗ ×Prop)〉

Lemma 3.3.4 (Generated Submodel Lemma). LetM be an IL-model and
let m ∈M . For all formulas ϕ and all x ∈ m¹∗ we have that

M¹m,x ° ϕ iff M,x ° ϕ.
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Proof. By an easy induction on the complexity of ϕ. a

We say that an IL-model makes a formula ϕ true, and write M |= ϕ, if ϕ is
forced in all the nodes of M . In a formula we write

M |= ϕ :⇔ ∀w∈M w ° ϕ.

If F = 〈W,R, S〉 is an IL-frame and ° a subset of W × Prop, we denote by
〈W,°〉 the IL-model that is based on F and has forcing relation °. We say that
a frame F makes a formula ϕ true, and write F |= ϕ, if any model based on F
makes ϕ true. In a second-order formula:

F |= ϕ :⇔ ∀ ° 〈F,°〉 |= ϕ

We say that an IL-model or frame makes a scheme true if it makes all its
instantiations true. If we want to express this by a formula we should have
a means to quantify over all instantiations. For example, we could regard an
instantiation of a scheme X as a substitution σ carried out on X resulting in
Xσ. We do not wish to be very precise here, as it is clear what is meant. Our
definitions thus read

F |= X iff ∀σ F |= Xσ

for frames F , and

M |= X iff ∀σ M |= Xσ

for models M . Sometimes we will also write F |= ILX for F |= X.
It turns out that checking the validity of a scheme on a frame is fairly

easy. If X is some scheme4, let τ be some base substitution that sends different
placeholders to different propositional variables.

Lemma 3.3.5. Let X be a scheme, and τ be a corresponding base substitution
as described above. Let F be an IL-frame. We have

F |= Xτ ⇔ ∀σ F |= Xσ.

Proof. If ∀σ F |= Xσ, then certainly F |= Xτ , thus we should concentrate on the
other direction. Thus, assuming F |= Xτ we fix some σ and ° and set out to
prove 〈F,°〉 |= Xσ. We define another forcing relation °′ on F by saying that
for any place holder A in X we have

w °′ τ(A) :⇔ 〈F,°〉 |= σ(A)

By induction on the complexity of a subscheme5 Y of X we can now prove

〈F,°′〉, w °′ Yτ ⇔ 〈F,°〉, w ° Yσ.

By our assumption we get that 〈F,°〉, w ° Xσ. a
4Or a set of schemata. All of our reasoning generalizes without problems to sets of

schemata. We will therefore no longer mention the distinction.
5It is clear what this notion should be.
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If χ is some formula in first, or higher, order predicate logic, we will evaluate
F |= χ in the standard way. In this case F is considered as a structure of first
or higher order predicate logic. We will not be too formal about these matters
as the context will always dict us which reading to choose.

Definition 3.3.6. Let X be a scheme of interpretability logic. We say that a
formula C in first or higher order predicate logic is a frame condition of X if

F |= C iff F |= X.

The C in Definition 3.3.6 is also called the frame condition of the logic ILX.
A frame satisfying the ILX frame condition is often called an ILX-frame. In
case no such frame condition exists, an ILX-frame resp. model is just a frame
resp. model, validating X.

The semantics for interpretability logics is good in the sense that we have
the necessary soundness results.

Lemma 3.3.7 (Soundness). IL ` ϕ⇒ ∀F F |= ϕ

Proof. By induction on the length of an IL-proof of ϕ. The requirements on
R and S in Definition 3.3.1 are precisely such that the axiom schemata hold.
Note that all axiom schemata have their semantical counterpart except for the
schema (A¤ C) ∧ (B ¤ C)→ A ∨B ¤ C. a

Lemma 3.3.8 (Soundness). Let C be the frame condition of the logic ILX.
We have that

ILX ` ϕ⇒ ∀F (F |= C ⇒ F |= ϕ).

Proof. As that of Lemma 3.3.7, plugging in the definition of the frame condition
at the right places. Note that we only need the direction F |= C ⇒ F |= X in
the proof. a

Corollary 3.3.9. Let M be a model satisfying the ILX frame condition, and
let m ∈ M . We have that Γ := {ϕ | M,m ° ϕ} is a maximal ILX-consistent
set.

Proof. Clearly ⊥ /∈ Γ. Also A ∈ Γ or ¬A ∈ Γ. By the soundness lemma, Lemma
3.3.8, we see that Γ is closed under ILX consequences. a

Lemma 3.3.10. Let M be a model such that ∀w∈M w ° ILX then ILX `
ϕ⇒M |= ϕ.

Proof. By induction on the derivation of ϕ. a

A modal logic ILX with frame condition C is called complete if we have the
implication the other way round too. That is,

∀F (F |= C ⇒ F |= ϕ)⇒ ILX ` ϕ.

A major concern of Part II of this thesis is the question whether a given
modal logic ILX is complete.
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Definition 3.3.11. Γ °ILX ϕ iff ∀M M |= ILX ⇒ (∀m∈M [M,m ° Γ ⇒
M,m ° ϕ])

Lemma 3.3.12. Let Γ be a finite set of formulas and let ILX be a complete
logic. We have that Γ `ILX ϕ iff Γ °ILX ϕ.

Proof. Trivial. By the deduction theorem Γ `ILX ϕ ⇔`ILX
∧

Γ → ϕ. By our
assumption on completeness we get the result. Note that the requirement that
Γ be finite is necessary, as our modal logics are in general not compact (see also
Section 5.1.1). a

Often we shall need to compare different frames or models. If F = 〈W,R, S〉
and F ′ = 〈W ′, R′, S′〉 are frames, we say that F is a subframe of F ′ and write
F ⊆ F ′, ifW ⊆W ′, R ⊆ R′ and S ⊆ S′. Here S ⊆ S′ is short for ∀w∈W (Sw ⊆
S′w).



Chapter 4

Remarks on IL(All)

In this chapter we study modal formulas that are interpretability principles
for any numberized theory T . In other words, we shall study IL(All). The
problem to give a modal characterization of IL(All) still remains open. The
best candidate for now would be ILR∗. In this chapter, we shall first make some
basic observations on IL(All) and discuss the role of reflexivity. In Section 4.2
we will present two modal systems that generate principles in IL(All).

4.1 Basic observations

If ϕ ∈ IL(All), it should certainly be an interpretability principle of any es-
sentially reflexive theory and of any finitely axiomatizable theory containing
supexp. Thus, by Theorem 3.2.2 and 3.2.3 we see that IL(All) ⊆ ILM ∩ ILP.
And actually, we know that this is a strict inclusion. In [Vis97] it is shown that
A¤3B → 2(A¤3B) ∈ (ILM ∩ ILP) \ IL(All).

4.1.1 Modal considerations

We shall see in Section 4.2 that all of the principles M0, W, P0 and R are indeed
interpretability principles for any numberized theory. As IL(All) ⊂ ILM∩ ILP,
we know that any possible new principle should be found in this intersection.
To search this intersection, the modal semantics has proved to be an excellent
guideline.

There is a close connection between principles, c.q. modal formulas, and
properties of frames, viz. frame conditions. For example, it is easy to calculate
the frame conditions of M0, W, P0 and R and see that, indeed, they follow from
both the frame condition of ILM and the frame condition of ILP.

Thus, looking for good candidates for ϕ ∈ IL(All) is often done by looking
for good frame conditions that hold on both ILM and ILP frames. But then
again, a single frame condition can yield various different principles.
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The principle P0 was found by Visser by strengthening the frame condition
of M0 so that it still is in ILM∩ ILP. (See [Joo98].) In an attempt to prove the
modal completeness of ILP0W

∗, the new principle R was discovered in [GJ04].
And as it turns out, P0 and R have the same frame condition.

By easy semantical arguments we saw that all the frame conditions for M0,
P0 and R hold on all ILP-frames. These arguments all employed models of
“height” three. It is also possible to find principles in ILM ∩ ILP that use for
their justification only models up to height two. Two such examples are

(A¤3B) ∧ (B ¤ C)→ (3A→ 3(A ∧3B) ∨3(B ∧3C)) and
(3A¤3B) ∧ (A¤B)→ 2(3A→ 3B).

However, all these statements seem to be refutable in some numberized theories.
In [Vis88] IL(All) was conjectured1 to be ILW. In [Vis91] this conjecture

was falsified and strengthened to a new conjecture. It was conjectured that
ILW∗, which is a proper extension of ILW is IL(All).

In [Joo98] this conjecture was falsified. It was proved that the logic ILW∗P0

is a proper extension of ILW∗, and that ILW∗P0 is a subsystem of IL(All).
In [GJ04] it is shown that ILRW is a proper extension of ILW∗P0 and that
ILRW ⊆ IL(All). In Lemma 8.1.4 it is shown that ILRW = ILR∗. The current
best guess for IL(All) would thus be ILR∗.

If for some theory T we have that IL(T) = ILR∗, then the question would
be settled and IL(All) = ILR∗. It is also possible that IL(All) is never attained.
That is, for no T we have that IL(T) = IL(All).

If some theory T does attain IL(All), then this theory can certainly not be
finitely axiomatized, as we know that P /∈ IL(All). As we shall see, we also
cannot have too much reflection in T , as this would yield new principles that
essentially depend on this reflection.

4.1.2 Reflexive theories

We shall now see that if a theory T has too much reflection, then it can never
be such that IL(T) = IL(All).

Lemma 4.1.1. Let U be a reflexive theory containing exp. We have IL(U) `
>¤B → >¤B ∧2⊥.

Proof. By Lemma 2.1.2 we get that U ` >¤β → ∀x 2UConU,x(β). By Lemma
1.2.3 and Remark 1.2.4 we find n large enough so that U ` 2U (2⊥ → 2U,n2⊥).
We now reason in U and assume > ¤ β. Thus, we get ∀x 2UConU,x(β) and
∀x 2U (2⊥ → ConU,x(β ∧2⊥)). By Lemma 2.1.1 we obtain 2⊥¤β ∧2⊥. But,
by Lemma 3.1.2, >¤2⊥ and we obtain >¤ β ∧2⊥. a

By an easy semantical argument we see that IL 0 > ¤ B → > ¤ B ∧ 2⊥.
However, the principle is provable in ILW.

1For the modal language restricted to the unary connective >¤A in combination with 2,
the problem of the interpretability logic of all numberized theories has been solved by Maarten
de Rijke, see his [dR92].
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Lemma 4.1.2. Let U be a theory, containing exp, such that any Π1-extension
is reflexive. Then,

IL(U) `
∧

i

3Ai ¤B →
∧

i

3Ai ∧2C ¤B ∧2C.

Proof. As the proof of Lemma 4.1.1 noting that 3-formulas always translate to
a Π1-formula. a

It is clear that ILP 0 3A ¤ B → 3A ∧ 2C ¤ B ∧ 2C. Thus, theories U ,
satisfying the conditions of Lemma 4.1.2, (like PRA) can never be a candidate
for IL(U) = IL(All). It is not excluded that for some reflexive2 U that does not
satisfy the conditions of Lemma 4.1.2, we have IL(U) = IL(All). An example
of such a theory is EA + Con(EA) + Con(EA + Con(EA)) + · · · .

4.1.3 Essentially reflexive theories

We know that ILM is the interpretability logic of any essentially reflexive the-
ory. But what sort of theories are these essentially reflexive theories? In this
subsection we see that this depends on the notion of essential reflexivity. But,
for most natural theories T that are essentially reflexive, we shall see that T has
full induction.

In the definition of essentially reflexive, Definition 3.2.1, we stressed that
we only considered sentential extensions of T . This is called local essential
reflexivity. We can also consider extensions with formulas. This gives rise to
the notion of global essential reflexivity. We can restate the definition as follows.

∀ϕ∀n T ` ϕ(x)→ Conn(T + ϕ(ẋ))

In this subsection we shall compare the two notions of essential reflexivity.

Lemma 4.1.3. If T is an essentially globally reflexive theory extending3 EA,
then T satisfies full induction.

Proof. We will show that T satisfies the full induction rule, from which the
result follows. So, suppose that

T ` ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1)).

Then, for some m,

T ` 2T,m(ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1))).

Thus, also

T ` ∀x 2T,m(ϕ(x)→ ϕ(x+ 1))

2It does not seem to impose any obstacle either if any Σ1-extension is reflexive.
3It is not hard to extend the argument to S1

2, by using cuts, efficient numerals and different
induction principles.
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can be obtained uniformly in x.
All these proofs can be glued together to obtain T ` ∀x 2T,mϕ(x), whence

by essential reflexivity we get T ` ∀x ϕ(x). a

Note that the same argument only yields that T is closed under the Π1-
induction rule if T is just reflexive. But this is a really weak closure condition.

The use of global reflexivity was really needed. It is known that Lemma
4.1.3 does not hold for essentially locally reflexive theories. Here follows a short
argument that is attributed to Feferman.

If T is any theory in the language of arithmetic, then U := T ∪ {ϕ →
Con(ϕ) | ϕ a sentence } has two nice properties, as is readily verified. First,
U is essentially locally reflexive, and secondly, T + TrueΠ1

⊇ U . Here TrueΠ1

denotes the set of all true (in the standard model) Π1-sentences.
To see that U is essentially locally reflexive, we see that for any sentence ψ,

and for any number n we have U ` ψ → Conn(U + ψ). For this, it is sufficient
to show that U ` ψ → Con(ψ ∧ U [n]) where U [n] denotes the conjunction of
the first n axioms. By definition ψ ∧ U [n] → Con(ψ ∧ U [n]) is an axiom of U ,
whence U ` ψ → Con(ψ ∧ U [n]).

To see that U is included in T + TrueΠ1
, we need to see that any axiom of

the form ϕ → Con(ϕ) is. But, either Con(ϕ) ∈ TrueΠ1
and T + TrueΠ1

` ϕ →
Con(ϕ), or Con(ϕ) is not true. In that case we have ` ¬ϕ, and consequently
` ϕ→ Con(ϕ).

Thus, for example, EA+{ϕ→ Con(ϕ) | ϕ a sentence } ⊆ EA+TrueΠ1
. It is

well known that no Σ3-axiomatized theory can prove IΣ1 (see for example Fact
2.3 from [Joo03a]). But EA+TrueΠ1

has a Π2-axiomatization, thus EA+{ϕ→
Con(ϕ) | ϕ a sentence } 0 IΣ1.

Admittedly, theories like the U above are a bit artificial. All natural theories
that are essentially reflexive are globally so and hence by Lemma 4.1.3 satisfy
full induction.

4.2 Arithmetical soundness proofs

In this section we shall give arithmetical soundness proofs for interpretability
principles that hold in all reasonable arithmetical theories. These principles
should thus certainly hold in any finitely axiomatizable and in any essentially
reflexive theory. This means that the principles should be provable both in ILP

and ILM.
We shall see that the two modal proofs give rise to two different arithmetical

soundness proofs. The M-style proofs use definable cuts and find place in some
sort of modal system as described in Subsection 4.2.1. The P-style proofs are
based on quasi-finite approximations of theories. This behavior is captured also
in a modal-like system as we shall see in Subsection 4.2.4.

The modal systems that we present are not completely formal. In [JV04b]
a more formal treatment of the systems is given.
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4.2.1 Cuts and interpretability logics

All our knowledge about cuts and interpretations can be collected in modal
principles. These principles will contain variables I and J denoting (possibly
non-standard) cuts. In almost all principles, the cut variables can be universally
quantified. That is to say, the arithmetical translations of these principles are
provable for any possible choice of the cuts I and J . The sole exception is the
principle MJ.

We will only list principles that contain cut variables. In our reasoning we
shall freely use all regular principles from IL. The rules that we use are as
always just Modus Ponens and Necessitation.

(→)J 2(2JA→ 2A) (∀J)
LJ1 2(2J (A→ B)→ (2JA→ 2JB)) (∀J)
LJ2a 2A→ 22JA (∀J)
LJ2b 2(2IA→ 2I2JA) (∀I∀J)
LJ3a 2(2JA→ A)→ 2A (∀J)
LJ3b 2(2J (2IA→ A)→ 2JA) (∀I∀J)
JJ5 3JA¤A (∀J)
MJ A¤B → A ∧2JC ¤B ∧2C (∃J)

It might be desirable to add some simple operations on cuts to the modal lan-
guage like I ⊆ J , I ∩ J and I ∪ J . Like this, we get for example the following
principle.

2J(A→ B)→ (2IA→ 2I∪JB) (∀I∀J)

It is not hard to see that all the principles mentioned above indeed hold in all
numberized theories. The principle (→)J is a triviality; LJ1 reflects that concate-
nation of proofs in a cut remains within this cut as concatenation is approxi-
mately multiplication; LJ2a is a special case of Lemma 4.2.1 and LJ2b expresses the
formalization of this lemma; LJ3a is Löb’s theorem with cuts, as proved in Lemma
4.2.2 and LJ3b is the formalization of this lemma; JJ5 follows from Theorem 1.3.7;
MJ is Lemma 4.2.3.

Lemma 4.2.1. For any U -cuts I and J we have that T ` 2IUα→ 2IU2
J
Uα.

Proof. Reason in T and assume that ProofU (p, α) for some p ∈ I. As ProofU (p, α)
∈ ∃Σb1, by Lemma 1.2.3 we get for some p′ that ProofU (p

′,ProofU (p, α)). As I
is closed under ω1, we see that actually p

′ ∈ I, whence 2IUProofU (p, α). Lemma
1.3.2 now gives us the desired 2IU2

J
Uα. a

Lemma 4.2.2. For any U -cuts I and J we have that T ` 2JU (2
I
Uα → α) →

2JUα.

Proof. The lemma really just boils down to copying the standard proof of Löb’s
theorem making some some minor adaptations. In the proof we shall omit the
subscript U to the boxes.
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Thus, let F be a fixed point of the equation F ↔ (2IF → α). By applying
twice NecJ on the interesting side of the bi-implication, we arrive at 2J2I(F →
(2IF → α)). We now reason within T using our assumption A : 2J (2Iα→ α)
as follows.

2J2I(F → (2IF → α)) → 2J (2IF → (2I2IF → 2Iα)) by LJ2
→ 2J (2IF → 2Iα) by A
→ 2J (2IF → α) (∗)
→ 2JF by LJ2
→ 2J2IF by (∗)
→ 2Jα

a

Lemma 4.2.3. For any α, β and γ we have that T ` α¤ β → ∃J (α ∧2Jγ ¤
β ∧2γ).

Proof. This is a direct consequence of Pudlák’s lemma. So, we suppose j :
α ¤ β and consider the corresponding (T + α)-cut J and the j, J-function h
that are given by Lemma 1.3.11. Now, as ProofT (p, γ) ∈ ∆0, we get that

2T+α∀ p∈J (ProofT (p, γ)↔ (ProofT (h(p), γ))
j
) and thus certainly

2T+α(2
Jγ → (2γ)

j
). (4.1)

It is now easy to see that j : T+α¤T+β. For, if 2T+β+2γϕ, we get 2T+β2γ →

ϕ, whence by our assumption 2T+α(2γ → ϕ)
j
, i.e., 2T+α((2γ)

j → ϕj). By
(4.1) we now get the required 2T+α+2Jγϕ

j . a

With the modal principles we have given here, many interesting facts can
be derived. With A ≡ B we shall denote that A and B are equi-interpretable.
That is, (A¤B) & (B ¤A).

Lemma 4.2.4. For any I and J , we have A ≡ A ∧2I¬A ≡ A ∨3JA.

Proof. Just copy the proofs from IL, replacing some regular principles with the
new principles relativized to a cut. In the derivation of A ¤ A ∧ 2I¬A we use
LJ3b to obtain 2(3IA→ 3I(A ∧2I¬A)). a

Lemma 4.2.5. For any J we have ¬(A¤ ¬C)→ 3(A ∧2JC).

Proof. By contraposition we get that (sloppy notation) 2(A→ 3J¬C)→ A¤
3J¬C ¤ ¬C. a

4.2.2 Approximations of Theories

It is a triviality that for finitely axiomatized theories we have α¤β → 2(α¤β).
For, α¤ β is nothing but a Σ1-sentence and we get 2(α¤ β).

Thus, if we want to mimic the P behavior for a general theory T , we should
make the α¤T β a simple enough statement so that we get 2(α¤ β). Clearly,
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for α ¤T β in general this is not possible, but in some situations we are also
satisfied with 2(α¤T ′ β) where T

′ is some approximation of T .
There are two choices of T ′ that can be made. First, we could take for T ′ a

finite subtheory of T , and note that4 T + α ¤ T ′ + β. Second, we could define
a theory T ′ that is extensionally the same as T , but for which T + α ¤ T ′ + β
is so simple that we actually get 2(T + α ¤ T ′ + β). We shall work out the
second variant, albeit some of our arguments can also be carried out using the
first approach.

A first idea would be to take for the axioms of T ′ just the axioms of T that
are in translated form provable in T +α. This almost works, but we want to be
sure that T ′ contains verifiably enough arithmetic to do for example a Henkin
construction.

Thus, the second idea would be to just add S12 to our first approach. This
turns out to only work in the presence of Σ1-collection and exp. The exp is then
needed to get provable Σ1-completeness whence L2 for 2T ′ .

We shall use a use a variation of Craig’s trick so that our theory T ′ will stay
∃Σb1-definable. The same trick makes the use of BΣ1 superfluous.

Let s12 be the sentence axiomatizing S12.

Definition 4.2.6. If k : T + α¤ T + β, we define T k as follows.

AxiomTk(x) := (x = s12) ∨
∃p (x = pϕ ∧ (p = p)q ∧ AxiomT (ϕ) ∧ ProofT+α(p, ϕ

k))

It is clear that AxiomTk(x) is in poly-time decidable if AxiomT (x) is so. Note
that we work with efficient numerals p.

Lemma 4.2.7. (In S12) If k : α ¤T β, then 2Tϕ ↔ 2Tkϕ and consequently
T k + α ≡ T + α¤ T + β ≡ T k + β.

Proof. 2Tkϕ→ 2Tϕ is clear, as we can replace every axiom ϕ ∧ (p = p) of T k

by a proof of ϕ ∧ (p = p) from the single T -axiom ϕ. Note that we have these
proofs available as we used efficient numerals.

On the other hand, if 2Tϕ, we have a proof p of ϕ from the axioms, say
τ0, . . . , τn. Now, by the assumption that k : α ¤T β (smoothness gives the
appropriate bounds) we obtain (T + α)-proofs of pi of τi

k. We can now replace
every axiom occurrence of τi in p by

τi ∧ (pi = pi)

τi
∧E, l

and obtain a T k-proof of ϕ. a

Note that, although we do have 2S1
2
(2Tkϕ → 2Tϕ) we shall in general not

have 2S1
2
(2Tϕ→ 2Tkϕ).

4It would have been even nicer to get T ′ +α¤ T ′ + β, but it is not clear if this can always
be established.
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Lemma 4.2.8. S12 ` k : T + α¤ T + β → 2T (T + α¤ T k + β)

Proof. As we shall need bounds on proofs of statements of the form p = p we
consider some function f that is monotone in x, such that for any x, the k-
translation of the canonical proof of x = x is bounded by f(x, k). Clearly, in S1

2

we can define such a function f and prove its totality.
Now, we reason in S12 and assume k : T +α¤T +β. Thus certainly 2T+αβ

k

and also

2T2T+αβ
k. (4.2)

Likewise we get 2T+α(s
1
2)
k
and also 2T2T+α(s

1
2)
k
. Let b be such that

ProofT+α(b, β
k) and let s be such that ProofT+α(s, (s

1
2)
k
).

Now, we reason in T . We are going to show that k : T + α ¤s T
k + β.

So, let us consider some arbitrary x. Let now y := max{s, b, x · f(x, k)}. We
shall see that for any τ ≤ x with AxiomTk+β(τ), there is a proof p′ ≤ y with
ProofT+α(p

′, τk).
If AxiomTk+β(τ), either τ = β and we are done by (4.2), or we have that

AxiomTk(τ). Let us consider the latter case. Again, if τ = s12 we are done. So,
we may assume that τ is of the form ϕ∧ (p = p), with ProofT+α(p, ϕ

k). Clearly,

p ≤ τ ≤ x. We can now easily obtain a (T + α)-proof p′ of ϕk ∧ (p = p)k. As p′

is obtained by concatenating a proof of (p = p)k to p, it is, by our assumptions
on f , surely bounded by x · f(x, k). a

We note that we may replace ¤s in the antecedent of Lemma 4.2.8 by ¤t.

4.2.3 Approximations and modal logics

Just as in Subsection 4.2.1, we can make some sort of modal system in which
facts about approximations and interpretability are reflected. As we shall see,
the situation is a slightly more complicated than in the case of cuts and modal
logics. This is due to the fact that we seem to lose necessitation.

Let us first introduce some notation. With α¤kβ we shall denote T + α ¤
T k + β, and with 2kα we shall denote 2Tkα.

In Lemma 4.2.7 we have seen that 2Tα→ 2Tkα. However, in general we do
not have 2T (2Tα → 2Tkα). It is thus unlikely that our modal system should
reflect necessitation. However, there is an easy way to handle this.

Definition 4.2.9. With ILX2 we denote the modal logic, whose axioms are all
the axioms of ILX preceded by some number (possibly zero) of boxes. The only
rule of ILX2 is modus ponens. If Y is some set of axiom schemata, we denote
by ILX2Y, the system with axioms all axioms (or equivalently, all theorems) of
ILX2 and all instantiations of schemata from Y. The sole rule of inference is
modus ponens.

Lemma 4.2.10. ILX = ILX2
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Proof. Both ILX ⊆ ILX2 and ILX2 ⊆ ILX go by an easy induction on the
length of proofs. We only use L1 for one direction and necessitation for the
other. a

Before we give a list with principles we make one more convention. We say
that 2idA resp. A¤idB is on the syntactic level the same as 2A resp. A ¤ B.
The quantifiers are to be understood to range over interpretations k : >¤T >.

(E2)
k

2kA↔ 2A (∀k)

(E¤)
k

A¤k B ↔ A¤B (∀k)

(→ 2)
k
2kA→ 2A (∀k)

(→ ¤)k A¤B → A¤kB (∀k)
Lk1 2k(A→ B)→ (2kA→ 2kB) (∀k)
Lk2 2lA→ 2k2lA (∀k∀l)
Lk3 2k(2kA→ A)→ 2kA (∀k)
Jk1 2k(A→ B)→ A¤kB (∀k)
Jk2a (A¤B) ∧ (B¤kC)→ A¤kC (∀k)
Jk2b (A¤kB) ∧2k(B → C)→ A¤kC (∀k)
Jk3 (A¤kC) ∧ (B¤kC)→ A ∨B¤kC (∀k)
Jk4 A¤kB → (3A→ 3kB) (∀k)
Jk5 A¤l 3kB → A¤k B (∀k∀l)
Pk A¤B → 2(A¤k B) (∃k)

The modal reasoning we will perform using these principles will look like
ILX2Y, where X is L1-J5 together with (→ 2)

k
-Pk, and Y = {(E2)k, (E¤)k}.

We call the latter axioms extensionality axioms. Of course, we should somehow
take the nature of the quantifiers along in our reasoning.

It is not hard to see that all principles are arithmetically valid. As T k

contains S12, many arguments like Lk1-L
k
3 and Jk5 go5 as always. Jk1 follows easily

from (→ 2)
k
. But, (→ 2)

k
together with (E2)

k
is just Lemma 4.2.7, and (E¤)

k

is a direct consequence of it. Finally, Pk is Lemma 4.2.8.
We make no claims on the completeness of our modal system. Neither do

we say anything about efficiency. For example, if ϕ is derivable in the system
and ϕ only contains standard modalities, then it is desirable that also 2ϕ is
derivable.

4.2.4 Arithmetical soundness results

We now come to the actual soundness proofs of the principles W, M0, W∗, P0,
and R. As M0 and P0 both follow from R and as W∗ follows from M0 and W,
it would be sufficient to just prove the soundness6 of R and W. However, we
have decided to give short proofs for all principles. Like this, the close match

5We note that A¤3B → A¤B is over J1 and J2 equivalent to 3A¤A.
6In [GJ04] a principle is given that is precisely W and R together. See also Lemma 8.1.4.
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between the modal systems comes better to the fore. Per principle we shall give
a proof in ILP and in ILM. These proofs can then be copied almost literally to
yield arithmetical soundness proofs.

The principle W

Lemma 4.2.11. ILP `W and ILPR `W

Proof.

A¤B → 2(A¤B)
→ 2(3A→ 3B) (∗)
→ 2(2¬B → 2¬A) (∗∗)

Evidently A¤B → A¤ (B∧2¬A)∨ (B∧3A). As clearly B∧2¬A¤B∧2¬A,
we have shown A¤B → A¤B∧2¬A once we have proven B∧3A¤B∧2¬A.
But, by (∗),

B ∧3A ¤ B ∧3B by L3
¤ B ∧3(B ∧2¬B)
¤ B ∧2¬B by (∗∗)
¤ B ∧2¬A.

a

Lemma 4.2.12. ILM `W

Proof. By M, A ¤ B → A ∧ 2¬A ¤ B ∧ 2¬A. But A ¤ A ∧ 2¬A, whence
A¤B → A¤B ∧2¬A. a

P-style soundness proof of W We just follow the modal proof of W in ILP.
At some places, axioms are replaced by there counterparts that deal with finite
approximations.

By Pk we have that for some k,

α¤ β → 2(α¤k β) by Jk4
→ 2(3α→ 3kβ) (∗)
→ 2(2k¬β → 2¬α). (∗∗)

Now α¤ β → (β ∧2¬α) ∨ (β ∧3α). Starting from the last disjunct we obtain
by (∗)

β ∧3α ¤ β ∧3kβ by Lk3
¤ 3k(β ∧2k¬β) by Jk5 and (E¤)

k

¤ β ∧2k¬β by (∗∗)
¤ β ∧2¬α.

M-style soundness proof of W We assume j : α¤β and fix the correspond-
ing Pudlák cut J . By Lemma 4.2.4, α ¤ α ∧ 2J¬α, whence by MJ and J2,
α¤ β ∧2¬α.
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The principle M0

Lemma 4.2.13. ILP ` M0 and ILPR ` M0

Proof.

A¤B → 2(A¤B)
→ 2(3A→ 3B)
→ 2(3A ∧2C → 3B ∧2C)
→ 3A ∧2C ¤3B ∧2C
→ 3A ∧2C ¤3(B ∧2C)
→ 3A ∧2C ¤B ∧2C

a

Lemma 4.2.14. ILM ` M0

Proof. A ¤ B → A ∧ 2C ¤ B ∧ 2C. But, 3A ∧ 2C ¤ 3(A ∧ 2C) ¤ A ∧ 2C,
whence A¤B → 3A ∧2C ¤B ∧2C. a

P-style soundness proof of M0 Starting with an application from Pk, for
some k we obtain the following reasoning.

α¤ β → 2(α¤k β) Jk4
→ 2(3α→ 3kβ)
→ 2(3α ∧2γ → 3kβ ∧2γ)
→ 3α ∧2γ ¤3kβ ∧2γ a.o. by Lk2
→ 3α ∧2γ ¤3k(β ∧2γ) by Jk5 and (E¤)

k

→ 3α ∧2γ ¤ β ∧2γ

M-style soundness proof of M0 α¤ β → α∧2Jγ ¤ β ∧2γ for some cut J .
By LJ2a for this particular J we get 3α ∧2γ → 3α ∧22Jγ, whence

3α ∧2γ ¤ 3α ∧22Jγ
¤ 3(α ∧2Jγ)
¤ α ∧2Jγ by MJ

¤ β ∧2γ.

The principle W∗

Lemma 4.2.15. ILP `W∗ and ILPR `W∗

Proof. In ILP (resp. ILPR): if A¤B, then

2(2¬B → 2¬A) (4.3)

and

2(3A ∧2C → 3B ∧2C). (4.4)
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Thus, B ∧2C ¤ (B ∧2C ∧2¬A)∨ (B ∧2C ∧3A). Again, in the first case we
would be done. In the second case we get the following reasoning.

B ∧2C ∧3A ¤ 3A ∧2C by (4.4)
¤ 3B ∧2C by L3
¤ 3(B ∧2¬B) ∧2C by L2
¤ 3(B ∧2C ∧2¬B) by J5
¤ B ∧2C ∧2¬B by (4.3)
¤ B ∧2C ∧2¬A

a

Lemma 4.2.16. ILM `W∗

Proof. So, in ILM, assume A ¤ B. By an application of M we get B ∧ 2C ¤
(B ∧2C ∧2¬A) ∨ (B ∧2C ∧3A). Again, in the first case we would be done.
In the second case we get the following reasoning.

B ∧2C ∧3A ¤ 3A ∧2C by L3
¤ 3(A ∧2¬A) ∧2C by L2
¤ 3(A ∧2C ∧2¬A) by J5
¤ A ∧2C ∧2¬A by M and A¤B
¤ B ∧2C ∧2¬A

a

P-style soundness proof of W∗ For some k we get starting with an appli-
cation of Pk the following reasoning.

α¤ β → 2(α¤k β) by Jk4
→ 2(3α→ 3kβ)
→ 2(2k¬β → 2¬α) (∗)
→ 2(3α ∧2γ → 3kβ ∧2γ) (∗∗)

We follow the modal proof.

β ∧2γ ∧3α ¤ 3α ∧2γ by (∗∗)
¤ 3kβ ∧2γ by Lk3
¤ 3k(β ∧2k¬β) ∧2γ by Lk2
¤ 3k(β ∧2γ ∧2k¬β) by Jk5 and (E¤)

k

¤ β ∧2γ ∧2k¬β by (∗)
¤ β ∧2γ ∧2¬α

M-style soundness proof of W∗ Also following the modal proof. Let J be
the Pudlák cut of j : α¤ β. We get the following reasoning.

β ∧2γ ∧3α ¤ 3α ∧2γ by LJ3a
¤ 3(α ∧2J¬α) ∧2γ by LJ2a
¤ 3(α ∧2Jγ ∧2J¬α) by J5
¤ α ∧2Jγ ∧2J¬α by MJ and j : α¤ β
¤ β ∧2γ ∧2¬α
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The principle P0

Lemma 4.2.17. ILP ` P0

Proof. Within ILP: A¤3B → 2(A¤3B)→ 2(A¤B). a

Lemma 4.2.18. ILPR 0 P0

Proof. It is easy to see that frames satisfying uRxRySuz → xRz are sound for
ILPR. And it is equally easy to provide such a model on which P0 does not
hold. a

Lemma 4.2.18 nicely reflects that the frame condition for P0 essentially involves
new S-transitions.

Lemma 4.2.19. ILM ` P0

Proof.

A¤3B → A ∧2¬B ¤⊥
→ 2(A→ 3B)
→ 22(A→ 3B)
→ 2(A¤3B)
→ 2(A¤B)

a

P-style soundness proof of P0 The proof goes conform the modal proof.
Thus, for some k, α¤3β → 2(α¤k3β). Hence, by Jk5 we get α¤3β → 2(α¤β).

M-style soundness proof of P0 Again, we follow the modal proof. Thus,
for some cut J we get the following.

A¤3B → A ∧2J¬B ¤⊥
→ 2(A→ 3JB)
→ 22(A→ 3JB)
→ 2(A¤3JB)
→ 2(A¤B)

Note: the principle A ¤ 3B → 2(A ¤ 3B) is also provable in both ILM and
ILP. In [Vis97] it is shown that this principle is not valid in PRA. It is nice to
see where proof-attempts of this principle in our systems fail.

The principle R

Before we see that ILP ` R, we first proof an auxiliary lemma.

Lemma 4.2.20. IL ` ¬(A¤ ¬C) ∧ (A¤B)→ 3(B ∧2C)
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Proof. We prove the logical equivalent (A ¤ B) ∧ 2(B → 3¬C) → A ¤ ¬C
in IL. But this is clear, as (A ¤ B) ∧ 2(B → 3¬C) → A ¤ B ∧ 3¬C and
3¬C ¤ ¬C. a

Lemma 4.2.21. ILP ` P0

Proof. A¤B → 2(A¤B). Using this together with Lemma 4.2.20 we get that
under the assumption A¤B, we have

¬(A¤ ¬C) ¤ ¬(A¤ ¬C) ∧ (A¤B)
¤ 3(B ∧2C)
¤ B ∧2C.

a

Lemma 4.2.22. ILPR 0 R

Proof. By exposing a countermodel as in the proof of Lemma 4.2.18. a

Lemma 4.2.23. ILM ` R

Proof. In IL it is easy to see that ¬(A ¤ ¬C) → 3(A ∧ 2C). Thus, if A ¤ B
then

¬(A¤ ¬C) ¤ 3(A ∧2C)
¤ A ∧2C
¤ B ∧2C.

a

P-style soundness proof of R Conform the modal proof, we first see that
(α¤kβ)∧¬(α¤¬γ)→ 3k(β∧2γ). For, suppose that α¤kβ and 2k(β → 3¬γ).
Then, by Jk2b, α ¤

k 3¬γ. Thus, by Jk5, we get α ¤ ¬γ. We have not used any
extensionality axioms, thus also

2((α¤k β) ∧ ¬(α¤ ¬γ)→ 3
k(β ∧2γ)). (4.5)

We now turn to the main proof. So, suppose k : α¤β, then 2(α¤k β) and thus

¬(α¤ ¬γ) ¤ ¬(α¤ ¬γ) ∧ (α¤k β) by (4.5)

¤ 3k(β ∧2γ) by Jk5 and (E¤)
k

¤ β ∧2γ.

M-style soundness proof of R Again following the modal poof. So, suppose
that j : α¤ β and let J be the corresponding Pudlák cut. By Lemma 4.2.5 we
get that for this cut ¬(α¤ ¬γ)→ 3(α ∧2Jγ). Thus, if j : α¤ β then

¬(α¤ ¬γ) ¤ 3(α ∧2Jγ)
¤ α ∧2Jγ
¤ β ∧2γ.
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Mixing proof styles

Sometimes, mixing P and M-style proofs can be fruitful. The next lemma pro-
vides an example.

Lemma 4.2.24. In any reasonable arithmetical theory we have that
α¤3β → 2(¬(α¤ ¬γ)→ 3(β ∧ γ)).

Proof. Suppose k : α ¤3β and let K be the corresponding Pudlák cut. Then,
by MJ we get

α¤3β → α ∧2Kγ ¤3β ∧2γ
→ α ∧2Kγ ¤3(β ∧ γ) by Pk

→ 2(α ∧2Kγ ¤k 3(β ∧ γ)) by Jk4
→ 2(3(α ∧2Kγ)→ 3k3(β ∧ γ)) by Lk2
→ 2(3(α ∧2Kγ)→ 3(β ∧ γ)).

But, by Lemma 4.2.5, we get 2(¬(α¤¬γ)→ 3(α∧2Kγ)) and we are done. a

It is not hard to see that the above principle is already provable in ILR.

Lemma 4.2.25. ILR ` A¤B → ¬(A¤ ¬C) ∧2D ¤B ∧2(C ∧D)

Proof. One easily sees that IL ` ¬(A ¤ ¬C) ∧ 2D → ¬(A ¤ ¬(C ∧ D)). One
application of R now gives the desired result. a

Lemma 4.2.26. ILR ` A¤3B → 2(¬(A¤ ¬C)→ 3(B ∧ C))

Proof. In ILR we get

A¤3B → ¬(A¤ ¬C)¤3B ∧2C
→ ¬(A¤ ¬C)¤3(B ∧ C)
→ ¬(A¤ ¬C) ∧2¬(B ∧ C)¤⊥
→ 2(¬(A¤ ¬C)→ 3(B ∧ C)).

a

It is also not hard to see that A ¤ 3B → 2(¬(A ¤ ¬C) → 3(B ∧ C)) follows
semantically from the frame condition of R.
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interpretability logics
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Chapter 5

The construction method

In Part II of the thesis we shall study the modal semantics for interpretability
logics. This semantics has proven to be quite a good one. However, there still
seem to be some draw-backs. That is, elementary modal properties can easily
lead to tremendous technical complications. Why is it, that modal completeness
proofs for ILW and ILM0 are so difficult?

In part, we think, this is because the right technical aparatus has not yet
been fully developed. A step in the good direction is made with the introduction
of the so-called full labels in Section 8.2. However, we did not use these full
labels in earlier sections. This is due to the simple reason that we had not yet
invented/discovered them at the time of writing. Large part of those sections
can thus, so we are convinced, be simplified.

Historical evidence makes that we indeed believe in the semantics. Two
times, a new arithmetical principle was found on the basis of modal considera-
tions only: the principle P0 from [Joo98] and the new principle R from [GJ04].

In this chapter we describe and discuss the standard construction method
(step-by-step method) to obtain, amongst others, modal completeness results.
We conclude the chapter with a modal completeness proof of IL.

5.1 General exposition of the construction method

Most of the applications of the construction method deal with modal complete-
ness of a certain logic ILX. More precisely, showing that a logic ILX is modally
complete amounts to constructing, or finding, whenever ILX 6` ϕ, a model M
and an x ∈ M such that M,x ° ¬ϕ. We will employ our construction method
for this particular model construction.

In this section, we will not always give precise definitions of the notions we
work with. All the definitions can be found in Section 5.2.

69
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5.1.1 The main ingredients of the construction method

As we mentioned above, a modal completeness proof of a logic ILX amounts to a
uniform model construction to obtain M,x ° ¬ϕ for ILX 6` ϕ. If ILX 6` ϕ, then
{¬ϕ} is an ILX-consistent set and thus, by a version of Lindenbaum’s Lemma
(Lemma 3.2.8), it is extendible to a maximal ILX-consistent set. On the other
hand, once we have an ILX-model M,x ° ¬ϕ, we can find, by Corollary 3.3.9
a maximal ILX-consistent set Γ with ¬ϕ ∈ Γ. This Γ can simply be defined as
the set of all formulas that hold at x.

To go from a maximal ILX-consistent set to a model is always the hard
part. This part is carried out in our construction method. In this method, the
maximal consistent set is somehow partly unfolded to a model.

Often in these sort of model constructions, the worlds in the model are
MCS’s. For propositional variables one then defines x ° p iff p ∈ x. In the
setting of interpretability logics it is sometimes inevitable to use the same MCS
in different places in the model.1 Therefore we find it convenient not to identify
a world x with a MCS, but rather label it with a MCS ν(x). However, we will
still write sometimes ϕ ∈ x instead of ϕ ∈ ν(x).

One complication in unfolding a MCS to a model lies in the incompactness
of the modal logics we consider. This, in turn, is due to the fact that some
frame conditions are not expressible in first order logic. As an example we can
consider the following set.2

Γ := {3p0} ∪ {2(pi → 3pi+1) | i ∈ ω}

Clearly, Γ is a GL-consistent set, and any finite part of it is satisfiable in some
world in some model. However, it is not hard to see that in no IL-model all of
Γ can hold simultaneously in some world in it.

If M is an ILX-model and x ∈ M , then {ϕ | M,x ° ϕ} is a MCS. By
definition (and abuse of notation) we see that

∀x [x ° ϕ iff ϕ ∈ x].

We call this equivalence a truth lemma. (See for example Definition 5.2.5 for
a more precise formulation.) In all completeness proofs a model is defined or
constructed in which some form of a truth lemma holds. Now, by the observed
incompactness phenomenon, we can not expect that for every MCS, say Γ, we
can find a model “containing” Γ for which a truth lemma holds in full generality.
There are various ways to circumvent this complication. Often one considers
truncated parts of maximal consistent sets which are finite. In choosing how to
truncate, one is driven by two opposite forces.

1As the truth definition of A¤B has a ∀∃ character, the corresponding notion of bisimu-
lation is rather involved. As a consequence there is in general no obvious notion of a minimal
bisimular model, contrary to the case of provability logics. This causes the necessity of several
occurrences of MCS’s.

2This example comes from Fine and Rautenberg and is treated in Chapter 7 of [Boo93].
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On the one hand this truncated part should be small. It should be at least
finite so that the incompactness phenomenon is blocked. The finiteness is also
a desideratum if one is interested in the decidability of a logic.

On the other hand, the truncated part should be large. It should be large
enough to admit inductive reasoning to prove a truth lemma. For this, often
closure under subformulas and single negation suffices. Also, the truncated
part should be large enough so that MCS’s contain enough information to do
the required calculation. For this, being closed under subformulas and single
negations does not, in general, suffice. Examples of these sort of calculation are
Lemma 6.1.7 and Lemma 7.1.16.

In our approach we take the best of both opposites. That is, we do not trun-
cate at all. Like this, calculation becomes uniform, smooth and relatively easy.
However, we demand a truth lemma to hold only for finitely many formulas.

The question is now, how to unfold the MCS containing ¬ϕ to a model where
¬ϕ holds in some world. We would have such a model if a truth lemma holds
w.r.t. a finite set D containing ¬ϕ.

Proving that a truth lemma holds is usually done by induction on the com-
plexity of formulas. As such, this is a typical “bottom up” or “inside out”
activity. On the other hand, unfolding, or reading off, the truth value of a
formula is a typical “top down” or “outside in” activity.

Yet, we do want to gradually build up a model so that we get closer and
closer to a truth lemma. But, how could we possibly measure that we come
closer to a truth lemma? Either everything is in place and a truth lemma holds,
or a truth lemma does not hold, in which case it seems unclear how to measure
to what extend it does not hold.

The gradually building up a model will take place by consecutively adding
bits and pieces to the MCS we started out with. Thus somehow, we do want to
measure that we come closer to a truth lemma by doing so. Therefore, we switch
to an alternative forcing relation ‖∼ that follows the “outside in” direction that
is so characteristic to the evaluation of x ° ϕ, but at the same time incorporates
the necessary elements of a truth lemma.

x‖∼p iff p ∈ x for propositional variables p
x‖∼ϕ ∧ ψ iff x‖∼ϕ & x‖∼ψ and likewise for

other boolean connectives
x‖∼ϕ¤ ψ iff ∀y [xRy ∧ ϕ ∈ x→ ∃z (ySxz ∧ ψ ∈ z)]

If D is a set of sentences that is closed under subformulas and single negations,
then it is not hard to see that (see Lemma 5.2.9)

∀x∀ϕ∈D [x‖∼ϕ iff ϕ ∈ x] (∗)

is equivalent to

∀x∀ϕ∈D [x ° ϕ iff ϕ ∈ x]. (∗∗)
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Thus, if we want to obtain a truth lemma for a finite set D that is closed under
single negations and subformulas, we are done if we can obtain (∗). But now it
is clear how we can at each step measure that we come closer to a truth lemma.
This brings us to the definition of problems and deficiencies.

A problem is some formula ¬(ϕ ¤ ψ) ∈ x ∩ D such that x‖6∼¬(ϕ ¤ ψ). We
define a deficiency to be a configuration such that ϕ¤ψ ∈ x∩D but x‖6∼ϕ¤ψ. It
now becomes clear how we can successively eliminate problems and deficiencies.

A deficiency ϕ¤ψ ∈ x∩D is a deficiency because there is some y (or maybe
more of them) with xRy, and ϕ ∈ y, but for no z with ySxz, we have ψ ∈ z.
This can simply be eliminated by adding a z with ySxz and ψ ∈ z.

A problem ¬(ϕ ¤ ψ) ∈ x ∩ D can be eliminated by adding a completely
isolated y to the model with xRy and ϕ,¬ψ ∈ y. As y is completely isolated,
ySxz ⇒ z = y and thus indeed, it is not possible to reach a world where ψ
holds. Now here is one complication.

We want that a problem or a deficiency, once eliminated, can never re-occur.
For deficiencies this complication is not so severe, as the quantifier complexity
is ∀∃. Thus, any time “a deficiency becomes active”, we can immediately deal
with it.

With the elimination of a problem, things are more subtle. When we in-
troduced y 3 ϕ,¬ψ to eliminate a problem ¬(ϕ ¤ ψ) ∈ x ∩ D, we did indeed
eliminate it, as for no z with ySxz we have ψ ∈ z. However, this should hold for
any future expansion of the model too. Thus, any time we eliminate a problem
¬(ϕ¤ψ) ∈ x∩D, we introduce a world y with a promise that in no future time
we will be able to go to a world z containing ψ via an Sx-transition. Some-
how we should keep track of all these promises throughout the construction and
make sure that all the promises are indeed kept. This is taken care of by our
so called ψ-critical cones (see for example also [dJJ98]). As ψ is certainly not
allowed to hold in R-successors of y, it is reasonable to demand that 2¬ψ ∈ y.
(Where y was introduced to eliminate the problem ¬(ϕ¤ ψ) ∈ x ∩ D.)

Note that problems have quantifier complexity ∃∀. We have chosen to call
them problems due to their prominent existential nature.

5.1.2 Some methods to obtain completeness

For modal logics in general, quite an arsenal of methods to obtain completeness
is available. For instance the standard operations on canonical models like
path–coding (unraveling), filtrations and bulldozing (see [BRV01]). Or one can
mention uniform methods like the use of Shalqvist formulas or the David Lewis
theorem [Boo93]. A very secure method is to construct counter models piece by
piece. A nice example can be found in [Boo93], Chapter 10. In [HMV01] and
in [HH02] a step-by-step method is exposed in the setting of universal algebras.
New approximations of the model are given by moves in an (infinite) game.

For interpretability logics the available methods are rather limited in num-
ber. In the case of the basic logic IL a relatively simple unraveling works.
Although ILM does allow a same treatment, the proof is already much less
clear. (For both proofs, see [dJJ98]). However, for logics that contain ILM0 but
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not ILM it is completely unclear how to obtain completeness via an unraveling
and we are forced into more secure methods like the above mentioned building
of models piece by piece. And this is precisely what we do in this paper.

Decidability and the finite model property are two related issues that more or
less seem to divide the landscape of interpretability logics into the same classes.
That is, the proof that IL has the finite model property is relatively easy. The
same can be said about ILM. For logics like ILM0 the issue seems much more
involved and a proper proof of the finite model property, if one exists at all,
has not been given yet. Alternatively, one could resort to other methods for
showing decidability like the Mosaic method [BRV01].

5.2 The construction method

5.2.1 Preparing the construction

An ILX-labeled frame is just a Veltman frame in which every node is labeled by a
maximal ILX-consistent set and some R-transitions are labeled by a formula. R-
transitions labeled by a formula C indicate that some C-criticallity is essentially
present at this place.

Definition 5.2.1. An ILX-labeled frame is a quadruple 〈W,R, S, ν〉. Here
〈W,R, S〉 is an IL-frame and ν is a labeling function. The function ν assigns
to each x ∈ W a maximal ILX-consistent set of sentences ν(x). To some pairs
〈x, y〉 with xRy, ν assigns a formula ν(〈x, y〉).

If there is no chance of confusion we will just speak of labeled frames or even
just of frames rather than ILX-labeled frames. Labeled frames inherit all the
terminology and notation from normal frames. Note that an ILX-labeled frame
need not be, and shall in general not be, an ILX-frame. If we speak about a
labeled ILX-frame we always mean an ILX-labeled ILX-frame. To indicate that
ν(〈x, y〉) = A we will sometimes write xRAy or ν(x, y) = A.

Formally, given F = 〈W,R, S, ν〉, one can see ν as a subset of (W ∪ (W ×
W ))×(FormIL∪{Γ | Γ is a maximal ILX consistent set}) such that the following
properties hold.

- ∀x∈W (〈x, y〉 ∈ ν ⇒ y is a MCS)

- ∀ 〈x, y〉∈W ×W (〈〈x, y〉, z〉 ∈ ν ⇒ z is a formula)

- ∀x∈W∃y 〈x, y〉 ∈ ν

- ∀x, y, y′(〈x, y〉 ∈ ν ∧ 〈x, y′〉 ∈ ν → y = y′)

We will often regard ν as a partial function on W ∪ (W ×W ) which is total on
W and which has its values in FormIL∪{Γ | Γ is a maximal ILX consistent set}

Remark 5.2.2. Every ILX-labeled frame F = 〈W,R, S, ν〉 can be transformed
to an IL-model F in a uniform way by defining for propositional variables p the
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valuation as F , x ° p iff p ∈ ν(x). By Corollary 3.3.9 we can also regard any
model M satisfying the ILX frame condition3 as an ILX-labeled frame M by
defining ν(m) := {ϕ |M,m ° ϕ}.

We sometimes refer to F as the model induced by the frame F . Alternatively
we will speak about the model corresponding to F . Note that for ILX-models

M, we have M =M , but in general F 6= F for ILX-labeled frames F .

Definition 5.2.3. Let x be a world in some ILX-labeled frame 〈W,R, S, ν〉.
The C-critical cone above x, we write CCx , is defined inductively as

• ν(〈x, y〉) = C ⇒ y ∈ CCx

• x′ ∈ CCx & x′Sxy ⇒ y ∈ CCx

• x′ ∈ CCx & x′Ry ⇒ y ∈ CCx

Definition 5.2.4. Let x be a world in some ILX-labeled frame 〈W,R, S, ν〉.
The generalized C-cone above x, we write GCx , is defined inductively as

• y ∈ CCx ⇒ y ∈ GCx

• x′ ∈ GCx & x′Swz ⇒ z ∈ GCx for arbitrary w

• x′ ∈ GCx & x′Ry ⇒ y ∈ GCx

It follows directly from the definition that the C-critical cone above x is
part of the generalized C-cone above x. So, if GBx ∩ G

C
x = ∅, then certainly

CBx ∩ C
C
x = ∅.

We also note that there is some redundancy in Definitions 5.2.3 and 5.2.4.
The last clause in the inductive definitions demands closure of the cone under
R-successors. But from Definition 3.3.1.5 closure of the cone under R follows
from closure of the cone under Sx. We have chosen to explicitly adopt the
closure under the R. In doing so, we obtain a notion that serves us also in
the environment of so-called quasi frames (see Definition 5.3.1) in which not
necessarily (x¹)2 ∩R ⊆ Sx.

Definition 5.2.5. Let F = 〈W,R, S, ν〉 be a labeled frame and let F be the
induced IL-model. Furthermore, let D be some set of sentences. We say that a
truth lemma holds in F with respect to D if ∀A∈D ∀x∈F

F , x ° A⇔ A ∈ ν(x).

If there is no chance of confusion we will omit some parameters and just
say “a truth lemma holds at F” or even “a truth lemma holds”. The following
definitions give us a means to measure how far we are away from a truth lemma.

3We could even say, any ILX-model.
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Definition 5.2.6 (Temporary definition). 4 Let D be some set of sentences
and let F = 〈W,R, S, ν〉 be an ILX-labeled frame. A D-problem is a pair
〈x,¬(A¤B)〉 such that ¬(A¤B) ∈ ν(x)∩D and for every y with xRy we have
[A ∈ ν(y)⇒ ∃z (ySxz ∧B ∈ ν(z))].

Definition 5.2.7 (Deficiencies). Let D be some set of sentences and let F =
〈W,R, S, ν〉 be an ILX-labeled frame. A D-deficiency is a triple 〈x, y, C ¤ D〉
with xRy, C ¤ D ∈ ν(x) ∩ D, and C ∈ ν(y), but for no z with ySxz we have
D ∈ ν(z).

If the set D is clear or fixed, we will just speak about problems and deficien-
cies.

Definition 5.2.8. Let A be a formula. We define the single negation of A, we
write ∼A, as follows. If A is of the form ¬B we define ∼A to be B. If A is not
a negated formula we set ∼A := ¬A.

The next lemma shows that a truth lemma w.r.t. D can be reformulated in
the combinatoric terms of deficiencies and problems. (See also the equivalence
of (∗) and (∗∗) in Section 5.1.)

Lemma 5.2.9. Let F = 〈W,R, S, ν〉 be a labeled frame, and let D be a set of
sentences closed under single negation and subformulas. A truth lemma holds
in F w.r.t. D iff there are no D-problems nor D-deficiencies.

Proof. The proof is really very simple and precisely shows the interplay between
all the ingredients. a

The labeled frames we will construct are always supposed to satisfy some
minimal reasonable requirements. We summarize these in the notion of ade-
quacy.

Definition 5.2.10 (Adequate frames). A frame is called adequate if the fol-
lowing conditions are satisfied.

1. xRy ⇒ ν(x) ≺ ν(y)

2. A 6= B ⇒ GAx ∩ G
B
x = ∅

3. y ∈ CAx ⇒ ν(x) ≺A ν(y)

If no confusion is possible we will just speak of frames instead of adequate
labeled frames. As a matter of fact, all the labeled frames we will see from now
on will be adequate. In the light of adequacy it seems reasonable to work with
a slightly more elegant definition of a D-problem.

Definition 5.2.11 (Problems). Let D be some set of sentences. A D-problem
is a pair 〈x,¬(A ¤ B)〉 such that ¬(A ¤ B) ∈ ν(x) ∩ D and for no y ∈ CBx we
have A ∈ ν(y).

4We will eventually work with Definition 5.2.11.
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From now on, this will be our working definition. Clearly, on adequate
labeled frames, if 〈x,¬(A ¤ B)〉 is not a problem in the new sense, it is not a
problem in the old sense.

Remark 5.2.12. It is also easy to see that the we still have the interesting half
of Lemma 5.2.9. Thus, we still have, that a truth lemma holds if there are no
deficiencies nor problems.

To get a truth lemma we have to somehow get rid of problems and deficien-
cies. This will be done by adding bits and pieces to the original labeled frame.
Thus the notion of an extension comes into play.

Definition 5.2.13 (Extension). Let F = 〈W,R, S, ν〉 be a labeled frame. We
say that F ′ = 〈W ′, R′, S′, ν′〉 is an extension of F , we write F ⊆ F ′, if W ⊆W ′

and the relations in F ′ restricted to F yield the corresponding relations in F .

More formally, the requirements on the restrictions in the above definition
amount to saying that for x, y, z ∈ F we have the following.

- xR′y iff xRy

- yS′xz iff ySxz

- ν′(x) = ν(x)

- ν′(〈x, y〉) is defined iff ν(〈x, y〉) is defined, and in this case ν ′(〈x, y〉) =
ν(〈x, y〉).

A problem in F is said to be eliminated by the extension F ′ if it is no longer
a problem in F ′. Likewise we can speak about elimination of deficiencies.

Definition 5.2.14 (Depth). The depth of a finite frame F , we will write
depth(F ) is the maximal length of sequences of the form x0R . . . Rxn. (For
convenience we define max(∅) = 0.)

The depth of a point is just the depth of the subframe generated by that
point.

Definition 5.2.15 (Union of bounded chains). An indexed set {Fi}i∈ω of
labeled frames is called a chain if for all i, Fi ⊆ Fi+1. It is called a bounded
chain if for some number n, depth(Fi) ≤ n for all i ∈ ω. The union of a bounded
chain {Fi}i∈ω of labeled frames Fi is defined as follows.

∪i∈ωFi := 〈∪i∈ωWi,∪i∈ωRi,∪i∈ωSi,∪i∈ωνi〉

It is clear why we really need the boundedness condition. We want the union
to be an IL-frame. So, certainly R should be conversely well-founded. This can
only be the case if our chain is bounded.
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5.2.2 The main lemma

We now come to the main motor behind many results. It is formulated in rather
general terms so that it has a wide range of applicability. As a draw-back, we
get that any application still requires quite some work.

Lemma 5.2.16 (Main lemma). Let ILX be an interpretability logic and let
C be a (first or higher order) frame condition such that for any IL-frame F we
have

F |= C ⇒ F |= X.

Let D be a finite set of sentences. Let I be a set of so-called invariants of labeled
frames so that we have the following properties.

• F |= IU ⇒ F |= C, where IU is that part of I that is closed under bounded
unions of labeled frames.

• I contains the following invariant: xRy → ∃A∈(ν(y) \ ν(x)) ∩ {2¬D |
D a subformula of some B ∈ D}.

• For any adequate labeled frame F , satisfying all the invariants, we have
the following.

– Any D-problem of F can be eliminated by extending F in a way that
conserves all invariants.

– Any D-deficiency of F can be eliminated by extending F in a way
that conserves all invariants.

In case such a set of invariants I exists, we have that any ILX-labeled ad-
equate frame F satisfying all the invariants can be extended to some labeled
adequate ILX-frame F̂ on which a truth-lemma with respect to D holds.

Moreover, if for any finite D that is closed under subformulas and single
negations, a corresponding set of invariants I can be found as above and such
that moreover I holds on any one-point labeled frame, we have that ILX is a
complete logic.

Proof. By subsequently eliminating problems and deficiencies by means of ex-
tensions. These elimination processes have to be robust in the sense that every
problem or deficiency that has been dealt with, should not possibly re-emerge.
But, the requirements of the lemma almost immediately imply this.

For the second part of the Main Lemma, we suppose that for any finite set
D closed under subformulas and single negations, we can find a corresponding
set of invariants I. If now, for any such D, all the corresponding invariants I
hold on any one-point labeled frame, we are to see that ILX is a complete logic,
that is, ILX 0 A⇒ ∃M (M |= X & M |= ¬A).

But this just follows from the above. If ILX 0 A, we can find a maximal ILX-
consistent set Γ with ¬A ∈ Γ. Let D be the smallest set that contains ¬A and
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is closed under subformulas and single negations and consider the invariants
corresponding to D. The labeled frame F := 〈{x},∅,∅, 〈x,Γ〉〉 can thus be
extended to a labeled adequate ILX-frame F̂ on which a truth lemma with

respect to D holds. Thus certainly F̂ , x ° ¬A, that is, A is not valid on the
model induced by F̂ . a

The construction method can also be used to obtain decidability via the finite
model property. In such a case, one should re-use worlds that were introduced
earlier in the construction.

The following two lemmata indicate how good labels can be found for the
elimination of problems and deficiencies.

Lemma 5.2.17. Let Γ be a maximal ILX-consistent set such that ¬(A¤B) ∈ Γ.
Then there exists a maximal ILX-consistent set ∆ such that Γ ≺B ∆ 3 A,2¬A.

Proof. So, consider ¬(A¤ B) ∈ Γ, and suppose that no required ∆ exists. We
can then find a5 formula C for which C ¤B ∈ Γ such that

¬C,2¬C,A,2¬A `ILX ⊥.

Consequently

`ILX A ∧2¬A→ C ∨3C

and thus, by Lemma 3.1.2, also `ILX A¤C. But as C¤B ∈ Γ, also A¤B ∈ Γ.
This clearly contradicts the consistency of Γ. a

For deficiencies there is a similar lemma.

Lemma 5.2.18. Consider C ¤D ∈ Γ ≺B ∆ 3 C. There exists ∆′ with Γ ≺B
∆′ 3 D,2¬D.

Proof. Suppose for a contradiction that C ¤D ∈ Γ ≺B ∆ 3 C and there does
not exist a ∆′ with Γ ≺B ∆′ 3 D,2¬D. Taking the contraposition of Lemma
5.2.17 we get that ¬(D¤B) /∈ Γ, whence D¤B ∈ Γ and also C ¤B ∈ Γ. This
clearly contradicts the consistency of ∆ as Γ ≺B ∆ 3 C. a

5.2.3 Completeness and the main lemma

The main lemma provides a powerful method for proving modal completeness.
In several cases it is actually the only known method available.

Remark 5.2.19. A modal completeness proof for an interpretability logic ILX

is by the main lemma reduced to the following four ingredients.

5Writing out the definition and by compactness, we get a finite number of formulas
C1, . . . , Cn with Ci ¤ B ∈ Γ, such that ¬C1, . . . ,¬Cn,2¬C1, . . . ,2¬Cn, A,2¬A `ILX ⊥.
We can now take C := C1 ∨ . . . ∨ Cn. Clearly, as all the Ci ¤B ∈ Γ, also C ¤B ∈ Γ.
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• Frame Condition Providing a frame condition C and a proof that

F |= C ⇒ F |= ILX.

• Invariants Given a finite set of sentences D (closed under subformulas
and single negations), providing invariants I that hold for any one-point
labeled frame. Certainly I should contain xRy → ∃A∈(ν(y) \ ν(x)) ∩
{2D | D ∈ D}.

• elimination

– Problems Providing a procedure of elimination by extension for
problems in labeled frames that satisfy all the invariants. This pro-
cedure should come with a proof that it preserves all the invariants.

– Deficiencies Providing a procedure of elimination by extension for
deficiencies in labeled frames that satisfy all the invariants. Also
this procedure should come with a proof that it preserves all the
invariants.

• Rounding up A proof that for any bounded chain of labeled frames
that satisfy the invariants, automatically, the union satisfies the frame
condition C of the logic.

The completeness proofs that we will present will all have the same struc-
ture, also in their preparations. As we will see, eliminating problems is more
elementary than eliminating deficiencies.

As we already pointed out, we eliminate a problem by adding some new
world plus an adequate label to the model we had. Like this, we get a structure
that need not even be an IL-model. For example, in general, the R relation is
not transitive. To come back to at least an IL-model, we should close off the
new structure under transitivity of R and S et cetera. This closing off is in
its self an easy and elementary process but we do want that the invariants are
preserved under this process. Therefore we should have started already with a
structure that admitted a closure. Actually in this paper we will always want
to obtain a model that satisfies the frame condition of the logic.

The preparations to a completeness proof in Chapters 6 and 7 thus have the
following structure.

• Determining a frame condition for ILX and a corresponding notion of an
ILX-frame.

• Defining a notion of a quasi ILX-frame.

• Defining some notions that remain constant throughout the closing of
quasi ILX-frames, but somehow capture the dynamic features of this pro-
cess.

• Proving that a quasi ILX-frame can be closed off to an adequate labeled
ILX-frame.
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• Preparing the elimination of deficiencies.

The most difficult job in a the completeness proofs we present in this paper,
was in finding correct invariants and in preparing the elimination of deficien-
cies. Once this is fixed, the rest follows in a rather mechanical way. Especially
the closure of quasi ILX-frames to adequate ILX-frames is a very laborious
enterprise.

5.3 The logic IL

The modal logic IL has been proved to be modally complete in [dJV90]. We
shall reprove the completeness here using the main lemma.

The completeness proof of IL can be seen as the mother of all our com-
pleteness proofs in interpretability logics. Not only does it reflect the general
structure of applications of the main lemma clearly, also it so that we can use
large parts of the preparations to the completeness proof of IL in other proofs
too. Especially closability proofs are cumulative. Thus, we can use the lemma
that any quasi-frame is closable to an adequate frame, in any other completeness
proof.

5.3.1 Preparations

Definition 5.3.1. A quasi-frame G is a quadruple 〈W,R, S, ν〉. Here W is a
non-empty set of worlds, and R a binary relation on W . S is a set of binary
relations on W indexed by elements of W . The ν is a labeling as defined on
labeled frames. Critical cones and generalized cones are defined just in the same
way as in the case of labeled frames. G should posess the following properties.

1. R is conversely well-founded

2. ySxz → xRy & xRz

3. xRy → ν(x) ≺ ν(y)

4. A 6= B → GAx ∩ G
B
x = ∅

5. y∈CAx → ν(x) ≺A ν(y)

Clearly, adequate labeled frames are special cases of quasi frames. Quasi-
frames inherit all the notations from labeled frames. In particular we can thus
speak of chains and the like.

Lemma 5.3.2 (IL-closure). Let G = 〈W,R, S, ν〉 be a quasi-frame. There is
an adequate IL-frame F extending G. That is, F = 〈W,R′, S′, ν〉 with R ⊆ R′

and S ⊆ S′.

Proof. We define an imperfection on a quasi-frame Fn to be a tuple γ having
one of the following forms.
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(i) γ = 〈0, a, b, c〉 with Fn |= aRbRc but Fn 6|= aRc

(ii) γ = 〈1, a, b〉 with Fn |= aRb but Fn 6|= bSab

(iii) γ = 〈2, a, b, c, d〉 with Fn |= bSacSad but not Fn |= bSad

(iv) γ = 〈3, a, b, c〉 with Fn |= aRbRc but Fn 6|= bSac

Now let us start with a quasi-frame G = 〈W,R, S, ν〉. We will define a chain of
quasi-frames. Every new element in the chain will have at least one imperfection
less than its predecessor. The union will have no imperfections at all. It will be
our required adequate IL-frame.

Let <0 be the well-ordering on

C := ({0} ×W 3) ∪ ({1} ×W 2) ∪ ({2} ×W 4) ∪ ({3} ×W 3)

induced by the occurrence order in some fixed enumeration of C. We define our
chain to start with

F0 := G. To go from Fn to Fn+1 we proceed as follows. Let γ be the <0-
minimal imperfection on Fn. In case no such γ exists we set Fn+1 := Fn. If
such a γ does exist, Fn+1 is as dicted by the case distinctions.

(i) Fn+1 := 〈Wn, Rn ∪ {〈a, c〉}, Sn, νn〉

(ii) Fn+1 := 〈Wn, Rn, Sn ∪ {〈a, b, b〉}, νn〉

(iii) Fn+1 := 〈Wn, Rn, Sn ∪ {〈a, b, d〉}, νn〉

(iv) Fn+1 := 〈Wn, Rn ∪ {〈a, c〉}, Sn ∪ {〈a, b, c〉}, νn〉

By an easy but elaborate induction, we can see that each Fn is a quasi-frame.
The induction boils down to checking for each case (i)-(iv) that all the properties
(1)-(5) from Definition 5.3.1 remain valid.

Instead of proving (4) and (5), it is better to prove something stronger, that
is, that the critical and generalized cones remain unchanged.

4’. ∀n [Fn+1 |= y∈GAx ⇔ Fn |= y∈GAx ]

5’. ∀n [Fn+1 |= y∈CAx ⇔ Fn |= y∈CAx ]

Next, it is not hard to prove that F := ∪i∈ωFi is the required adequate IL-frame.
To this extent, the following properties have to be checked. All properties have
easy proofs.

(a.) W is the domain of F (g.) F |= xRy → ySxy
(b.) R0 ⊆ ∪i∈ωRi (h.) F |= xRyRz → ySxz
(c.) S0 ⊆ ∪i∈ωSi (i.) F |= uSxvSxw → uSxw
(d.) R is conv. wellfounded on F (j.) F |= xRy ⇒ ν(x) ≺ ν(y)
(e.) F |= xRyRz → xRz (k.) A 6= B ⇒ F |= GAx ∩ G

B
x = ∅

(f.) F |= ySxz → xRy & xRz (l.) F |= y∈CAx ⇒ ν(x) ≺A ν(y)

a
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We note that the IL-frame F ⊇ G from above is actually the minimal one
extending G. If in the sequel, if we refer to the closure given by the lemma, we
shall mean this minimal one. Also do we note that the proof is independent on
the enumeration of C and hence the order <0 on C. The lemma can also be
applied to non-labeled structures. If we drop all the requirements on the labels
in Definition 5.3.1 and in Lemma 5.3.2 we end up with a true statement about
just the old IL-frames.

Lemma 5.3.2 also allows a very short proof running as follows. Any intersec-
tion of adequate IL-frames with the same domain is again an adequate IL-frame.
There is an adequate IL-frame extending G. Thus by taking intersections we
find a minimal one. We have chosen to present our explicit proof as they allow
us, now and in the sequel, to see which properties remain invariant.

Corollary 5.3.3. Let D be a finite set of sentences, closed under subformulas
and single negations. Let G = 〈W,R, S, ν〉 be a quasi-frame on which

xRy → ∃A∈((ν(y) \ νx) ∩ {2D | D ∈ D}) (∗)

holds. Property (∗) does also hold on the IL-closure F of G.

Proof. We can just take the property along in the proof of Lemma 5.3.2. In
Case (i) and (iv) we note that aRbRc → ν(a) ⊆2 ν(c). Thus, if A∈((ν(c) \
ν(b)) ∩ {2D | D ∈ D}), then certainly A 6∈ ν(a). a

We have now done all the preparations for the completeness proof. Normally,
also a lemma is needed to deal with deficiencies. But in the case of IL, Lemma
5.2.18 suffices.

5.3.2 Modal completeness

Theorem 5.3.4. IL is a complete logic

Proof. We specify the four ingredients mentioned in Remark 5.2.19.

Frame Condition For IL, the frame condition is empty, that is, every
frame is an IL frame.

Invariants Given a finite set of sentences D closed under subformulas and
single negation, the only invariant is xRy → ∃A∈(ν(y) \ ν(x))∩{2D | D ∈ D}.
Clearly this invariant holds on any one-point labeled frame.

Elimination So, let F := 〈W,R, S, ν〉 be a labeled frame satisfying the
invariant. We will see how to eliminate both problems and deficiencies while
conserving the invariant.

Problems Any problem 〈a,¬(A¤B)〉 of F will be eliminated in two steps.

1. With Lemma 5.2.17 we find ∆ with ν(a) ≺B ∆ 3 A,2¬A. We fix some
b /∈W . We now define

G′ := 〈W ∪ {b}, R ∪ {〈a, b〉}, S, ν ∪ {〈b,∆〉, 〈〈a, b〉, B〉}〉.
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It is easy to see that G′ is actually a quasi-frame. Note that if G′ |= xRb,
then x must be a and whence ν(x) ≺ ν(b) by definition of ν(b). Also it
is not hard to see that if b ∈ CCx for x6=a, that then ν(x) ≺C ν(b). For,
b ∈ CCx implies a ∈ CCx whence ν(x) ≺C ν(a). By ν(a) ≺ ν(b) we get that
ν(x) ≺C ν(b). In case x=a we see that by definition b ∈ CBa . But, we have
chosen ∆ so that ν(a) ≺B ν(b). We also see that G′ satisfies the invariant
as 2¬A ∈ ν(b) \ ν(a) and ∼ A ∈ D.

2. With Lemma 5.3.2 we extend G′ to an adequate labeled IL-frame G.
Corollary 5.3.3 tells us that the invariant indeed holds at G. Clearly
〈a,¬(A¤B)〉 is no longer a problem in G.

Deficiencies. Again, any deficiency 〈a, b, C ¤D〉 in F will be eliminated in
two steps.

1. We first define B to be the formula such that b ∈ CBa . If such a B does
not exist, we take B to be ⊥. Note that if such a B does exist, it must be
unique by Property 4 of Definition 5.3.1. By Lemma 5.2.18 we can now
find a ∆′ such that ν(a) ≺B ∆′ 3 D,2¬D. We fix some c 6∈W and define

G′ := 〈W,R ∪ {a, c}, S ∪ {a, b, c}, ν ∪ {c,∆′}〉.

Again it is not hard to see that G′ is a quasi-frame that satisfies the
invariant. Clearly R is conversely well-founded. The only new S in G′ is
bSac, but we also defined aRc. We have chosen ∆′ such that ν(a) ≺B ν(c).
Clearly 2¬D 6∈ ν(a).

2. Again, G′ is closed off under the frame conditions with Lemma 5.3.2.
Again we note that the invariant is preserved in this process. Clearly
〈a, b, C ¤D〉 is not a deficiency in G.

Rounding up Clearly the union of a bounded chain of IL-frames is again
an IL-frame.

a

It is well known that IL has the finite model property and whence is decidable.
With some more effort however we could have obtained the finite model property
using the main lemma. We have chosen not to do so, as for our purposes the
completeness via the construction method is sufficient.

Also, to obtain the finite model property, one has to re-use worlds during
the construction method. The constraints on which worlds can be re-used is
per logic differently. One aim of this section was to prove some results on a
construction that is present in all other completeness proofs too. Therefore we
needed some uniformity and did not want to consider re-using of worlds.
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Chapter 6

Completeness and
applications

In this chapter we prove the modal completeness of ILM via the construction
method. In Section 6.2 this proof is applied to classify the modal interpretability
formulas that are under any translation provably Σ1 in any essentially reflexive
theory. In Subsection 6.2.3 we make some remarks on Σ1-sentences and self
provers.

6.1 The Logic ILM

The modal completeness of ILM was proved by de Jongh and Veltman in
[dJV90]. In this section we will reprove the modal completeness of the logic
ILM via the main lemma. The general approach is not much different from the
completeness proof for IL.

The novelty consists of incorporating the ILM frame condition, that is, when-
ever ySxzRu holds, we should also have yRu. In this case, adequacy imposes
ν(y) ≺ ν(u).

Thus, whenever we introduce an Sx relation, when eliminating a deficiency,
we should keep in mind that in a later stage, this Sx can activate the ILM frame
condition. It turns out to be sufficient to demand ν(y) ⊆2 ν(z) whenever ySz.
Also, we should do some additional book keeping as to keep our critical cones
fit to our purposes.

6.1.1 Preparations

Let us first recall the principle M, also called Montagna’s principle.

M : A¤B → A ∧2C ¤B ∧2C

Definition 6.1.1. An ILM-frame is a frame such that ySxzRu → yRu holds
on it. A(n adequate) labeled ILM-frame is an adequate labeled ILM-frame on

85
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which ySxz → ν(y) ⊆2 ν(z) holds. We call ySxzRu→ yRu the frame condition
of ILM.

The next lemma tells us that the frame condition of ILM, indeed character-
izes the frames of ILM.

Lemma 6.1.2. F |= ∀x, y, u, v (ySxuRv → yRv)⇔ F |= ILM

We will now introduce a notion of a quasi-ILM-frame and a corresponding
closure lemma. In order to get an ILM-closure lemma in analogy with Lemma
5.3.2 we need to introduce a technicality.

Definition 6.1.3. The A-criticalM-cone of x, we writeMA
x , is defined induc-

tively as follows.

• xRAy → y ∈MA
x

• y ∈MA
x & yRz → z ∈MA

x

• y ∈MA
x & ySxz → z ∈MA

x

• y ∈MA
x & yStruRv → v ∈MA

x

Definition 6.1.4. A quasi-frame is a quasi-ILM-frame if1 the following prop-
erties hold.

• Rtr;Str is conversely well-founded2

• ySxz → ν(y) ⊆2 ν(z)

• y ∈MA
x ⇒ ν(x) ≺A ν(y)

It is easy to see that CAx ⊆ M
A
x ⊆ G

A
x . Thus we have that A 6= B →

MA
x ∩M

B
x = ∅. Also, it is clear that if F is an ILM-frame, then F |=MA

x = CAx .
Actually we have that a quasi-ILM-frame F is an ILM-frame iff F |=MA

x = CAx .

Lemma 6.1.5 (ILM-closure). Let G = 〈W,R, S, ν〉 be a quasi-ILM-frame.
There is an adequate ILM-frame F extending G. That is, F = 〈W,R′, S′, ν〉
with R ⊆ R′ and S ⊆ S′.

Proof. The proof is very similar to that of Lemma 5.3.2. As a matter of fact,
we will use large parts of the latter proof in here. For quasi-ILM-frames we also
define the notion of an imperfection. An imperfection on a quasi-ILM-frame Fn

1By Rtr we denote the transitive closure of R, inductively defined as the smallest set such
that xRy → xRtry and ∃z (xRtrz ∧ zRtry) → xRtry). Similarly we define Str. The ; is the
composition operator on relations. Thus, for example, y(Rtr;S)z iff there is a u such that
yRtru and uSz. Recall that uSv iff uSxv for some x. In the literature one often also uses
the ◦ notation, where xR ◦ Sy iff ∃z xSzRy. Note that Rtr;Str is conversely well-founded iff
Rtr ◦ Str is conversely well-founded.

2In the case of quasi-frames we did not need a second order frame condition. We could use
the second order frame condition of IL via ySxz → xRy & xRz. Such a trick seems not to be
available here.
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is a tuple γ that is either an imperfection on the quasi-frame Fn, or it is a tuple
of the form

γ = 〈4, a, b, c, d〉 with Fn |= bSacRd but Fn 6|= bRd.

As in the closure proof for quasi-frames, we define a chain of quasi-ILM-frames.
Each new frame in the chain will have at least one imperfection less than its
predecessor. We only have to consider the new imperfections, in which case we
define

Fn+1 := 〈Wn, Rn ∪ {〈b, d〉}, Sn, νn〉.

We now see by an easy but elaborate induction that every Fn is a quasi-ILM-
frame. Again, this boils down to checking that at each of (i)-(v), all the eight
properties from Definition 6.1.4 are preserved.

During the closure process, the critical cones do change. However, the critical
M-cones are invariant. Thus, it is useful to prove

8′. Fn+1 |= y ∈MA
x iff Fn |= y ∈MA

x .

Our induction is completely straightforward. As an example we shall see that
8′ holds in Case (i): We have eliminated an imperfection concerning the transi-
tivity of the R relation and Fn+1 := 〈Wn, Rn ∪ {〈a, c〉}, Sn, νn〉.

To see that 8′ holds, we reason as follows. Suppose Fn+1 |= y ∈ MA
x . Thus

∃z1, . . . , zl (0 ≤ l) with3 Fn+1 |= xRAz1(Sx ∪ R ∪ (Str;R))z2, . . . , zl(Sx ∪ R ∪
(Str;R))y. We transform the sequence z1, . . . , zl into a sequence u1, . . . , um
(0 ≤ m) in the following way. Every occurrence of aRc in z1, . . . , zl is replaced
by aRbRc. In case that for some n < l we have znS

traRc = zn+1, we replace
zn, zn+1 by zn, b, c and thus zn(S

tr;R)bRc. We leave the rest of the sequence
z1, . . . , zl unchanged. Clearly Fn |= xRAu1(Sx ∪ R ∪ (Str;R))u2, . . . , um(Sx ∪
R ∪ (Str;R))y, whence Fn |= y ∈MA

x .

We shall include one more example for Case (v): We have eliminated an
imperfection concerning the ILM frame-condition and Fn+1 :=
〈Wn, Rn ∪ {〈b, d〉}, Sn, νn〉. To see the conversely well-foundedness of R, we
reason as follows. Suppose for a contradiction that there is an infinite sequence
such that Fn+1 |= x1Rx2R . . . . We now get an infinite sequence y1, y2, . . . by
replacing every occurrence of bRd in x1, x2, . . . by bSacRd and leaving the rest
unchanged. If there are infinitely many Sa-transitions in the sequence y1, y2, . . .
(note that there are certainly infinitely many R-transitions in y1, y2, . . . ), we get
a contradiction with our assumption that Rtr;Str is conversely well-founded on
Fn. In the other case we get a contradiction with the conversely well-foundedness
of R on Fn.

Once we have seen that indeed, every Fn is a quasi-ILM-frame, it is not hard
to see that F := ∪i∈ωFi is the required adequate ILM-frame. To this extend

3The union operator on relations can just be seen as the set-theoretical union. Thus, for
example, y(Sx ∪R)z iff ySxz or yRz.
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we have to check a list of properties (a.)-(n.). The properties (a.)-(l.) are as in
the proof of Lemma 5.3.2.

The one exception is Property (d.). To see (d.), the conversely well-founded-
ness of R, we prove by induction on n that Fn |= xRy iff F0 |= x(Str,refl;Rtr)y.
Thus, a hypothetical infinite sequence F |= x0Rx1Rx2R . . . defines an infinite
sequence F0 |= x0(S

tr,refl;Rtr)x1(S
tr,refl;Rtr)x2 . . . , which contradicts either the

conversely well-foundedness of R or of Str;Rtr on F0.
The only new properties in this list are (m.) : uSxvRw → uRw and (n.) :

ySxz → ν(y) ⊆2 ν(z), but they are easily seen to hold on F . a

Again do we note that the closure obtained in Lemma 6.1.5 is unique. Thus
we can refer to the ILM-closure of a quasi-ILM-frame. All the information
about the labels can be dropped in Definition 6.1.4 and Lemma 6.1.5 to obtain
a lemma about regular ILM-frames.

Corollary 6.1.6. Let D be a finite set of sentences, closed under subformulas
and single negations. Let G = 〈W,R, S, ν〉 be a quasi-ILM-frame on which

xRy → ∃A∈((ν(y) \ ν(x)) ∩ {2D | D ∈ D}) (∗)

holds. Property (∗) does also hold on the IL-closure F of G.

Proof. The proof is as the proof of Corollary 5.3.3. We only need to remark on
Case (v): If bSacRd, we have ν(b) ⊆2 ν(c). Thus, A ∈ ((ν(d) \ ν(c)) ∩ {2D |
D ∈ D}) implies A 6∈ ν(b). a

The final lemma in our preparations is a lemma that is needed to eliminate
deficiencies properly.

Lemma 6.1.7. Let Γ and ∆ be maximal ILM-consistent sets. Consider C ¤
D ∈ Γ ≺B ∆ 3 C. There exists a maximal ILM-consistent set ∆′ with Γ ≺B
∆′ 3 D,2¬D and ∆ ⊆2 ∆′.

Proof. By compactness and by commutation of boxes and conjunctions, it is
sufficient to show that for any formula 2E ∈ ∆ there is a ∆′′ with Γ ≺B
∆′′ 3 D ∧ 2E ∧ 2¬D. As C ¤D is in the maximal ILM-consistent set Γ, also
C∧2E¤D∧2E ∈ Γ. Clearly C∧2E ∈ ∆, whence, by Lemma 5.2.18 we find a
∆′′ with Γ ≺B ∆′′ 3 D∧2E∧2(¬D∨¬2E). As ILM ` 2E∧2(¬D∨¬2E)→
2¬D, we see that also D ∧2E ∧2¬D ∈ ∆′′. a

6.1.2 Completeness of ILM

Theorem 6.1.8. ILM is a complete logic.

Proof. Frame Condition In the case of ILM the frame condition is easy and
well known, as expressed in Lemma 6.1.2.

Invariants Let D be a finite set of sentences closed under subformulas and
single negations. We define a corresponding set of invariants.

I :=

{
xRy → ∃A∈((ν(y) \ ν(x)) ∩ {2D | D ∈ D})
uSxvRw → uRw
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Elimination Thus, we consider an ILM-labeled frame F := 〈W,R, S, ν〉
that satisfies the invariants.

Problems Any problem 〈a,¬(A¤B)〉 of F will be eliminated in two steps.

1. Using Lemma 5.2.17 we can find a MCS ∆ with ν(a) ≺B ∆ 3 A,2¬A.
We fix some b /∈W and define

G′ := 〈W ∪ {b}, R ∪ {〈a, b〉}, S, ν ∪ {〈b,∆〉, 〈〈a, b〉, B〉}〉.

We now see that G′ is a quasi-ILM-frame. Thus, we need to check the
eight points from Definitions 6.1.4 and 5.3.1. We will comment on some
of these points.

To see, for example, Point 4, C 6= D → GCx ∩ G
D
x = ∅, we reason as

follows. First, we notice that ∀x, y∈W [G′ |= y ∈ GCx iff F |= y ∈ GCx ]
holds for any C. Suppose G′ |= GCx ∩ G

D
x 6= ∅. If G′ |= b /∈ GCx ∩ G

D
x ,

then also F |= GCx ∩ G
D
x 6= ∅. As F is an ILM-frame, it is certainly a

quasi-ILM-frame, whence C = D. If now G′ |= b ∈ GCx ∩ G
D
x , necessarily

G′ |= a ∈ GCx ∩ G
D
x , whence F |= a ∈ GCx ∩ G

D
x and C = D.

To see Requirement 8, y ∈ ME
x → ν(x) ≺E ν(y), we reason as follows.

Again, we first note that ∀x, y∈W [G′ |= y ∈MC
x iff F |= y ∈MC

x ] holds
for any C. We only need to consider the new element, that is, b ∈ ME

x .
If x = a and E = B, we get the property by choice of ν(b).

For x 6= a, we consider two cases. Either a ∈ ME
x or a /∈ ME

x . In the
first case, we get by the fact that F is a labeled ILM-frame ν(x) ≺E ν(a).
But ν(a) ≺ ν(b), whence ν(x) ≺E ν(b). In the second, necessarily for
some a′ ∈ ME

x we have a′Stra. But now ν(a′) ⊆2 ν(a). Clearly ν(x) ≺E
ν(a′) ⊆2 ν(a) ≺ ν(b)→ ν(x) ≺E ν(b).

2. With Lemma 6.1.5 we extend G′ to an adequate labeled ILM-frame G.
It is now obvious that both of the invariants hold on G. The first one
holds due to Corollary 6.1.6. The other is just included in the definition
of ILM-frames. Obviously, 〈a,¬(A¤B)〉 is not a problem any more in G.

Deficiencies. Again, any deficiency 〈a, b, C ¤D〉 in F will be eliminated in
two steps.

1. We first define B to be the formula such that b ∈ CBa . If such a B does
not exist, we take B to be ⊥. Note that if such a B does exist, it must
be unique by Property 4 of Definition 5.3.1. By Lemma 3.2.10, or just by
the fact that F is an ILM-frame, we have that ν(a) ≺B ν(b).

By Lemma 6.1.7 we can now find a ∆′ such that ν(a) ≺B ∆′ 3 D,2¬D
and ν(b) ⊆2 ∆′. We fix some c 6∈W and define

G′ := 〈W,R ∪ {〈a, c〉}, S ∪ {〈a, b, c〉}, ν ∪ {〈c,∆′〉}〉.
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To see that G′ is indeed a quasi-ILM-frame, again eight properties should
be checked. But all of these are fairly routine.

For Property 4 it is good to remark that, if c ∈ GAx , then necessarily b ∈ GAx
or a ∈ GAx .

To see Property 8, we reason as follows. We only need to consider c ∈MA
x .

This is possible if x = a and b ∈ MA
a , or if for some y ∈ MA

x we have
yStra, or if a ∈MA

x . In the first case, we get that b ∈MA
a , and thus also

b ∈ CAa as F is an ILM-frame. Thus, by Property 4, we see that A = B.
But ∆′ was chosen such that ν(a) ≺B ∆′. In the second case we see that
ν(x) ≺A ν(y) ⊆2 ν(a) ≺ ν(c) whence ν(x) ≺A ν(c). In the third case we
have ν(x) ≺A ν(a) ≺ ν(c), whence ν(x) ≺A ν(c).

2. Again, G′ is closed off under the frame conditions with Lemma 6.1.5.
Clearly, 〈a, b, C ¤D〉 is not a deficiency on G.

Rounding upOne of our invariants is just the ILM frame condition. Clearly
this invariant is preserved under taking unions of bounded chains. The closure
satisfies the invariants. a

6.1.3 Admissible rules

With the completeness at hand, a lot of reasoning about ILM gets easier. This
holds in particular for derived/admissible rules of ILM.

Lemma 6.1.9.

(i) ILM ` 2A⇔ ILM ` A

(ii) ILM ` 2A ∨2B ⇔ ILM ` 2A or ILM ` 2B

(iii) ILM ` A¤B ⇔ ILM ` A→ B ∨3B.

(iv) ILM ` A¤B ⇔ ILM ` 3A→ 3B

(v) Let Ai be formulae such that ILM 6` ¬Ai. Then
ILM `

∧
3Ai → A¤B ⇔ ILM ` A¤B.

(vi) ILM ` A ∨3A⇔ ILM ` 2⊥ → A

(vii) ILM ` >¤A⇔ ILM ` 2⊥ → A

Proof. (i). ILM ` A ⇒ ILM ` 2A by necessitation. Now suppose ILM ` 2A.
We want to see ILM ` A. Thus, we take an arbitrary model M = 〈W,R, S,°〉
and world m ∈ M . If there is an m0 with M |= m0Rm, then M,m0 ° 2A,
whence M,m ° A. If there is no such m0, we define (we may assume m0 /∈W )

M ′ := 〈W ∪ {m0}, R ∪ {〈m0, w〉 | w ∈W},
S ∪ {〈m0, x, y〉 | 〈x, y〉 ∈ R or x=y ∈W},°〉.
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Clearly, M ′ is an ILM-model too (the ILM frame conditions in the new cases
follows from the transitivity of R), whence M ′,m0 ° 2A and thus M ′,m ° A.
By the construction of M ′ and by Lemma 3.3.4 we also get M,m ° A.

(ii).”⇐” is easy. For the other direction we assume ILM 6` 2A and ILM 6`
2B and set out to prove ILM 6` 2A ∨ 2B. By our assumption and by com-
pleteness, we find M0,m0 ° 3¬A and M1,m1 ° 3¬B. We define (for some
r /∈W0 ∪W1)

M := 〈W0 ∪W1 ∪ {r}, R0 ∪R1 ∪ {〈r, x〉 | x ∈W0 ∪W1},
S0 ∪ S1 ∪ {〈r, x, y〉 | x=y∈W0 ∪W1 or 〈x, y〉∈R0 or 〈x, y〉∈R1},°〉.

Now, M is an ILM-model and M, r ° 3¬A ∧3¬B as is easily seen by Lemma
3.3.4. By soundness we get ILM 6` 2A ∨2B.

(iii).”⇐” goes as follows. ` A→ B ∨3B ⇒` 2(A→ B ∨3B)⇒` A¤B ∨
3B ⇒` A¤B. For the other direction, suppose that 6` A→ B∨3B. Thus, we
can find a model M = 〈W,R, S,°〉 and m ∈ M with M,m ° A ∧ ¬B ∧ 2¬B.
We now define (with r /∈W )

M ′ := 〈W ∪ {r}, R ∪ {〈r, x〉 | x=m or 〈m,x〉 ∈ R},
S ∪ {〈r, x, y〉 | (x=y and (〈m,x〉∈R or x=m)) or 〈m,x〉, 〈x, y〉∈R},°〉.

It is easy to see thatM ′ is an ILM-model. By Lemma 3.3.4 we see thatM ′, x ° ϕ
iff M,x ° ϕ for x ∈ W . It is also not hard to see that M ′, r ° ¬(A¤ B). For,
we have rRm ° A. By definition, mSry → (m=y ∨mRy) whence y 6° B.

(iv). By the J4 axiom, we get one direction for free. For the other direction
we reason as follows. Suppose ILM 0 A ¤ B. Then we can find a model
M = 〈W,R, S,°〉 and a world l such thatM, l ° ¬(A¤B). AsM, l ` ¬(A¤B),
w can find some m ∈ M with lRm ° A ∧ ¬B ∧ 2¬B. We now define (with
r /∈W )

M ′ := 〈W ∪ {r}, R ∪ {〈r, x〉 | x=m or 〈m,x〉 ∈ R},
S ∪ {〈r, x, y〉 | (x=y and (〈m,x〉∈R or x=m)) or 〈m,x〉, 〈x, y〉∈R},°〉.

It is easy to see that M ′ is an ILM-model. Lemma 3.3.4 and general knowledge
about ILM tells us that the generated submodel from l is a witness to the fact
that ILM 0 3A→ 3B.4

(v). The ”⇐” direction is easy. For the other direction we reason as follows.5

We assume that 6` A ¤ B and set out to prove 6`
∧
3Ai → A ¤ B. As

6` A¤B, we can find M, r ° ¬(A¤B). By Lemma 3.3.4 we may assume that r
is a root of M . For all i, we assumed 6` ¬Ai, whence we can find rooted models
Mi, ri ° Ai. As in the other cases, we define a model M̃ that arises by gluing r
under all the ri. Clearly we now see that M̃, r °

∧
3Ai ∧ ¬(A¤B).

(vi). First, suppose that ILM ` 2⊥ → A. Then, from ILM ` 2⊥∨3>, the
observation that ILM ` 3> ↔ 32⊥ and our assumption, we get ILM ` A∨3A.

4This proof is similar to the proof of (iii). However, it is not the case that one of the two
follows easily from the other.

5By a similar reasoning we can prove `
∧
¬(Ci ¤Di)→ A¤B ⇔` A¤B.
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For the other direction, we suppose that ILM 6` 2⊥ → A. Thus, we have
a counter model M and some m ∈ M with m ° 2⊥,¬A. Clearly, at the
submodel generated from m, that is, a single point, we see that ¬A ∧ 2¬A
holds. Consequently ILM¬ ` A ∨3A.

(vii). This follows immediately from (vi) and (iii).

a

Note that, as ILM is conservative over GL, all of the above statements not
involving ¤ also hold for GL. The same holds for derived statements. For
example, from Lemma 6.1.9 we can combine (iii) and (iv) to obtain ILM `
A→ B ∨3B ⇔ ILM ` 3A→ 3B. Consequently, the same holds true for GL.

6.1.4 Decidability

It is well known that ILM has the finite model property. It is not hard to re-use
worlds in the presented construction method so that we would end up with a
finite counter model. Actually, this is precisely what has been done in [Joo98]. In
that paper, one of the invariants was “there are no deficiencies”. We have chosen
not to include this invariant in our presentation, as this omission simplifies the
presentation. Moreover, for our purposes the completeness without the finite
model property obtained via our construction method suffices.

Our purpose to include a new proof of the well known completeness of ILM

is twofold. On the one hand the new proof serves well to expose the construction
method. On the other hand, it is an indispensable ingredient in proving Theorem
6.2.5.

6.2 Σ1-sentences

In this section we will answer the question which modal interpretability sen-
tences are in T provably Σ1 for any realization. We call these sentences es-
sentially Σ1-sentences. We shall answer the question only for T an essentially
reflexive theory.

This question has been solved for provability logics by Visser in [Vis95]. In
[dJP96], de Jongh and Pianigiani gave an alternative solution by using the logic
ILM. Our proof shall use their proof method.

We will perform our argument fully in ILM. It is very tempting to think that
our result would be an immediate corollary from for example [Gor03], [Jap94]
or [Ign93b]. This would be the case, if a construction method were worked
out for the logics from these respective papers. In [Gor03] a sort construction
method is indeed worked out. This construction method should however be a
bit sharpened to suit our purposes. Moreover that sharpening would essentially
reduce to the solution we present here.
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6.2.1 Model construction

Throughout this subsection, unless mentioned otherwise, T will be an essentially
reflexive recursively enumerable arithmetical theory. By Theorem 3.2.2 we thus
know that IL(T) = ILM. Let us first say more precisely what we mean by an
essentially Σ1-sentence.

Definition 6.2.1. A modal sentence ϕ is called an essentially Σ1-sentence, if
∀ ∗ ϕ∗ ∈ Σ1(T ). Likewise, a formula ϕ is essentially ∆1 if ∀ ∗ ϕ∗ ∈ ∆1(T )

If ϕ is an essentially Σ1-formula we will also write ϕ ∈ Σ1(T ). Analogously
for ∆1(T ).

Theorem 6.2.2. Modulo modal logical equivalence, there exist just two essen-
tially ∆1-formulas. That is, ∆1(T ) = {>,⊥}.

Proof. Let ϕ be a modal formula. If ϕ ∈ ∆1(T ), then, by provably Σ1-
completeness, both ∀ ∗ T ` δ∗ → 2δ∗ and ∀ ∗ T ` ¬δ∗ → 2¬δ∗. Consequently
∀ ∗ T ` 2δ∗ ∨2¬δ∗. Thus, ∀ ∗ T ` (2δ ∨2¬δ)∗ whence ILM ` 2δ ∨2¬δ. By
Lemma 6.1.9 we see that ILM ` δ or ILM ` ¬δ. a

We proved Theorem 6.2.2 for the interpretability logic of essentially reflex-
ive theories. It is not hard to see that the theorem also holds for finitely
axiomatizable theories. The only ingredients that we need to prove this are
[ILP ` 2A ∨ 2B iff ILP ` 2A or ILP ` 2B] and [ILP ` 2A iff ILP ` A].
As these two admissible rules also hold for GL, we see that Theorem 6.2.2 also
holds for GL.

Lemma 6.2.3. If ϕ ∈ Σ1(T ), then, for any p and q, we have ILM ` p ¤ q →
p ∧ ϕ¤ q ∧ ϕ.

Proof. This is a direct consequence of Pudlák’s lemma, Lemma 1.3.11. a

Before we come to prove the main theorem of this section, we first need an
additional lemma.

Lemma 6.2.4. Let ∆0 and ∆1 be maximal ILM-consistent sets. There is a
maximal ILM-consistent set Γ such that Γ ≺ ∆0,∆1.

Proof. We show that Γ′ := {3A | A ∈ ∆0} ∪ {3B | B ∈ ∆1} is consistent.
Assume for a contradiction that Γ′ were not consistent. Then, by compactness,
for finitely many Ai and Bj ,

∧

Ai∈∆0

3Ai ∧
∧

Bj∈∆1

3Bj ` ⊥

or equivalently

`
∨

Ai∈∆0

2¬Ai ∨
∨

Bj∈∆1

2¬Bj .

By Lemma 6.1.9 we see that then either ` ¬Ai for some i, or ` ¬Bj for some
j. This contradicts the consistency of ∆0 and ∆1. a
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Theorem 6.2.5. ϕ ∈ Σ1(T )⇔ ILM ` ϕ↔
∨
i∈I 2Ci for some {Ci}i∈I .

Proof. Let ϕ be a formula that is not equivalent to a disjunction of 2-formulas.
According to Lemma 6.2.7 we can find MCS’s ∆0 and ∆1 with ϕ ∈ ∆0 ⊆2 ∆1 3
¬ϕ. By Lemma 6.2.4 we find a Γ ≺ ∆0,∆1. We define:

G := 〈{m0, l, r}, {〈m0, l〉, 〈m0, r〉}, {〈m0, l, r〉}, {〈m0,Γ〉, 〈l,∆0〉, 〈r,∆1〉}〉.

We will apply a slightly generalized version of the main lemma to this frame
quasi-ILM-frame G. The finite set D of sentences is the smallest set of sentences
that contains ϕ and that is closed under taking subformulas and single negations.
The invariants are the following.

I :=

{
xRy ∧ x 6= m0 → ∃A∈((ν(y) \ ν(x)) ∩ {2D | D ∈ D})
uSxvRw → uRw

In the proof of Theorem 6.1.8 we have seen that we can eliminate both problems
and deficiencies while conserving the invariants. The main lemma now gives us
an ILM-model M with M, l ° ϕ, M, r ° ¬ϕ and lSm0

r. We now pick two fresh
variables p and q. We define p to be true only at l and q only at r. Clearly
m0 ° ¬(p¤ q → p ∧ ϕ¤ q ∧ ϕ), whence by Lemma 6.2.3 we get ϕ /∈ Σ1(T ).

a

For finitely axiomatized theories T , our theorem does not hold, as also A¤B
is T -essentially Σ1. The following theorem says that in this case, A¤B is under
any T -realization actually equivalent to a special Σ1-sentence.

Theorem 6.2.6. Let T be a finitely axiomatized theory. For all arithmetical
formulae α, β there exists a formula ρ with

T ` α¤T β ↔ 2T ρ.

Proof. The proof is a direct corollary of the so-called FGH-theorem. (See [Vis02]
for an exposition of the FGH-theorem.) We take ρ satisfying the following fixed
point equation.

T ` ρ↔ ((α¤T β) ≤ 2T ρ)

By the proof of the FGH-theorem, we now see that

T ` ((α¤T β) ∨2T⊥)↔ 2T ρ.

But clearly T ` ((α¤T β) ∨2T⊥)↔ α¤T β. a

6.2.2 The Σ-lemma

We can say that the proof of Theorem 6.2.5 contained three main ingredients;
Firstly, the main lemma; Secondly the modal completeness theorem for ILM

via the construction method and; Thirdly the Σ-lemma. In this subsection we
will prove the Σ-lemma and remark that it is in a sense optimal.
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Lemma 6.2.7. If ϕ is a formula not equivalent to a disjunction of 2-formulas.
Then there exist maximal ILX-consistent sets ∆0, ∆1 such that ϕ ∈ ∆0 ⊆2
∆1 3 ¬ϕ.

Proof. As we shall see, the reasoning below holds not only for ILX, but for any
extension of GL. We define

2∨ := {
∨

0≤i<n

2Di | n ≥ 0, each Di an ILX-formula},

2con := {Y ⊆ 2∨ | {¬ϕ}+ Y is consistent and maximally such}.

Let us first observe a useful property of the sets Y in 2con.

n−1∨

i=0

σi ∈ Y ⇒ ∃ i<n σi ∈ Y. (6.1)

To see this, let Y ∈ 2con and
∨n−1
i=0 σi ∈ Y . Then for each i<n we have σi ∈ 2∨

and for some i<n we must have σi consistent with Y (otherwise {¬ϕ}+Y would

prove
∧n−1
i=0 ¬σi and be inconsistent). And thus, by the maximality of Y , we

must have that some σi is in Y . This establishes (6.1).

Claim. For some Y ∈ 2con the set

{ϕ}+ {¬σ | σ ∈ 2∨ − Y }

is consistent.

Proof of the claim. Suppose the claim were false. We will derive a contradiction
with the assumption that ϕ is not equivalent to a disjunction of 2-formulas. If
the claim is false, then we can choose for each Y ∈ 2con a finite set Y

fin ⊆ 2∨−Y
such that

{ϕ}+ {¬σ | σ ∈ Y fin} (6.2)

is inconsistent. Thus, certainly for each Y ∈ 2con

` ϕ→
∨

σ∈Y fin

σ. (6.3)

Now we will show that:

{¬ϕ}+ {
∨

σ∈Y fin

σ | Y ∈ 2con} is inconsistent. (6.4)

For, suppose (6.4) were not the case. Then for some S ∈ 2con

{
∨

σ∈Y fin

σ | Y ∈ 2con} ⊆ S.
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In particular we have
∨
σ∈Sfin σ ∈ S. But for all σ ∈ Sfin we have σ 6∈ S. Now

by (6.1) we obtain a contradiction and thus we have shown (6.4).
So we can select some finite 2fincon ⊆ 2con such that

` (
∧

Y ∈2fin
con

∨

σ∈Y fin

σ)→ ϕ. (6.5)

By (6.3) we also have

` ϕ→
∧

Y ∈2fin
con

∨

σ∈Y fin

σ. (6.6)

Combining (6.5) with (6.6) we get

` ϕ↔
∧

Y ∈2fin
con

∨

σ∈Y fin

σ.

Bringing the right hand side of this equivalence in disjunctive normal form and
distributing the 2 over ∧ we arrive at a contradiction with the assumption on
ϕ. a

So, we have for some Y ∈ 2con that both the sets

{ϕ}+ {¬σ | σ ∈ 2∨ − Y } (6.7)

{¬ϕ}+ Y (6.8)

are consistent. The lemma follows by taking ∆0 and ∆1 extending (6.7) and
(6.8) respectively. a

We have thus obtained ϕ ∈ ∆0 ⊆2 ∆1 3 ¬ϕ for some maximal ILX-
consistent sets ∆0 and ∆1. The relation ⊆2 between ∆0 and ∆1 is actually
the best we can get among the relations on MCS’s that we consider in this
paper. We shall see that ∆0 ≺ ∆1 is not possible to get in general.

It is obvious that that p∧2p is not equivalent to a disjunction of 2-formulas.
Clearly p ∧ 2p ∈ ∆0 ≺ ∆1 3 ¬p ∨ 3¬p is impossible. In a sense, this re-
flects the fact that there exist non trivial self-provers, as was shown by Kent
([Ken73]), Guaspari ([Gua83]) and Beklemishev ([Bek93]). Thus, provable Σ1-
completeness, that is T ` σ → 2σ for σ ∈ Σ1(T ), can not substitute Lemma
6.2.3.

6.2.3 Self provers and Σ1-sentences

A self prover is a sentence ϕ that implies its own provability. That is, a sentence
for which ` ϕ → 2ϕ, or equivalently, ` ϕ ↔ ϕ ∧ 2ϕ. Self provers have been
studied intensively amongst others by Kent ([Ken73]), Guaspari ([Gua83]), de
Jongh and Pianigiani ([dJP96]). It is easy to see that any Σ1(T )-sentence is
indeed a self prover. We shall call such a self prover a trivial self prover.
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In [Gua83], Guaspari has shown that there are many non-trivial self provers
around. The most prominent example is probably p ∧ 2p. But actually, any
formula ϕ will generate a self prover ϕ ∧2ϕ, as clearly ϕ ∧2ϕ→ 2(ϕ ∧2ϕ).

Definition 6.2.8. A formula ϕ is called a trivial self prover generator, we shall
write t.s.g., if ϕ ∧2ϕ is a trivial self prover. That is, if ϕ ∧2ϕ ∈ Σ1(T ).

Obviously, a trivial self prover is also a t.s.g. But there also exist other
t.s.g.’s. The most prominent example is probably 22p→ 2p. A natural ques-
tion is to ask for an easy characterization of t.s.g.’s. In this subsection we will
give such a characterization for GL. In the rest of this subsection, ` will stand
for derivability in GL. We shall often write Σ instead of Σ1.

We say that a formula ψ is Σ in GL, and write Σ(ψ), if for any theory T
which has GL as its provability logic, we have that ∀ ∗ ψ∗ ∈ Σ1(T ).

Theorem 6.2.9. We have that Σ(ϕ ∧ 2ϕ) in GL if and only if the following
condition is satisfied.

For all formulae Al, ϕl and Cm satisfying 1, 2 and 3 we have that ` ϕ∧2ϕ↔∨∨
m2Cm. Here 1-3 are the following conditions.

1. ` ϕ↔
∨∨

l(ϕl ∧2Al) ∨
∨∨

m2Cm

2. 6` 2Al → ϕ for all l

3. ϕl is a non-empty conjunction of literals and 3-formulas

Proof. The ⇐ direction is the easiest part. We can always find an equivalent of
ϕ that satisfies 1, 2 and 3. Thus, by assumption, ϕ ∧2ϕ can be written as the
disjunction of 2-formulas and hence Σ(ϕ ∧2ϕ).

For the ⇒ direction we reason as follows. Suppose we can find ϕl, Al and
Cm such that 1, 2 and 3 hold, but

6` ϕ ∧2ϕ↔
∨∨

m

2Cm. (∗)

We can take now T = PA and reason as follows. As clearly `
∨∨

m2Cm →
ϕ ∧ 2ϕ, our assumption (∗) reduces to 6` ϕ ∧ 2ϕ →

∨∨
m2Cm. Consequently∨∨

l(ϕl ∧ 2Al) can not be empty, and for some l and some rooted GL-model
M, r with root r, we have M, l ° 2Al ∧ ϕl.

We shall now see that 6` ¬ϕ∧2ϕ→ 3¬Al. For, suppose for a contradiction
that

` ¬ϕ ∧2ϕ→ 3¬Al.

Then also ` 2Al → (2ϕ → ϕ), whence ` 2Al → 2(2ϕ → ϕ) → 2ϕ. And
by 2Al → (2ϕ → ϕ) again, we get ` 2Al → ϕ which contradicts 2. We must
conclude that indeed 6` ¬ϕ∧2ϕ→ 3¬Al, and thus we have a rooted tree model
N, r for GL with N, r ° ¬ϕ,2ϕ,2Al.
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Sw

w

M, l N, r

ϕ, 2ϕ, 2Al ¬ϕ, 2ϕ, 2Al

Figure 6.1: T.s.g.’s

We can now “glue” a world w below l and r, set lSwr and consider the
smallest ILM-model extending this. We have depicted this construction in
Figure 6.1. Let us also give a precise definition. If M := 〈W0, R0,°0〉 and
N := 〈W1, R1,°1〉, then we define

L := 〈W0 ∪W1, R0 ∪R1 ∪ {〈w, x〉 | x ∈W0 ∪W1} ∪ {〈l, y〉 | N |= rRy},
{〈w, l, r〉} ∪ {〈x, y, z〉 | L |= xRyR∗z},°0 ∪ °1〉.

We observe that, by Lemma 3.3.4 L, r ° 2ϕ ∧ 2Al ∧ ¬ϕ and L |= rRx ⇒
L, x ° ϕ ∧ Al. Also, if L |= lRx, then L, x ° ϕ ∧ Ai, whence L, l ° 2ϕ ∧ 2Al.
As M, l ° ϕl and ϕl only contains literals and and diamond-formulas, we see
that L, l ° ϕl, whence L, l ° ϕ ∧ 2ϕ. As L, r ° ¬ϕ ∧ 2ϕ we see that L,w °

¬Σ(ϕ ∧2ϕ).
As in the proof of Theorem 6.2.5, we can take some fresh p and q and

define p to hold only at l and q to hold only at r. Now, clearly w 6° p ¤ q →
p∧(ϕ∧2ϕ)¤q∧(ϕ∧2ϕ), whence, by Lemma 6.2.3 we conclude ¬Σ(ϕ∧2ϕ). a

To conclude this subsection, we remain in GL and shall settle the question
for which ϕ we have that

Σ(ϕ ∧2ϕ) & Σ(ϕ ∧2¬ϕ)⇒ Σ(ϕ). (†)

We shall see how this question can be reduced to the characterization of t.s.g.’s.
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Lemma 6.2.10.

For some (possibly empty)
∨∨

i2Ci we have ` ϕ ∧2¬ϕ↔
∨∨

i2Ci
iff

` 2⊥ → ϕ or ` ¬ϕ

Proof. For non-empty
∨∨

i2Ci we have the following.

` ϕ ∧2¬ϕ↔
∨∨

i2Ci ⇒
` 3(ϕ ∧2¬ϕ)↔ 3(

∨∨
i2Ci) ⇒

` 3ϕ↔ 3> ⇒
` 2⊥ → ϕ

Here, the final step in the proof comes from Lemma 6.1.9.
On the other hand, if ` 2⊥ → ϕ, we see that ` ¬ϕ → 3> and thus

2¬ϕ→ 2⊥, whence ` ϕ ∧2¬ϕ↔ 2⊥.
In case of the empty disjunction we get ` ϕ∧2¬ϕ↔ ⊥. Then also ` 2¬ϕ→

¬ϕ and by Löb ` ¬ϕ. And conversely, if ` ¬ϕ, then ` ϕ ∧2¬ϕ↔ ⊥, and ⊥ is
just the empty disjunction.

The proof actually gives some additional information. If Σ(ϕ ∧ 2¬ϕ) then
either (` ¬ϕ and ` (ϕ∧2¬ϕ)↔ ⊥), or (` 2⊥ → ϕ and ` (ϕ∧2¬ϕ)↔ 2⊥). a

Lemma 6.2.11.

Σ(ϕ ∧2ϕ) ∧ Σ(ϕ ∧2¬ϕ)⇒ Σ(ϕ)
iff

Σ(ϕ ∧2ϕ)⇒ Σ(ϕ) or ` ϕ→ 3>

Proof. ⇑. Clearly, if Σ(ϕ∧2ϕ)⇒ Σ(ϕ), also Σ(ϕ∧2ϕ)∧Σ(ϕ∧2¬ϕ)⇒ Σ(ϕ).
Thus, suppose ` ϕ → 3>, or put differently ` 2⊥ → ¬ϕ. If now ` ¬ϕ, then
clearly Σ(ϕ), whence Σ(ϕ ∧ 2ϕ) ∧ Σ(ϕ ∧ 2¬ϕ) ⇒ Σ(ϕ), so, we may assume
that 0 ¬ϕ. It is clear that now ¬Σ(ϕ ∧ 2¬ϕ). For, suppose Σ(ϕ ∧ 2¬ϕ),
then by Lemma 6.2.10 we see ` 2⊥ → ϕ, whence ` 3>. Quod non. Thus,
` 2⊥ → ¬ϕ⇒ ¬Σ(ϕ∧2¬ϕ) and thus certainly Σ(ϕ∧2ϕ)∧Σ(ϕ∧2¬ϕ)⇒ Σ(ϕ).
⇓. Suppose Σ(ϕ ∧ 2ϕ) ∧ ¬Σ(ϕ) and 0 2⊥ → ¬ϕ. To obtain our result, we

only have to prove Σ(ϕ ∧2¬ϕ).
As 0 2⊥ → ¬ϕ, also 0 ¬ϕ ∨ 3¬ϕ. Thus, under the assumption that

Σ(ϕ∧2ϕ), we can find (a non-empty collection of) Ci with ` ϕ∧2ϕ↔
∨∨

i2Ci.
In this case, clearly ` 2⊥ →

∨∨
i2Ci → ϕ, whence, by Lemma 6.2.10 we

conclude Σ(ϕ ∧2¬ϕ). a
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Chapter 7

More completeness results

In this chapter we prove two more modal completeness results. In Section
7.1 we prove the modal completeness of ILM0. At some points we shall be
rather sketchy in our proofs. Full proofs can be read in [GJ04]. By a minor
modification of the completeness proof for ILM0, we obtain in Section 7.2 a
modal completeness proof for ILW∗.

7.1 The logic ILM0

This section is devoted to showing the following theorem.1

Theorem 7.1.1. ILM0 is a complete logic.

In the light of Remark 5.2.19 a proof of Theorem 7.1.1 boils down to giving
the four ingredients mentioned there. Sections 7.1.3, 7.1.4, 7.1.5, 7.1.6 and 7.1.7
below contain those ingredients. Before these main sections, we have in Section
7.1.2 some preliminaries. We start in Section 7.1.1 with an overview of the
difficulties we encounter during the application of the construction method to
ILM0.

7.1.1 Overview of difficulties

In the construction method we repeatedly eliminate problems and deficiencies
by extensions that satisfy all the invariants. During these operations we need
to keep track of two things.

1. If x has been added to solve a problem in w, say ¬(A¤B) ∈ ν(w). Then
for all y such that xSwy we have ν(w) ≺B ν(y).

2. If wRx then ν(w) ≺ ν(x)

1A proof sketch of this theorem was first given in [Joo98].

101
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w w

y y

x1x0

C ¤D

C

C ¤D

C

xx

Figure 7.1: A deficiency in w w.r.t. y

Item 1. does not impose any direct difficulties. But some do emerge when
we try to deal with the difficulties concerning Item 2. So let us see why it is
difficult to ensure 2. Suppose we have wRxRySwy

′Rz. The M0–frame condition
(Theorem 7.1.19) requires that we also have xRz. So, from 2. and the M0–frame
condition we obtain wRxRySwy

′Rz → ν(x) ≺ ν(z). A sufficient (and in certain
sense necessary) condition is,

wRxRySwy
′ → ν(x) ⊆2 ν(y

′).

Let us illustrate some difficulties concerning this condition by some examples.
Consider the left model in Figure 7.1. That is, we have a deficiency in w w.r.t.
y. Namely, C ¤D ∈ ν(w) and C ∈ ν(y). If we solve this deficiency by adding a
world y′, we thus require that for all x such that wRxRy we have ν(x) ⊆2 ν(y

′).
This difficulty is partially handled by Lemma 7.1.2 below. We omit a proof,
but it can easily be given by replacing in the corresponding lemma for ILM,
applications of the M-axiom by applications of the M0-axiom.

Lemma 7.1.2. Let Γ,∆ be MCS’s such that C¤D ∈ Γ, Γ ≺A ∆ and 3C ∈ ∆.
Then there exists some ∆′ with Γ ≺A ∆′, 2¬D,D ∈ ∆′ and ∆ ⊆2 ∆′.

Let us now consider the right most model in Figure 7.1. We have at least for
two different worlds x, say x0 and x1, that wRxRy. Lemma 7.1.2 is applicable
to ν(x0) and ν(x1) separately but not simultaneously. In other words we find
y′0 and y′1 such that ν(x0) ⊆2 ν(y

′
0) and ν(x1) ⊆2 ν(y

′
1). But we actually want

one single y′ such that ν(x0) ⊆2 ν(y′) and ν(x1) ⊆2 ν(y′). We shall handle
this difficulty by ensuring that it is enough to consider only one of the worlds in
between w and y. To be precise, we shall ensure ν(x′) ⊆2 ν(x) or ν(x) ⊆2 ν(x

′).

But now some difficulties concerning Item 1. occur. In the situations in
Figure 7.1 we were asked to solve a deficiency in w w.r.t. y. As usual, if w ≺A y
then we should be ably to choose a solution y′ such that w ≺A y′. But Lemma
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Figure 7.2: A deficiency in w w.r.t. y′

7.1.2 takes only criticallity of x w.r.t. w into account. This issue is solved by
ensuring that wRxRy ∈ CAw implies ν(w) ≺A ν(x).

We are not there yet. Consider the leftmost model in Figure 7.2. That is,
we have a deficiency in w w.r.t. y′. Namely, C ¤ D ∈ ν(w) and C ∈ ν(y′).
If we add a world y′′ to solve this deficiency, as in the middle model, then by
transitivity of Sw we have ySwy

′′, as shown in the rightmost model. So, we
require that ν(x) ⊆2 ν(y

′′). But we might very well have 3C 6∈ ν(x). So the
Lemma 7.1.2 is not applicable.

In Lemma 7.1.16 we formulate and prove a more complicated version of the
Lemma 7.1.2 which basically says that if we have chosen ν(y′) appropriately,
then we can choose ν(y′′) such that ν(x) ⊆2 ν(y′′). And moreover, Lemma
7.1.16 ensures us that we can, indeed, choose ν(y′) appropriate.

7.1.2 Preliminaries

Definition 7.1.3 (T tr, T ∗, T ;T ′, T 1, T≥2, T ∪ T ′). Let T and T ′ be binary
relations on a set W . We fix the following fairly standard notations. T tr is
the transitive closure of T ; T ∗ is the transitive reflexive closure of T ; xT ;T ′y ⇔
∃t xT tT ′y; xT 1y ⇔ xTy∧¬∃t xT tTy; xT≥2y ⇔ xTy∧¬(xT 1y) and xT ∪T ′y ⇔
xTy ∨ xT ′y.

Definition 7.1.4 (Sw). Let F = 〈W,R, S, ν〉 be a quasi–frame. For each w ∈
W we define the relation Sw, of pure Sw transitions, as follows.

xSwy ⇔ xSwy ∧ ¬(x = y) ∧ ¬(x(Sw ∪R)
∗;R; (Sw ∪R)

∗y)

Definition 7.1.5 (Adequate ILM0–frame). Let F = 〈W,R, S, ν〉 be an ad-
equate frame. We say that F is an adequate ILM0–frame iff the following
additional properties hold.2

2One might think that 6. is superfluous. In finite frame this is indeed the case, but in the
general case we need it as an requirement.
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4. wRxRySwy
′Rz → xRz

5. wRxRySwy
′ → ν(x) ⊆2 ν(y′)

6. xSwy → x(Sw ∪R)
∗y

7. xRy → x(R1)
tr
y

As usual, when we speak of ILM0–frames we shall actually mean an adequate
ILM0–frame. Below we will construct ILM0–frames out of frames belonging to a
certain subclass of the class of quasi–frames. (Namely the quasi–ILM0–frames,
see Definition 7.1.10 below.) We would like to predict on forehand which extra
R relations will be added during this construction. The following definition does
just that.

Definition 7.1.6 (K(F ), K). Let F = 〈W,R, S, ν〉 be a quasi–frame. We de-
fine K = K(F ) to be the smallest binary relation on W such that

1. R ⊆ K,

2. K = Ktr,

3. wKxK1y(Sw)
tr
y′K1z → xKz.

Note that for ILM0–frames we have K = R. The following lemma shows
that K satisfies some stability conditions. The lemma will mainly be used to
show that whenever we extend R within K, then K does not change.

Lemma 7.1.7. Let F0 = 〈W,R0, S, ν〉 and F1 = 〈W,R1, S, ν〉 be quasi–frames.
If R1 ⊆ K(F0) and R0 ⊆ K(F1). Then K(F0) = K(F1).

In a great deal of situations we have a particular interest inK1. To determine
some of its properties the following lemma comes in handy. It basically shows
that we can compute K by first closing of under the M0–condition and then
take the transitive closure.

Lemma 7.1.8 (Calculation of K). Let F = 〈W,R, S, ν〉 be a quasi–frame.
Let K = K(F ) and suppose K conversely well–founded. Let T be a binary
relation on W such that

1. R ⊆ T tr ⊆ K,

2. wT trxT 1y(Sw)
tr
y′T 1z → xT trz.

Then we have the following.

(a) K = T tr

(b) xK1y → xTy

Proof. To see (a), it is enough to see that T tr satisfies the three properties of
the definition of K (Definition 7.1.6). Item (b) follows from (a). a
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Another entity that changes during the construction of an ILM0–frame out
of a quasi–frame is the critical cone In accordance with the above definition of
K(F ), we also like to predict what eventually becomes the critical cone.

Definition 7.1.9 (NC
w ). For any quasi–frame F we define NC

w to be the small-
est set such that

1. ν(w, x) = C ⇒ x ∈ NC
w ,

2. x ∈ NC
w ∧ x(K ∪ Sw)y ⇒ y ∈ NC

w .

In accordance with the notion of a quasi–frame we introduce the notion
of a quasi–ILM0–frame. This gives sufficient conditions for a quasi–frame to
be closeable, not only under the IL–frameconditions, but under all the ILM0–
frameconditions.

Definition 7.1.10 (Quasi–ILM0–frame). A quasi–ILM0–frame is a quasi–
frame that satisfies the following additional properties.

6. K is conversely well–founded.

7. xKy → ν(x) ≺ ν(y)

8. x ∈ NA
w → ν(w) ≺A ν(x)

9. wKxKy(Sw ∪K)∗y′ → ν(x) ⊆2 ν(y
′)

10. xSwy → x(Sw ∪R)
∗y

11. wKxK1y(Sw)
tr
y′K1z → x(K1)

tr
z

12. xRy → x(R1)
tr
y

Lemma 7.1.11. If F is a quasi–ILM0–frame, then K = (K1)
tr
.

Proof. Using Lemma 7.1.8. a

Lemma 7.1.12. Suppose that F is a quasi–ILM0–frame. Let K = K(F ). Let
K ′, K ′′ and K ′′′ the smallest binary relations on W satifying 1. and 2. of 7.1.6
and additionaly we have the following.

3′. wK ′xK ′
1
y(Sw ∪K

′)∗y′K ′
1
z → xK ′z

3′′. wK ′′xK ′′y(Sw)
tr
y′K ′′z → xK ′′z

3′′′. wK ′′′xK ′′′y(Sw ∪K
′′′)∗y′K ′′′z → xK ′′′z

Then K = K ′ = K ′′ = K ′′′.

Proof. Using Lemma 7.1.11. a

Before we move on, let us first sum up a few comments.
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Corollary. If F = 〈W,R, S, ν〉 is an adequate ILM0–frame. Then we have the
following.

1. K(F ) = R

2. F |= x ∈ NA
w ⇔ F |= x ∈ CAw

3. F is a quasi–ILM0–frame

Lemma 7.1.13 (ILM0–closure). Any quasi–ILM0–frame can be extended to
an adequate ILM0–frame.

Proof. Given a quasi–ILM0–frame F we construct a sequence

F = F0 ⊆ F1 ⊆ · · ·

very similar to the sequence constructed for the IL closure of a quasi–frame
(Lemma 5.3.2). The only difference is that we add a fifth entry to the list of
imperfections.

(v) γ = 〈4, w, a, b, b′, c〉 with Fn |= wRaRbSwb
′Rc but Fn 6|= aRc

In this case we set, of course, Fn+1 := 〈Wn, Rn ∪ 〈a, c〉, Sn, νn〉. First we will
show by induction that each Fn is a quasi–ILM0–frame. Then we show that the
union F̂ =

⋃
n≥0 Fn, is quasi and satisfies all the ILM0 frame conditions.

We assume that Fn is a quasi-ILM0-frame and define Kn := K(Fn), R
n :=

RFn and Sn := SFn . Quasi-ness of Fn+1 will follow from Claim 7.1.13a, and
from Claim 7.1.13b we may conlude that Fn+1 is indeed a quasi-ILM0-frame.

Claim 7.1.13a. For all w, x, y and A we have the following.

(a) Rn+1 ⊆ Kn

(b) x(Sn+1w ∪Rn+1)∗y ⇒ x(Snw ∪K
n)∗y

(c) Fn+1 |= x ∈ CAw ⇒ Fn |= x ∈ NA
w .

Proof. We distinguish cases according to which imperfection is dealt with in the
step from Fn to Fn+1. The only interesting case is the new imperfection which
is dealt with by Lemma 7.1.12, Item 3′′. a

Claim 7.1.13b. For all w, x and A we have the following.

1. Kn+1 ⊆ Kn.

2. x(Sn+1w ∪Kn+1)∗y ⇒ x(Snw ∪K
n)∗y

3. Fn+1 |= x ∈ NA
w ⇒ Fn |= x ∈ NA

w .

Proof. Item 1. follows by Claim 7.1.13a and Lemma 7.1.7. Item 2. follows from
Item 1. and Claim 7.1.13a-(b). Item 3. is an immediate corollary of item 2. a

Again, it is not hard to see that F̂ =
⋃
n≥0 Fn is an adequate ILM0-frame. a
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Lemma 7.1.14. Let F = 〈W,R, S, ν〉 be a quasi–ILM0–frame and K = K(F ).
Then

xKy → ∃z (ν(x) ⊆2 ν(z) ∧ x(R ∪ S)
∗zRy).

Proof. We define T := {(x, y) | ∃z (ν(x) ⊆2 ν(z) ∧ x(R ∪ S)
∗zRy)}. It is not

hard to see that T is transitive and that {(x, y) | ∃t (ν(x) ⊆2 ν(t) ∧ xT ; (S ∪
K)∗tTy)} ⊆ T . We now define K ′ = K ∩ T . We have to show that K ′ = K.
As K ′ ⊆ K is trivial, we will show K ⊆ K ′.

It is easy to see that K ′ satisfies properties 1., 2. and 3. of Definition 7.1.6;
It follows on the two observations on T we just made. Since K is the smallest
binary relation that satisfies these properties we conclude K ⊆ K ′. a

The next lemma shows that K is a rather stable relation. We show that if
we extend a frame G to a frame F such that from worlds in F − G we cannot
reach worlds in G, then K on G does not change.

Lemma 7.1.15. Let F = 〈W,R, S, ν〉 be a quasi–ILM0–frame. And let G =
〈W−, R−, S−, ν−〉 be a subframe of F (which means W− ⊆W , R− ⊆ R, S− ⊆
S and ν− ⊆ ν). If

(a) for each f ∈W −W− and g ∈W− not f(R ∪ S)g and

(b) R¹W− ⊆ K(G).

Then K(G) = K(F )¹W− .

Proof. Clearly K(F )¹W− satisfies the properties 1., 2. and 3. of the definition
of K(G) (Definition 7.1.6). Thus, since KG is the smallest such relation, we get
that K(G) ⊆ K(F )¹W− .

Let K ′ = K(F ) − (K(F )¹W− −K(G)). Using Lemma 7.1.14 one can show
that K(F ) ⊆ K ′. From this it immediately follows that K(F )¹W− ⊆ K(G). a

We finish the basic preliminaries with a somewhat complicated variation of
Lemma 5.2.18.

Lemma 7.1.16. Let Γ and ∆ be MCS’s. Γ ≺C ∆.

P ¤Q,S1 ¤ T1, . . . , Sn ¤ Tn ∈ Γ and 3P ∈ ∆.

There exist k ≤ n. MCS’s ∆0,∆1, . . . ,∆k such that

• Each ∆i lies C-critical above Γ,

• Each ∆i lies ⊆2 above ∆ (i.e. ∆ ⊆2 ∆i),

• Q ∈ ∆0,

• For all 1 ≤ j ≤ n, Sj ∈ ∆h ⇒ for some i ≤ k, Tj ∈ ∆i.



108 CHAPTER 7. MORE COMPLETENESS RESULTS

Proof. First a definition. For each I ⊆ {1, . . . , n} put

SI :⇔
∧
{¬Si | i ∈ I}.

The lemma can now be formulated as follows. There exists I ⊆ {1, . . . , n} such
that

{Q,SI} ∪ {¬B,2¬B | B ¤ C ∈ Γ} ∪ {2A | 2A ∈ ∆} 6` ⊥

and, for all i 6∈ I,

{Ti, SI} ∪ {¬B,2¬B | B ¤ C ∈ Γ} ∪ {2A | 2A ∈ ∆} 6` ⊥.

So let us assume, for a contradiction, that this is false. Then there exist
finite sets A ⊆ {A | 2A ∈ ∆} and B ⊆ {B | B ¤ C ∈ Γ} such that, if we put

A :⇔
∧
A, and B :⇔

∨
B,

then, for all I ⊆ {1, . . . , n},

Q,SI ,2A,¬B ∧2¬B ` ⊥ (7.1)

or,

for some i 6∈ I, Ti, SI ,2A,¬B ∧2¬B ` ⊥. (7.2)

We are going to define a permutation i1, . . . , in of {1, . . . , n} such that if we
put Ik = {ij | j < k} then

Tik , SIk
,2A,¬B ∧2¬B ` ⊥. (7.3)

Additionally, we will verify that for each k

(7.1) does not hold with Ik for I.

We will define ik with induction on k. We define I1 = ∅. And by Lemma 5.2.18,
(7.1) does not hold with I = ∅. Moreover, because of this, (7.2) must be true
with I = ∅. So, there exists some i ∈ {1, . . . , n} such that

Ti,2A,¬B ∧2¬B ` ⊥.

It is thus sufficient to take for i1, for example, the least such i.
Now suppose ik has been defined. We will first show that

Q,SIk+1
,2A,¬B ∧2¬B 6` ⊥. (7.4)

Let us suppose that this is not so. Then

` 2(Q→ 3¬A ∨B ∨3B ∨ Si1 ∨ · · · ∨ Sik). (7.5)



7.1. THE LOGIC ILM0 109

So,

Γ ` P ¤Q

¤3¬A ∨B ∨3B ∨ Si1 ∨ · · · ∨ Sik−1
∨ Sik by (7.5)

¤3¬A ∨B ∨3B ∨ Si1 ∨ · · · ∨ Sik−1
∨ Tik

¤3¬A ∨B ∨3B ∨ Si1 ∨ · · · ∨ Sik−1
∨ (Tik ∧2A ∧ ¬B ∧2¬B ∧ SIk

)

¤3¬A ∨B ∨3B ∨ Si1 ∨ · · · ∨ Sik−1
by (7.3)

...

¤3¬A ∨B ∨3B ∨ Si1
¤3¬A ∨B ∨3B ∨ Ti1
¤3¬A ∨B ∨3B ∨ (Ti1 ∧2A ∧ ¬B ∧2¬B)

¤3¬A ∨B ∨3B. by (7.3), with k = 1.

So by M0,

3P ∧2A¤ (3¬A ∨B ∨3B) ∧2A ∈ Γ.

But 3P∧2A ∈ ∆. So, by Lemma 5.2.18 there exists some MCS ∆ with Γ ≺C ∆
that contains B ∨3B. This is a contradiction, so we have shown (7.4).

But now, since (7.4) is indeed true, and thus (7.1) with Ik+1 for I is false,
(7.2) must hold. Thus there must exist some i 6∈ Ik+1 such that

Ti, SIk+1
,2A,¬B ∧2¬B ` ⊥.

So we can take for ik+1, for example, the smallest such i.
It is clear that for I = {1, 2, . . . , n}, (7.2) cannot be true. Thus, for I =

{1, 2, . . . , n}, (7.1) must be true. This implies

` 2(Q→ 3¬A ∨B ∨3B ∨ Si1 ∨ · · · ∨ Sin).

Now exactly as above we can show Γ ` P ¤3¬A∨B∨3B. And again as above,
this leads to a contradiction. a

In order to formulate the invariants needed in the main lemma applied to
ILM0, we need one more definition and a corollary.

Definition 7.1.17 (⊂1, ⊂). Let F = 〈W,R, S, ν〉 be a quasi–frame. Let K =
K(F ). We define ⊂1 and ⊂ as follows.

1. x ⊂1 y ⇔ ∃wy
′wKxK1y′(Sw)

tr
y

2. x ⊂ y ⇔ x(⊂1 ∪K)∗y

Corollary 7.1.18. Let F = 〈W,R, S, ν〉 be a quasi–frame. And let K = K(F ).

1. x ⊂ y ∧ yKz → xKz

2. If F is a quasi–ILM0–frame, then x ⊂ y ⇒ ν(x) ⊆2 ν(y).
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7.1.3 Frame condition

The following theorem is well known.

Theorem 7.1.19. For an IL-frame F = 〈W,R, S, ν〉 we have

∀wxyy′z (wRxRySwy
′Rz → xRz)⇔ F |= M0.

7.1.4 Invariants

Let D be some finite set of formulas, closed under subformulas and single nega-
tion.

During the construction we will keep track of the following main–invariants.

I2 for all y, {ν(x) | xK1y} is linearly ordered by ⊆2

Id wK1x∧wK≥2x′(Sw∪K)∗x→ ‘there does not exists a deficiency in w w.r.t. x’

IS wKxKy(Sw ∪K)∗y′ →
‘the ⊆2-max of {ν(t) | wKtK1y′}, if it exists, is ⊆2-larger than ν(x)’

IN wKxKy ∧ y ∈ NA
w → x ∈ NA

w

ID xRy → ∃A∈(ν(y) \ ν(x)) ∩ {2D | D ∈ D}

IM0
All conditions for an adequate ILM0–frame hold

In order to ensure that the main–invariants are preserved during the con-
struction we need to consider the following sub–invariants.3

Ju wK≥2x(Sw)
tr
y ∧ wK≥2x′(Sw)

tr
y → x = x′

JK1 wKxK1y(Sw)
tr
y′K1z → xK1z

J⊂ y ⊂ x ∧ x ⊂ y → y = x

JN1
x(Sv)

tr
y ∧ wKy ∧ x ∈ NA

w → y ∈ NA
w

JN2
x(Sw)

tr
y ∧ y ∈ NA

w → x ∈ NA
w

Jν1 ‘ν(w, y) is defined’ ∧ vKy → v ⊂ w

Jν2 ‘ν(w, y) is defined’→ wK1y

Jν4 If x(Sw)
tr
y, then ν(w, y) is defined

Jν3 If ν(v, y) and ν(w, y) are defined then w = v

3We call them sub–invariants since they merely serve the purpose of showing that the
main-invariants are, indeed, invariant.
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What can we say about these invariants? I2, IS , IN and Id were discussed
in Section 7.1.1. IM0

is there to ensure that our final frame is an ILM0–frame.
About the sub–invariants there is not much to say. They are merely technicali-
ties that ensure that the main–invariants are invariant.

Let us first show that if we have a quasi–ILM0–frame that satisfies all the
invariants, possibly IM0

excluded, then we can assume, nevertheless, that IM0

holds as well.

Corollary 7.1.20. Any quasi–ILM0–frame that satisfies all of the above in-
variants, except possibly IM0

, can be extended to an ILM0–frame that satisfies
all the invariants.

Proof. Only ID and Id need some attention. All the other invariants are given
in terms of relations that do not change during the construction of the ILM0-
closure (Lemma 7.1.13). a

Lemma 7.1.21. Let F = 〈W,R, S, ν〉 be a quasi–ILM0–frame. Then F |= x ∈
NA
w iff one of the following cases applies.

1. ν(w, x) = A

2. There exists t ∈ NA
w such that tKx

3. There exists t ∈ NA
w such that tSwx

Corollary 7.1.22. Let F be a quasi–ILM0–frame that satisfies Jν4 . Let w, x ∈
F and let A be a formula. Then x ∈ NA

w implies ν(w, x) = A or there exists
some t ∈ NA

w such that tKx.

Lemma 7.1.23. Let F be a quasi–frame which satisfies JN2
, Jν1 , Jν3 and Jν4 .

Then xSvy, y ∈ NA
w ⇒ x ∈ NA

w .

Proof. Suppose xSvy and y ∈ NA
w . Then, by Corollary 7.1.22, ν(w, y) = A or,

for some t ∈ NA
w , tKy. In the first case we obtain w = v by Jν3 and Jν4 . And

thus by JN2
, x ∈ NA

w . In the second case we have, by Jν4 and Jν1 that t ⊂ v.
Which implies, by Lemma 7.1.18–1., tKx. a

7.1.5 Solving problems

Let F = 〈W,R, S, ν〉 be a quasi–ILM0–frame that satisfies all the invariants.
Let (a,¬(A ¤ B)) be a D-problem in F . We fix some b 6∈ W . Using Lemma
5.2.17 we find a MCS ∆b, such that ν(a) ≺B ∆b and A,2¬A ∈ ∆b. We put

F̂ = 〈Ŵ , R̂, Ŝ, ν̂〉

= 〈W ∪ {b}, R ∪ {〈a,b〉}, S, ν ∪ {〈b,∆b〉, 〈〈a,b〉, B〉}〉,

and define K̂ = K(F̂ ). The frames F and F̂ satisfy the conditions of Lemma
7.1.15. Thus we have

∀xy∈F xKy ⇔ xK̂y. (7.6)
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Since Ŝ=S, this implies that all simple enough properties expressed in K̂ and Ŝ
using only parameters from F are true if they are true with K̂ replaced by K.

Claim. F̂ is a quasi–ILM0–frame.

Proof. A simple check of Properties (1.–5.) of Definition 5.3.1 (quasi–frames)
and Properties (6.–10.) of Definition 7.1.10 (quasi–ILM0–frames) and the re-
maining ones in Definition 5.3.1 (quasi–frames). Let us comment on two of
them.

xK̂y → ν̂(x) ≺ ν̂(y) follows from Lemma 7.1.14 and (7.6).

Let us show F̂ |= x ∈ NC
w ⇒ ν̂(w) ≺C ν̂(x). We have ∀xw∈F F |= x ∈

NC
w ⇔ F̂ |= x ∈ NC

w . So we only have to consider the case F̂ |= b ∈ NC
w . If

w = a then we are done by choice of ν̂(b). Otherwise, by Lemma 7.1.23, we
have for some x ∈ F , F |= x ∈ NC

w and xK̂b. By the first property we proved,
we get ν̂(x) ≺ ν̂(b). So, since ν̂(w) ≺C ν̂(x) we have ν̂(w) ≺C ν̂(b). a

Before we show that F̂ satisfies all the invariants we prove some lemmata.

Lemma 7.1.24. If for some x 6= a, xK̂1b. Then there exist unique u and w
(independent of x) such that wK≥2u(Sw)

tr
a.

Proof. If such w and u do not exists then T = K∪{a,b} satisfies the conditions
of Lemma 7.1.8. In which case xK1b gives xTb which implies x = a. The
uniqueness of w follows from Jν3 and Jν4 . The uniqueness of u follows from Ju
and the uniqueness of w. a

In what follows we will denote these w and u, if they exist, by w and u.

Lemma 7.1.25. For all x. If xK̂1b then x ⊂ a.

Proof. Let K ′ = K ∪ {(x,b) | xK̂b ∧ x ⊂ a}. It is not hard to show that K ′

satisfies the conditions of T in Lemma 7.1.8. a

Lemma 7.1.26. Suppose the conditions of Lemma 7.1.24 are satisfied and let
u be the u asserted to exist. Then for all x 6= a, if xK̂1b, then xK1u.

Proof. By Lemma 7.1.25 we have x ⊂ a. Let

x = x0(⊂1 ∪K)x1(⊂1 ∪K) · · · (⊂1 ∪K)xn = a.

First we show x = x0 ⊂1 x1 ⊂1 · · · ⊂1 xn = a. Suppose, for a contradiction,
that for some i < n, xiKxi+1. Then, by Lemma 7.1.18, xKxi+1Kb. So, xK≥2b.
A contradiction. The lemma now follows by showing, with induction on i and
using F |= JK1 , that for all i ≥ 0, xn−(i+1)K

1u.

a

Lemma. F̂ satisfies all the sub-invariants.
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Proof. We only comment on JK1 and Jν1 . Let K = K(F̂ ).
Jν1 follows from Lemma 7.1.25, so let us treat JK1 . Suppose

wK̂xK̂1y(Ŝw)
tr
y′K̂1z. We can assume that at least one of w, x, y, y′, z is not in

F and the only candidate for this is z. So we have z = b. We can assume that
x 6= y′ (otherwise we are done at once), so the conditions of Lemma 7.1.24 are
fulfilled and thus w and u as stated there exist.

Suppose now, for a contradiction, that for some t, xK̂tK̂1b. Then by Lemma
7.1.26, t = a or tK̂1u. Suppose we are in the case t = a. Since ν(w,a) is defined
and xK̂a we obtain by Jν1 , that x ⊂ w. Since wK̂≥2u we obtain by Lemma
7.1.18 that xK̂≥2u. In the case tK̂1u we have xK̂≥2u trivially. So in any case
we have

xK̂≥2u.

However, by Lemma 7.1.26 and since y′K̂1z we have y′K̂1u or y′ = a. In
the first case, since F |= JK1 , we have xK̂1u. In the second case we obtain, by
the uniqueness of u, that y = u and thus xK̂1u. So in any case we have

xK̂1u.

A contradiction.
a

Lemma. Possibly with the exception of IM0
, F̂ satisfies all the main-invariants.

Proof. Let K = K(F̂ ). We only comment on I2 and IN .
First we treat I2. So we have to show that for all y, {ν̂(x) | xK̂1y} is linearly

ordered by ⊆2. We only need to consider the case y = b. If {a} = {x | xK̂1b}
then the claim is obvious. So we can assume that the condition of Lemma
7.1.24 is fulfilled and we fix u as stated. The claim now follows by F |= I2
(with y = u) and noting that, by Lemma 7.1.14, xK̂1b⇒ x ⊆2 a.

Now we look at IN : wK̂xK̂y ∧ F̂ |= y ∈ NA
w → F̂ |= x ∈ NA

w . Suppose
wK̂xK̂y and F̂ |= y ∈ NA

w . We only have to consider the case y = b. Then, by
Lemma 7.1.21, ν̂(w,b) = A or for some t ∈ NA

w we have tŜwb or tK̂1b. The
first case is impossible by Jν2 . The second is also clearly not so. Thus we have

tK̂1b. (7.7)

We suppose that the conditions of Lemma 7.1.24 are fulfilled (the other case
is easy). If tK̂1u and xK̂∗u then we are done simmilarly as the case above.
So assume tK̂1a or xK̂∗a. Since wRt and wRx in any case we have wK̂a.
Now by Lemma 7.1.23 and JN1

we have u ∈ NA
w ⇔ a ∈ NA

w . Also, by (7.7),
u ∈ NA

w ∨ a ∈ N
A
w . So since xK̂u or x = a or xK̂a we obtain x ∈ NA

w by
F |= IN .

a

To finish this subsection we note that by Lemma 7.1.13 and Corollary 7.1.20
we can extend F̂ to an adequate ILM0–frame that satisfies all invariants.
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7.1.6 Solving deficiencies

Let F = 〈W,R, S, ν〉 be an ILM0–frame satisfing all the invariants. Let
(a,b, C ¤D) be a D-deficiency in F .

Suppose aR≥2b (the case aR1b is easy). Let x be the ⊆2-maximum of
{x | aKxK1b}. This maximum exists by I2. Pick some A such that b ∈ NA

a .
(If such an A exists, then by adequacy of F , it is unique. If no such A exists,
take A = ⊥.) By IN and adequacy we have ν(a) ≺A ν(x). So we have C¤D ∈
ν(a) ≺A ν(x) 3 3C. We apply Lemma 7.1.16 to obtain, for some set Y , disjoint
from W , a set {∆y | y ∈ Y } of MCS’s with all the properties as stated in that
lemma. We define

F̂ = 〈W ∪ Y,R ∪ {〈a, y〉 | y ∈ Y },

S ∪ {〈a,b, y〉 | y ∈ Y } ∪ {〈a, y, y′〉 | y, y′ ∈ Y, y 6= y′},

ν ∪ {〈y,∆y〉, 〈〈a, y〉, A〉 | y ∈ Y }〉.

Claim. F̂ is a quasi–ILM0–frame.

Proof. An easy check of Properties (1.–5.) of Definition 5.3.1 (quasi–frames) and
Properties (6.–10.) of Definition 7.1.10 (quasi–ILM0–frames). Let us comment
on two cases.

First we see that xK̂y → ν̂(x) ≺ ν̂(y). We can assume y ∈ Y . By Lemma
7.1.14 we obtain some z with ν̂(x) ⊆2 ν̂(z) and x(R̂∪ Ŝ)

∗zR̂y. This z can only
be a. By choice of ν̂(y) we have ν̂(a) ≺ ν̂(y). And thus ν̂(x) ≺ ν̂(y).

We now see that wK̂xK̂y(Ŝw ∪ K̂)∗y′ → ν̂(x) ⊆2 ν̂(y′). We can assume at
least one of w, x, y, y′ is in Y . The only candidates for this are y and y′. If both
are in Y then w = a and an x as stated does not exists. So only y′ ∈ Y and
thus in particular y 6= y′. Now there are two cases to consider.

The first case is that for some t, wK̂xK̂y(Ŝw ∪ K̂)∗tK̂y′. But, ν̂(y′) is ⊆2-
larger than ν̂(t) by xK̂y → ν̂(x) ≺ ν̂(y). Also we have wKxKy(Sw ∪K)∗t. So,
ν̂(x) = ν(x) ⊆2 ν(t) = ν̂(t).

The second case is wK̂xK̂y(Ŝw ∪ K̂)∗bŜwy
′. In this case we have w = a.

y′ is chosen to be ⊆2–larger than the ⊆2-maximum of {ν(r) | aKrK1b}. We
have wKxKy(Sw ∪K)∗b So, by F |= IS , this ⊆2–maximum is ⊆2–larger than
ν(x). a

Lemma 7.1.27. For any x ∈ F̂ and y ∈ Y we have xK̂1y → x ⊂ a.

Proof. We put K ′ = K ∪ {(x, y) | y ∈ Y, xK̂y, x ⊂ a}. By showing that K ′

satisfies the conditions of T in Lemma 7.1.8. we obtain xK̂1y → xK ′y. So
if xK̂1y then xK ′y. But if y ∈ Y then xKy does not hold. Thus we have
x ⊂ a. a

Lemma 7.1.28. Suppose y ∈ Y and aK̂1z. Then for all x, xK̂1y → xK̂1z.

Proof. Suppose xK1y. By Lemma 7.1.27 we have x ⊂ a. There exist
x0, x1, x2, . . . , xn such that x = x0(⊂1 ∪K)x1(⊂1 ∪K) · · · (⊂1 ∪K)xn = a.
First we show that x = x0 ⊂1 x1 ⊂1 · · · ⊂1 a. Suppose, for a contradiction
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that for some i < n, we have xiKxi+1. Then xKxi+1Ky and thus xK≥2y. A
contradiction. The lemma now follows by showing, with induction on i, using
JK1 , that for all i ≤ n, xn−iK1z. a

Lemma. F̂ satisfies all the sub-invariants.

Proof. The proofs are rather straightforward. We give two examples.

First we show Ju: wK̂
≥2x(Ŝw)

tr
y ∧ wK̂≥2x′(Ŝw)

tr
y → x = x′. Suppose

wK̂≥2x(Ŝw)
tr
y and wK̂≥2x′(Ŝw)

tr
y. We can assume that y ∈ Y . (Otherwise

all of w, x, x′, y are in F and we are done by F |= Ju.) We clearly have w ∈ F .
If x ∈ Y then w = a and thus wK̂1x. So, x 6∈ Y . Next we show that both
x, x′ 6= b.

Assume, for a contradiction, that at least one of them equals b. W.l.o.g. we
assume it is x. But then wK≥2b and wK≥2x′(Sw)

tr
b. By F |= Jν4 we now

obtain that ν(w,b) is defined. And thus by F |= Jν2 , wK
1b. A contradiction.

So, both x, x′ 6= b. But now wK≥2x(Sw)
tr
b and wK≥2x′(Sw)

tr
b. So, by

F |= Ju, we obtain x = x′.

Now let us see that JK1 holds, that is wK̂xK̂1y(Ŝw)
tr
y′K̂1z → xK̂1z.

Suppose wK̂xK̂1y(Ŝw)
tr
y′K̂1z. We can assume that z ∈ Y . (Otherwise all of

w, x, y, y′, z are in F and we are done by F |= JK1 .) Fix some a1 ∈ F for which
aK1a1. By Lemma 7.1.28 we have y′K1a1 and thus, since F |= JK1 , xK1a1.
By definition of K̂ we have xK̂z. Now, if for some t, we have xK̂tK̂1z, then
similarly as above,tK1a1. So, this implies xK≥2a1. A contradiction, conclusion:
xK1z. a

Lemma. Except for IM0
, F̂ satisfies all main-invariants.

Proof. We only comment on I2 and IN .
First we show I2: For all y, {ν̂(x) | xK̂1y} is linearly ordered by ⊆2. Let

y ∈ F̂ and consider the set {x | xK1y}. Since K̂ ¹F= K and for all y ∈ Y there
does not exists z with yK̂1z we only have to consider the case y ∈ Y . Fix some
a1 such that aK1a1K

∗b. By Lemma 7.1.27 for any such y we have

{x | xK1y} ⊆ {x | xK1a1}.

And by F |= I2 with a1 for y, we know that {ν(x) | xK1a1} is linearly ordered
by ⊆2.

Now let us see IN : wK̂xK̂y ∧ F̂ |= y ∈ NA
w → F̂ |= x ∈ NA

w . Suppose
wK̂xK̂y F̂ |= y ∈ NA

w . We can assume y ∈ Y . By Lemma 7.1.27, x ⊂ a. So,
wKxKb. By Lemma 7.1.23, F |= b ∈ NA

w and thus F̂ |= x ∈ NA
w . a

To finish this section we noting that by Lemma 7.1.13 and Corollary 7.1.20
we can extend F̂ to an adequate ILM0–frame that satisfies all invariants.

7.1.7 Rounding up

It is clear that the union of a bounded chain of ILM0–frames is itself an ILM0–
frame.
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7.2 The logic ILW∗

In this section we are going to prove the following theorem.

Theorem 7.2.1. ILW∗ is a complete logic.

The completeness proof of ILW∗ lifts almost completely along with the com-
pleteness proof for ILM0. We only need some minor adaptations.

7.2.1 Preliminaries

The frame condition of W is well known.

Theorem 7.2.2. For any IL-frame F we have that F |= W ⇔ ∀w (Sw;R) is
conversely well-founded.

In [dJV99] a completeness proof for ILW was given. We can define a new
principle M∗

0 that is equivalent to W∗, as follows.

M∗
0 : A¤B → 3A ∧2C ¤B ∧2C ∧2¬A

Lemma 7.2.3. ILM0W = ILW∗ = ILM∗
0

Proof. The proof we give consists of four natural parts.
First we see ILW∗ ` M0. We reason in ILW∗ and assume A¤B. Thus, also

A ¤ (B ∨ 3A). Applying the W∗ axiom to the latter yields (B ∨ 3A) ∧ 2C ¤
(B ∨3A) ∧2C ∧2¬A. From this we may conclude

3A ∧2C ¤ (B ∨3A) ∧2C
¤ (B ∨3A) ∧2C ∧2¬A
¤ B ∧2C

Secondly, we see that ILW∗ ` W. Again, we reason in ILW∗. We assume
A¤B and take the C in the W∗ axiom to be >. Then we immediately see that
A¤B ¤B ∧2>¤B ∧2> ∧2¬A¤B ∧2¬A.

We now easily see that ILM0W ` M∗
0 . For, reason in ILM0W as follows.

By W∗, A¤B ¤B ∧ 2¬A. Now an application of M0 on A¤B ∧ 2¬A yields
3A ∧2C ¤B ∧2C ∧2¬A.

Finally we see that ILM∗
0 `W∗. So, we reason in ILM∗

0 and assume A¤B.
Thus, we have also3A∧2C¤B∧2C∧2¬A. We now conclude B∧2C¤B∧2C∧
2¬A easily as follows. B∧2C¤(B∧2C∧2¬A)∨(2C∧3A)¤B∧2C∧2¬A. a

Corollary 7.2.4. For any IL-frame we have that F |= W∗ iff both (for each
w, (Sw;R) is conversely well-founded) and (∀w, x, y, y′, z (wRxRySwy

′Rz →
xRz)).

The frame condition of W∗ tells us how to correctly define the notions of
adequate ILW∗-frames and quasi-ILW∗-frames.

Definition 7.2.5 ((D2). Let D be a finite set of formulas. Let (D2 be a binary
relation on MCS’s defined as follows. ∆ (D2 ∆′ iff
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1. ∆ ⊆2 ∆′,

2. For some 2A ∈ D we have 2A ∈ ∆′ −∆.

Lemma 7.2.6. Let F be a quasi-frame and D be a finite set of formulas. If
wRxRySwy

′ → ν(x) (D2 ν(y′) then (R;Sw) is conversely well-founded.

Proof. By the finiteness of D. a

Lemma 7.2.7. Let F be a quasi-ILM0-frame. If wRxRySwy
′ → ν(x) (D2 ν(y′)

then wRxRy(Sw ∪R)
∗y′ → ν(x) (D2 ν(y′)

Proof. Suppose wRxRy(Sw ∪ R)
∗y′. ν(x) (D2 ν(y′) follows with induction on

the minimal number of R-steps in the path from y to y′. a

Definition 7.2.8 (Adequate ILW∗-frame). Let D be a set of formulas. We
say that an adequate ILM0-frame is an adequate ILW∗-frame (w.r.t. D) iff the
following additional property holds.

8. wRxRy(Sw)
tr
y′ → x (D2 y′

Definition 7.2.9 (Quasi-ILW∗-frame). Let D be a set of formulas. We say
that a quasi-ILM0-frame is a quasi-ILW∗-frame (w.r.t. D) iff the following
additional property holds.

13. wKxKy(Sw)
tr
y′ → x (D2 y′

In what follows we might simply talk of adequate ILW∗-frames and quasi-
ILW∗ In these cases D is clear from context.

Lemma 7.2.10. Any quasi-ILW∗-frame can be extended to an adequate ILW∗-
frame. (Both w.r.t. the same set of formulas D.)

Proof. Let F be a quasi-ILW∗-frame. Then in particular F is a quasi-ILM0-
frame. So consider the proof of Lemma 7.1.13. There we constructed a sequence
of quasi-ILM0-frames F = F0 ⊆ F1 ⊆

⋃
i<ω Fi = F̂ . What we have to do,

is to show that if F0(= F ) is a quasi-ILW∗-frame, then each Fi is as well.
Additionally we have to show that F̂ is an adequate ILW∗-frame.

But this is rather trivial. As noted in the proof of Lemma 7.1.13, The
relation K and the relations (Sw)

tr
are constant throughout the whole process.

So clearly each Fi is a quasi-ILW∗-frame.
Also the extra property of quasi-ILW∗-frames is preserved under unions of

bounded chains. So, F̂ is an adequate ILW∗-frame. a

Lemma 7.2.11. Let Γ and ∆ be MCS’s with Γ ≺C ∆,

P ¤Q,S1 ¤ T1, . . . , Sn ¤ Tn ∈ Γ and 3P ∈ ∆.

There exist k ≤ n. MCS’s ∆0,∆1, . . . ,∆k such that

• Each ∆i lies C-critical above Γ,
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• Each ∆i lies ⊆2 above ∆,

• Q ∈ ∆0,

• For each i ≥ 0, 2¬P ∈ ∆i,

• For all 1 ≤ j ≤ n, Sj ∈ ∆h ⇒ for some i ≤ k, Tj ∈ ∆i.

Proof. The proof is a straightforward adaptation of the proof of Lemma 7.1.16.
In that proof, a trick was to postpone an application of M0 as long as possible.
We do the same here but let an application of M0 on P ¤3P ∨ ψ be preceded
by an application of W to obtain P ¤ ψ. a

7.2.2 Completeness

Again, we specify the four ingredients from Remark 5.2.19. The Frame con-
dition is contained in Corollary 7.2.4.

The Invariants are all those of ILM0 and additionally

Iw∗ wKxKy(Sw)
tr
y′ → x (D2 y′

Here, D is some finite set of formulas closed under subformulas and single nega-
tion.

Problems. We have to show that we can solve problems in an adequate
ILW∗-frame in such a way that we end up with a quasi-ILW∗-frame. If we have
such a frame then in particular it is an ILM0-frame. So, as we have seen we
can extend this frame to a quasi-ILM0-frame. It is easy to see that whenever
we started with an adequate ILW∗-frame we end up with a quasi ILW∗-frame.
(This is basically Lemma 7.2.10.)

Deficiencies. We have to show that we can solve any deficiency in an
adequate ILW∗-frame such that we end up with an quasi-ILW∗-frame. It is
easily seen that the process as described in the case of ILM0 works if we use
Lemma 7.2.11 instead of Lemma 7.1.16.

Rounding up. We have to show that the union of a bounded chain of quasi-
ILW∗-frames that satisfy all the invariants is an ILW∗-frame. The only novelty
is that we have to show that in this union for each w we have that (R;Sw) is
conversely well-founded. But this is ensured by Iw∗ and Lemma 7.2.6.



Chapter 8

Incompleteness and full
labels

In this chapter we shall prove the modal incompleteness of ILP0W
∗. Further-

more, we shall see that ILR∗ is a real extension of ILP0W
∗. In Section 8.2 we

introduce the new notion of full labels. They seem to simplify many things con-
cerning modal completeness proofs. We develop some general theory of these
full labels. As an application we give a short and perspicuous completeness
proof of ILW in Section 8.3.

8.1 Incompleteness of ILP0W
∗

We shall now see the modal incompleteness of the logic ILP0W
∗. We do this

by showing that the principle R follows semantically from ILP0W
∗ but is not

provable in ILP0W
∗.

Let us first calculate the frame condition of R. It turns out to be the same
frame condition as for P0 (see [Joo98]).

Lemma 8.1.1. F |= R⇔ [xRyRzSxuRv → zSyv]

Proof. “⇐” Suppose that at some world x ° A ¤ B. We are to show x °

¬(A¤¬C)¤B ∧2C. Thus, if xRy ° ¬(A¤¬C) we need to go via an Sx to a
u with u ° B ∧2C.

As y ° ¬(A ¤ ¬C), we can find z with yRz ° A. Now, by x ° A ¤ B, we
can find u with ySxu ° B. We shall now see that u ° B ∧ 2C. For, if uRv,
then by our assumption, zSyv, and by y ° ¬(A ¤ ¬C), we must have v ° C.
Thus, u ° B ∧2C and clearly ySxu.

“⇒” We suppose that R holds. Now we consider arbitrary a, b, c, d and e
with aRbRcSadRe. For propositional variables p, q and r we define a valuation

119



120 CHAPTER 8. INCOMPLETENESS AND FULL LABELS

a

p, r q
f g b

c

e

d
qp, r

M :

Sa

Sa

Figure 8.1: ILP0W
∗ is incomplete

° as follows.

x ° p :⇔ x = c
x ° q :⇔ x = d
x ° r :⇔ cSbx

Clearly, a ° p¤ q and b ° ¬(p¤¬r). By R we conclude a ° ¬(p¤¬r)¤ q ∧2r.
Thus, d ° q ∧2r which implies cSbe. a

Theorem 8.1.2. ILP0W
∗ 0 R

Proof. We consider the model M from Figure 8.1 and shall see that M |=
ILP0W

∗ but M,a 6° R. By Lemma 3.3.10 we conclude that ILP0W
∗ 0 R.

As M satisfies the frame condition for W∗, it is clear that M |= W∗. We
shall now see that M |= A¤3B → 2(A¤B) for any formulas A and B.

A formula 2(A ¤ B) can only be false at some world with at least two
successors. Thus, in M , we only need to consider the point a. So, supppose
a ° A¤3B. For which x with aRx can we have x ° A?

As we have to be able to go via an Sx-transition to a world where 3B holds,
the only candidates for x are b, c and d. But clearly, c and f make true the same
modal formulas. From f it is impossible to go to a world where 3B holds.

Thus, if a ° A¤3B, the A can only hold at b or at d. But this automatically
implies that a ° 22¬A, whence a ° 2(A¤B) and M |= P0.
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It is not hard to see that a 6° R. Clearly, a ° p ¤ q and b ° ¬(p ¤ ¬r).
However, d 6° q ∧2r and thus a 6° ¬(p¤ ¬r)¤ q ∧2r. a

The following lemma tells us that ILR is a proper extension of ILM0P0.

Lemma 8.1.3. ILR ` M0,P0

Proof. As IL ` 3A∧2C → ¬(A¤¬C) we get that A¤B → 3A∧2C¤¬(A¤
¬C) and M0 follows from R.

The principle P0 follows directly from R by taking C = ¬B. a

It is not hard to see that R and W are fully independent over IL. We can
consider the principle R∗ that can be seen, in a sense, as the union of W and R.

R∗ : A¤B → ¬(A¤ ¬C)¤B ∧2C ∧2¬A

Lemma 8.1.4. ILRW = ILR∗

Proof. ⊇: A¤B → A¤B ∧2¬A→ ¬(A¤ ¬C)¤B ∧2C ∧2¬A.
⊆: A ¤ B → ¬(A ¤ ¬C) ¤ B ∧ 2C ∧ 2¬A ¤ B ∧ 2C; and if A ¤ B, then

A¤B¤((B∧2¬A)∨3A)¤B∧2¬A, as A¤B → ¬(A¤⊥)¤B∧2>∧2¬A. a

8.2 Full labels

In this section we will expose a generalization of critical successor and show how
it can be used to solve, in a uniform way, certain problematic aspects of modal
completeness proofs.

The main idea behind our full labels is as simple as it is powerful. When we
employ critical successors, we use a label to signal this. The label is there to
remind us to keep our promise: once we go B-critical, we stay B-critical. That
is, we never meet any B or 3B.

Similar promises are needed to incorporate specific frame conditions, like
“whenever we have some 2-formulas there, we also want them there and there”.
The notion of criticality can, however, only deal with finitely many promises at
the time. And here is precisely our generalization. We shall introduce a means
to register infinitely many promises and a technique that helps us keeping our
word.

First, we find it convenient to make positive promises. Rather than saying
“we never meet B or 3B”, we prefer to say “we shall guarantee the presence of
¬B and 2¬B”.

Once we have made such a promise B, 2B, say in Γ, what could force us
to break our word? If A ¤ ¬B ∈ Γ, we could by Lemma 5.2.18 be in trouble.
And thus, we should simply demand that, under our promise, we never meet A
or 3A. Or positively formulated, we will always have ¬A and 2¬A. So far, we
have only reformulated the definition of ∆ being a ¬B-critical successor of Γ:

A¤ ¬B ∈ Γ⇒ ¬A,2¬A ∈ ∆. (8.1)
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The generalization to infinitely many promises is readily made. Let Σ be a set
of promises to which we would like to commit ourselves, say in Γ. We could be
in trouble whenever for some collection of Si ∈ Σ and some formula A, we have
A ¤

∨
i ¬Si ∈ Γ. In this case, in complete analogy with (8.1) we shall have to

commit ourselves also to guaranteeing ¬A and 2¬A.

Definition 8.2.1 (Assuring successor). Let S be a set of formulas. We de-
fine Γ≺S∆, and say that ∆ is an S-assuring successor of Γ, if for any finite
S′ ⊆ S we have1 A¤

∨
Sj∈S′

¬Sj ∈ Γ⇒ ¬A,2¬A ∈ ∆.

Lemma 8.2.2. Let Γ, ∆ and ∆′ be MCS’s. For the relation ≺S we have the
following observations.

1. Γ≺∅∆⇔ Γ ≺ ∆

2. ∆ is a B-critical successor of Γ ⇔ Γ≺{¬B}∆

3. S ⊆ T & Γ≺T∆⇒ Γ≺S∆

4. Γ≺S∆ ≺ ∆′ ⇒ Γ≺S∆′

5. Γ≺S∆⇒ S,2S ⊆ ∆,3S ⊆ Γ and for all A, 3A /∈ S

Theorem 8.2.3. Let Γ be a MCS and S a set of formulas. If for any choice of
Si ∈ S we have that ¬(B ¤

∨
¬Si) ∈ Γ, then2 there exists a MCS ∆ such that

Γ≺S∆ 3 B,2¬B.

Proof. Suppose for a contradiction there is no such ∆. Then there is a formula
A such that for some Si ∈ S, (A ¤

∨
¬Si) ∈ Γ and 2¬B,B,2¬A,¬A ` ⊥.

Then ` 2¬B ∧ B ¤ A ∨ 3A and we get ` B ¤ A. As (A ¤
∨
¬Si) ∈ Γ, also

(B ¤
∨
¬Si) ∈ Γ. A contradiction. a

Lemma 8.2.4. Let Γ be a MCS such that ¬(B¤C) ∈ Γ. Then there is a MCS
∆ such that Γ≺{¬C}∆ and B,2¬B ∈ ∆.

Proof. Taking S = {¬C} in Theorem 8.2.3. a

Lemma 8.2.5. Let Γ and ∆ be MCS’s such that A ¤ B ∈ Γ≺S∆ 3 A. Then
there is a MCS ∆′ such that Γ≺S∆

′ 3 B,2¬B.

Proof. First we see that for any choice of Si, ¬(B ¤
∨
¬Si) ∈ Γ. Suppose not.

Then for some Si, (B¤
∨
¬Si) ∈ Γ because Γ is a MCS. But then (A¤

∨
¬Si) ∈ Γ

and by Γ≺S∆ we have ¬A ∈ ∆. A contradiction. So ¬(B ¤
∨
¬Si) ∈ Γ for any

choice of Si and we can apply Theorem 8.2.3. a

Lemmata 8.2.4, 8.2.5 are the obvious generalizations of the corresponding
lemmata involving criticality instead of assuringness (Lemma 5.2.17 and Lemma
5.2.18). To clarify the benefits of assuringness over criticality let us roughly

1Often, it is convenient to also demand that for some 2C ∈ ∆ we have 2C 6∈ Γ.
2It is easy to see that we actually have iff
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Λ

∆

SΛ

{¬B}

C ′ ¤D′ ∈ Γ

∆′′ 3 D′∆′ 3 C ′
SΓ

Λ

Ω

C ¤D ∈ Γ

C ∈ ∆ ∆′ 3 D

{¬F}

{¬B}

{¬F}

SΓ

SΛ

SΓ

Figure 8.2: R frame condition

identify the three main points when building a counter model 〈W,R, S, V 〉 for
some unprovable formula (in some extension of IL). We take W a multi-set of
MCS’s and build the model in a step-by-step fashion.

1. For each Γ ∈W with ¬(A¤B) ∈ Γ we should add someB-critical successor
(equivalently {¬B}-assuring successor) ∆ to W for which A ∈ ∆.

2. For each Γ,∆ ∈W with C ¤D ∈ ΓR∆ 3 C we should add a ∆′ to W for
which Γ ≺ ∆′ 3 D. Moreover if ∆ is a B-critical successor of Γ then then
we should be able to choose ∆′ a B-critical successor of Γ as well.

3. We should take care of the frame conditions.

When working in IL, Lemma 8.2.4 handles Item 1. and Lemma 8.2.5 handles
Item 2. Making sure that the frame conditions are satisfied does not impose any
problems (see [dJJ98]).

With extensions of IL the situation regarding the frame conditions becomes
more complicated ([dJV90], [GJ04]). Let us clarify this by looking at ILR. We
first recall the frame condition of R from Lemma 8.1.1.

wRxRySwy
′Rz ⇒ ySxz

This is depicted in the leftmost picture in Figure 8.2. Let us use the notation
as in Item 2: ∆′ was added to the model since C ¤ D ∈ ΓR∆ 3 C. Since ∆
lies F -critical (equivalently {¬F}-assuring) above Λ, we should not only make
sure that ∆′ lies B-critical above Γ, but also that for any successor Ω of ∆′ lies
F -critical above Λ.

One way to guarantee this is to actually require that 2¬H ∈ ∆′ whenever
H ¤ F ∈ Λ. As one easily checks, it is quite easy to prove such a lemma in
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ILR, but we have oversimplified3 the situation. Consider the rightmost picture
in Figure 8.2. That is, after having added ∆′ to the model we are required to
add some ∆′′ with D′ ∈ ∆′ to the model since C ′ ¤ D′ ∈ Γ and C ′ ∈ ∆′. By
the transitivity of SΓ we require that 2¬H ∈ ∆′′ whenever H ¤ F ∈ Λ. In this
situation it is not so clear what to do.

Although for ILM0 ([GJ04]) and ILW ([dJV99]) there where add hoc so-
lutions to similar problems, criticality seemed too weak a notion for a more
uniform solution. As the lemmata below will show, assuringness does give us a
uniform method for handling these kind of situations.

In what follows, we put for any set of formulas T ,

∆2T = {2¬A | T ′ ⊆ T finite , A¤
∨

Ti∈T ′

¬Ti ∈ ∆},

∆¡
T = {2¬A,¬A | T ′ ⊆ T finite , A¤

∨

Ti∈T ′

¬Ti ∈ ∆}.

Lemma 8.2.6. For any logic (i.e. extension of IL) we have Γ≺S∆⇒ Γ≺S∪Γ¡
S
∆.

Proof. Suppose Γ≺S∆ and C¤
∨
¬Si∨

∨
Aj∨3Aj ∈ Γ. Then C¤

∨
¬Si∨

∨
Aj ∈

Γ and thus C ¤
∨
¬Si ∨

∨
¬Sjk ∈ Γ which implies ¬C,2¬C ∈ ∆. a

Lemma 8.2.7. For logics containing M we have Γ≺S∆⇒ Γ≺S∪∆2
∅
∆.

Proof. Note that ∆2∅ = {2C | 2C ∈ ∆}. We consider A such that for some Si ∈
S and 2Cj ∈ ∆2∅ , (A¤

∨
¬Si ∨

∨
¬2Cj) ∈ Γ. By M, (A∧

∧
2Cj ¤

∨
¬Si) ∈ Γ,

whence ¡¬(A ∧
∧
2Cj) ∈ ∆. As

∧
2Cj ∈ ∆, we conclude ¬A,2¬A ∈ ∆. a

Lemma 8.2.8. For logics containing P we have Γ≺SΛ≺T∆⇒ Γ≺S∪Λ¡
T
∆.

Proof. Suppose C ¤
∨
¬Si ∨

∨
Aj ∨ 3Aj ∈ Γ, where 2¬Aj ,¬Aj ∈ Λ¡

T . Then
C ¤

∨
¬Si ∨

∨
Aj ∈ Γ and thus by P we obtain C ¤

∨
¬Si ∨

∨
Aj ∈ Λ. Since

Γ≺SΛ we have 2
∧
Si ∈ Λ so we obtain C ¤

∨
Aj ∈ Λ. But for each Aj we

have Aj ¤
∨
¬Tjk ∈ Λ and thus C ¤

∨
Tjk ∈ Λ. Since Λ ≺T ∆ we conclude

¬C,2¬C ∈ ∆. a

Lemma 8.2.9. For logics containing M0 we have Γ≺S∆ ≺ ∆′ ⇒ Γ≺S∪∆2
∅
∆′.

Proof. Suppose C ¤
∨
Si ∨

∨
3Aj ∈ Γ, where 2¬Aj ∈ ∆2∅ . By M0 we obtain

3C∧
∧
2¬Aj¤

∨
Si ∈ Γ. So, since Γ≺S∆ and

∧
2¬Aj ∈ ∆we obtain 2¬C ∈ ∆

and thus 2¬C,¬C ∈ ∆′. a

Lemma 8.2.10. For logics containing R we have Γ≺S∆≺T∆
′ ⇒ Γ≺S∪∆2

T
∆′.

Proof. We consider A such that for some Si ∈ S and some 2¬Aj ∈ ∆2T , we have
(A¤

∨
¬Si ∨

∨
3Aj) ∈ Γ. By R we obtain (¬(A¤

∨
Aj)¤

∨
¬Si) ∈ Γ, thus by

Γ≺S∆ we get (A¤
∨
Aj) ∈ ∆. As (Aj ¤

∨
¬Tkj) ∈ ∆, also (A¤

∨
¬Tkj) ∈ ∆.

By ∆≺T∆′ we conclude ¡¬A ∈ ∆′. a



8.2. FULL LABELS 125
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∆
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S ∪∆2T

U ∪ Γ2S∪∆2
T

Figure 8.3: Two ways of computing the transitive closure in ILR.

What lemmata 8.2.8, 8.2.9 and 8.2.10 actually tell us is how to label R-
relations when we take R transitive while working in the lemma’s respective
logic. However, there is an easily identifiable problem here. Suppose we are
working in ILR. Consider the two pictures in Figure 8.3. If we compute the
label between the lower world and the upper world it does make a difference
whether we first compute the label between the lower world and ∆ (left picture)
or the label between Γ and the upper world (right picture). We will show in
Lemma 8.2.11 below that in the situation as given in Figure 8.3 we have

U ∪ Γ2S∪∆2
T
⊆ U ∪ Γ2S ∪∆2T .

And we should thus opt for the strategy as depicted in the leftmost picture when
computing the transitive closure of R.

Lemma 8.2.11. For logics containing4 R we have Γ≺S∆⇒ Γ2S∪∆2
T
⊆ ∆2T .

Proof. Consider 2¬A ∈ Γ2S∪∆2
T
, that is, for some Si ∈ S and 2¬Bj ∈ ∆2T ,

A¤
∨
¬Si ∨

∨
¬2¬Bj ∈ Γ. By R, ¬(A¤

∨
Bj)¤

∨
¬Si ∈ Γ, whence by Γ≺S∆,

we get A¤
∨
Bj ∈ ∆. But for each Bj there is Tjk ∈ T with Bj ¤

∨
¬Tjk ∈ ∆,

whence A¤
∨
¬Tjk ∈ ∆ and 2¬A ∈ ∆2T . a

Lemmata as Lemma 8.2.7, 8.2.9 and 8.2.10 are examples of what we call
labeling lemma. We propose the following slogan.

Slogan: Every complete logic with a first order frame condition has
its own labeling lemma.

3We do not give a completeness proof for ILR here. We only indicate a few problems one
will encounter and indicate the usefulness of assuringness by overcoming these.

4For the other logics we get similar lemmata.



126 CHAPTER 8. INCOMPLETENESS AND FULL LABELS

Let us state two lemmata for ILW, a logic without a first order frame prop-
erty. As predicted by our slogan, these do not fit in very nicely with the previous
ones.

Lemma 8.2.12. Suppose ¬(A¤B) ∈ Γ. There exists some ∆ with Γ ≺{2¬A,¬B}
∆ and A ∈ ∆.

Proof. Suppose for a contradiction that there is no such ∆. Then there is a
formula E with (E ¤3A ∨B) ∈ Γ such that A,¬E,2¬E ` ⊥ and so ` A¤E.
Then (A ¤ 3A ∨ B) ∈ Γ and by the principle W we have A ¤ B ∈ Γ. A
contradiction. a

Lemma 8.2.13. For logics containing W we have that if B ¤ C ∈ Γ≺S∆ 3 B
then there exists ∆ with Γ≺S∪{2¬B}∆ 3 C,2¬C.

Proof. Suppose for a contradiction that no such ∆ exists. Then for some formula
A with (A¤

∨
¬Si ∨3B) ∈ Γ, we get C,2¬C,¬A,2¬A ` ⊥, whence ` C ¤A.

Thus B ¤ C ¤ A ¤
∨
¬Si ∨3B ∈ Γ. By W, B ¤

∨
¬Si ∈ Γ which contradicts

Γ≺S∆ 3 B. a

We conclude this section with one more general lemma about assuring suc-
cessors.

Lemma 8.2.14. The following holds in extensions of IL.

1. Γ ≺Σ ∆ and Σ ` S implies Γ ≺Σ∪{S,2S} ∆.

2. Γ ≺Σ ∆ and ¬A¤ ¬S ∈ Γ (with S ∈ Σ) implies Γ ≺Σ∪{A} ∆.

3. Γ ≺Σ ∆ and 2A ∈ Γ implies Γ ≺Σ∪{A} ∆.

4. Γ ≺Σ ∆ ≺Θ ∆′ implies ∆ ≺Σ∪Θ ∆′.

Proof. First we show 1. If `
∧
Sk → S and A ¤

∨
¬Si ∨ ¬S ∨ ¬2S ∈ Γ, then

A ¤
∨
¬Si ∨ ¬S ∈ Γ and S ¤

∨
¬Sk ∈ Γ. So, A ¤

∨
¬Si ∨

∨
Sk ∈ Γ and thus

¬A,2¬A ∈ ∆.

We now show 2. If C¤
∨
¬Si ∨¬A ∈ Γ and ¬A¤¬S ∈ Γ, then C¤

∨
¬Si ∨

¬S ∈ Γ and thus ¬C,2¬C ∈ ∆. Item 3. follows at once from Item 2. by noting
that 2A is equivalent to ¬A¤⊥.

Finally we show Item 4. If Γ ≺Σ ∆ then Γ ≺Σ∪{2S|S∈Σ} ∆ by Item 1.
So, {2S | S ∈ Σ} ⊆ ∆, and thus by 3. we obtain hat if ∆ ≺Θ ∆′, then
∆ ≺Θ∪{2S|S∈Σ} ∆

′. a

We note that in particular, by Item 1. we can assume that our labels are
closed under logical consequence. So, if Γ ≺Σ ∆ and A ¤

∨
¬Si ∈ Γ then we

can just as well write A¤ ¬S ∈ Γ (where S =
∧
Si).
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8.3 The logic ILW

As a demonstration of the use of assuringness we will give in this section a
relatively simple proof of the known fact ([dJV99]) that ILW is a complete
logic.

Proving the decidability of an interpretability logic is in all known cases
done by showing that the logic has the finite model property. The finite model
property is easier to achieve if the building blocks of the model are finite sets
instead of infinite maximal consistent sets.

A turn that is usually made to obtain finite building blocks, is to work with
truncated parts of maximal consistent sets. This part should be large enough to
allow for the basic reasoning. This gives rise to the notion of so-called adequate
sets where different logics yield different notions of adequacy. In order to obtain
the finite model property along with modal completeness of ILW, in this section
we will use the following notion of adequacy.

Definition 8.3.1 (Adequate set). We say that a set of formulas Φ is adequate
iff

1. ⊥¤⊥ ∈ Φ,

2. Φ is closed under single negation and subformulas,

3. If A is an antecedent or consequent of some ¤ formula in Φ and so is B
then A¤B ∈ Φ.

It is clear that any formula is contained in some finite and minimal adequate
set. For a formula F we will denote this set by Φ(F ). Since our maximal con-
sistent sets are more restricted we should also modify the notion of an assuring
successor a bit

Definition 8.3.2 (〈S,Φ〉-assuring successor). Let Φ be a finite adequate set,
S ⊆ Φ and Γ,∆ ⊆ Φ be maximal consistent sets. We say that ∆ is an 〈S,Φ〉-
assuring successor of Γ (Γ ≺ΦS ∆) iff for each 2¬A ∈ Φ we have

Γ ` A¤
∨

Si∈S

¬Si ⇒ ¬A,2¬A ∈ ∆.

Moreover for some 2C ∈ ∆ we have 2C 6∈ Γ.

Note that by the requirement 2¬A ∈ Φ the usual reading of ≺ in extensions
of GL coincides with ≺Φ∅ . So, we will write ≺ for ≺Φ∅ . The following two
lemmata are proved exactly as their infinite counterparts.

Lemma 8.3.3. Let Γ ⊆ Φ be maximal consistent. If ¬(A ¤ B) ∈ Γ then there
exists some maximal consistent set ∆ ⊆ Φ such that A ∈ ∆ and Γ ≺Φ{¬B,2¬A} ∆.

Lemma 8.3.4. Let Γ,∆ ⊆ Φ be maximal consistent and S ⊆ Φ. If A¤B ∈ Γ,
Γ ≺ΦS ∆ and A ∈ ∆, then there exists some maximal consistent ∆′ ⊆ Φ with
B ∈ ∆′ and Γ ≺ΦS∪{2¬A} ∆

′.
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In what follows we let Φ be some fixed finite adequate set and reason with
ILW (e.g. ` is ILW-provable, and consistent is ILW-consistent). The rest of
this section is devoted to the proof of the following theorem.

Theorem 8.3.5 (Completeness of ILW [dJV99]). ILW is complete with re-
spect to finite Veltman frames 〈W,R, S〉 in which, for each w ∈ W , (Sw;R) is
conversely well-founded.

Suppose 6` G. Let Φ = Φ(¬G) and let Γ ⊆ Φ be a maximal consistent set
that contains ¬G. We will construct a Veltman model 〈W,R, S,°〉 in which for
each w ∈W we have that (Sw;R) is conversely well-founded. Each w ∈W will
be a tuple, the second component, denoted by (w)1, of which will be a maximal
consistent subset of Φ. For some w ∈ W we will have (w)1 = Γ and we will
finish the proof by proving a truth lemma: w ° A iff A ∈ (w)1.

Let the height of a maximal consistent ∆ ⊆ Φ be defined as the number of
2-formulas in ∆ minus the number of 2-formulas in Γ. For sequences σ0 and
σ1 we write σ0 ⊆ σ1 iff σ0 is an initial, but not necessarily proper subsequence
of σ1. For two sequences σ0 and σ1, σ0 ∗ σ1 denotes the concatenation of the
two sequences. If S is a set of formulas then 〈S〉 is the sequence of length one
whose only element is S. Let us now define 〈W,R, S,°〉.

1. W is the set of tuples 〈σ,∆〉 where ∆ ⊆ Φ is maximal consistent such that
either Γ = ∆ or Γ ≺ ∆ and σ is a finite sequence of subsets of Φ, the
length of which does not exceed the height of ∆. For w = 〈σ,∆〉, we write
(w)0 for σ and (w)1 for ∆.

2. wRv iff for some S we have (v)0 ⊇ (w)0 ∗ 〈S〉 and (w)1 ≺
Φ
S (v)1.

3. xSwy iff wRx, y and, xRy or x = y or both 3.a and 3.b hold.

(a) If (x)0 = (w)0 ∗ 〈S〉 ∗ τx, (y)0 = (w)0 ∗ 〈T 〉 ∗ τy then S ⊆ T

(b) For some C¤D ∈ (w)1 we have 2¬C ∈ T and, C ∈ (x)1 or3C ∈ (x)1

4. w ° p iff p ∈ (w)1.

Lemma 8.3.6. R is transitive and conversely well-founded.

Proof. Transitivity follows from the fact that (x)1 ≺ΦS (y)1 ≺ (z)1 implies
(x)1 ≺

Φ
S (z)1. Conversely well-foundedness now follows from the fact that our

model is finite and R is irreflexive. a

Lemma 8.3.7. wRxRy implies xSwy, wRx implies xSwx, Sw is transitive

Proof. The first two assertions hold by definition. So suppose xSwySwz. Let us
fix (x)0 ⊇ (w)0 ∗ 〈S〉, (y)0 ⊇ (w)0 ∗ 〈T 〉 and (z)0 ⊇ (w)0 ∗ 〈U〉. We distinguish
two cases.

Case 1: xRy or x = y. If x = y then we are done so we assume xRy. If yRz
or y = z then we are also easily done. So, we assume that for some C¤D ∈ (w)1
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we have 2¬C ∈ U and, C ∈ (y)1 or 3C ∈ (y)1. Since (x)1 ≺ (y)1, we have that
3C ∈ (x)1 and thus we conclude xSwz.

Case 2: ¬(xRy) and x 6= y. In this case there exists some C ¤ D ∈ (w)1
with 2¬C ∈ T and C ∈ (x)1 or 3C ∈ (x)1. Whatever the reason for ySwz is,
we always have T ⊆ U and thus 2¬C ∈ U . So, we conclude xSwz. a

Lemma 8.3.8. (Sw;R) is conversely well-founded.

Proof. Suppose we have an infinite sequence

x0Swy0Rx1Swy1R · · · .

For each i ≥ 0, fixXi and Yi such that (xi)0 ⊇ (w)0∗〈Xi〉 and (yi)0 ⊇ (w)0∗〈Yi〉.
We may assume that, for each i, xi 6= yi and ¬(xiRyi). Thus, let Ci ¤ Di be
the formula as given by condition 3.b. We thus have Ci¤Di ∈ (w)1, 2¬Ci ∈ Yi
and, Ci ∈ (xi)1 or 3Ci ∈ (xi)1. For any j > i, this implies 2¬Ci ∈ Xj which
gives 2¬Ci ∈ (xj)1 and thus ¬Ci,2¬Ci ∈ (yj)1. The latter gives Ci 6= Cj ,
which is a contradiction since Φ is finite. a

Lemma 8.3.9 (Truth lemma). For all F ∈ Φ and w ∈W we have F ∈ (w)1
iff w ° F .

Proof. By induction on F . The cases of the propositional variables and the
connectives are easily provable using properties of MCS’s and the ° relation.
So suppose F = A¤B.

(⇒) Suppose we have A ¤ B ∈ (w)1. Then for all v such that wRv and
v ° A we have to find a u such that vSwu ° B which, by the induction
hypothesis, is equivalent to B ∈ (u)1. Consider such a v. We have for some S
that (v)0 = (w)0 ∗ 〈S〉 ∗ τ and (w)1 ≺

Φ
S (v)1. By Lemma 8.3.4 there is a MCS ∆

such that (w)1 ≺
Φ
S∪{2¬A} ∆ 3 B. We take u = 〈(w)0 ∗ 〈S ∪ {2¬A}〉,∆〉. Now

3.b holds, whence vSwu.
(⇐) Suppose that A¤B /∈ (w)1. Then ¬(A¤B) ∈ (w)1 whence by Lemma

8.3.3 there is a MCS ∆ such that (w)1 ≺
Φ
{2¬A,¬B} ∆ 3 A. Consider v′ =

〈(w)0 ∗ 〈{2¬A,¬B}〉 ∗ τ,∆〉. Clearly, there is no u′ such that v′Swu
′ ° B. a
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Chapter 9

Comparing PRA and IΣ1

In this chapter we introduce the main subject of Part III of this dissertation;
Primitive Recursive Arithmetic (PRA). We shall consider various formulations
of PRA. Then we shall focus on how PRA relates to IΣ1, a theme that comes
back in Chapters 10 and 11 too.

We shall see that IΣ1 is Π2-conservative over PRA, but that proofs in PRA
can become non-elementary larger than proofs in IΣ1. All proofs in this chapter
are proof-theoretical and easily formalizable.

9.1 PRA, what and why?

Primitive Recursive Arithmetic, as a formal system, was first introduced by
Skolem in 1923 [Sko67]. Throughout literature there exist many different vari-
ants of PRA. In a sense though, they are all the same, as they are easily seen
to be equi-interpretable in a faithful way. In this part of the thesis we shall
consider theories modulo faithful interpretability. There are two reasons why
we are interested in PRA.

Firstly, of course, PRA has an intrinsic foundational importance. It has
often been associated with finitism and Hilbert’s programme ([Sko67], [HB68],
[Tai81]) and can, in a sense, be seen as a system common to both classical and
intuitionistic mathematics.

Secondly, a study of PRA, with an interpretability perspective can give us
insight on the interpretability logic of all numberized theories. PRA is neither
finitely axiomatized nor essentially reflexive. And clearly, IL(All) ⊆ IL(PRA).

Since Π1-sentences or open formulas played a prominent role in Hilbert’s pro-
gramme, the first versions of PRA were formulated in a quasi-equational setting
without quantifiers but with a symbol for every primitive recursive function.
(See for example Goodstein [Goo57], or Schwartz [Sch87a], [Sch87b].)

Other formulations are in the full language of predicate logic and also con-
tain a function symbol for every primitive recursive function. The amount of

133
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induction can either be for ∆0-formulas or for open formulas. Both choices yield
the same set of theorems. This definition of PRA has, for example, been used
in [Smo77].1

Reading convention: All statements about PRA and other theories in this
part of the thesis, will refer to the definition given in the (sub)section in which
the statement appears. If no such specific definition is given, we shall refer to
the standard definitions as given in [HP93].

In this subsection, we shall refer with PRA to the theory that is formulated in
a language that contains for every primitive recursive function a function symbol
plus its defining axioms and that allows for induction over open formulas.

Definition 9.1.1 (IΣRn ). IΣRn is the predicate logical theory in the pure lan-
guage of arithmetic {+, ·, 0, 1, <} that contains Robinson’s arithmetic Q plus
the Σn-induction rule. The Σn-induction rule allows one to conclude ∀x ϕ(x, ~y)
from ϕ(0, ~y) ∧ ∀x (ϕ(x, ~y)→ ϕ(x+ 1, ~y)) whenever ϕ ∈ Σn.

It is well known that PRA is faithfully interpretable in IΣR1 in the expected
way, that is, every function symbol is replaced by its definition in terms of se-
quences. For a comparison the other way around, we have the following lemma.

Lemma 9.1.2. IΣR1 ⊆ PRA.

Proof. The proof goes by induction on the length of a proof in IΣR1 . If IΣ
R
1 ` ϕ

without any applications of the Σ1 induction rule, it is clear that PRA ` ϕ.
So, suppose that the last step in the IΣR1 -proof of ϕ were an application of

the Σ1-induction rule. Thus ϕ is of the form ∀x∃ y ϕ0(x, y, ~z) and we obtain
shorter IΣR1 -proofs of the Σ1-statements ∃ y ϕ0(0, y, ~z) and ∃ y′ (ϕ0(x, y, ~z) →
ϕ0(x + 1, y′, ~z)). The induction hypothesis tells us that these statements are
also provable in PRA. Herbrand’s theorem for PRA provides us with primitive
recursive functions g(~z) and h(x, y, ~z) such that

PRA ` ϕ0(0, g(~z), ~z) (1)

and

PRA ` ϕ0(x, y, ~z)→ ϕ0(x+ 1, h(x, y, ~z), ~z) (2)

Let f(x, ~z) be the primitive recursive function defined by

{
f(0, ~z) = g(~z),
f(x+ 1, ~z) = h(x, f(x, ~z), ~z).

By (1) and (2) it follows from ∆0-induction in PRA that PRA ` ∀x ϕ0(x, f(x, ~z), ~z)
whence PRA ` ∀x∃ y ϕ0(x, y, ~z). a

1Confusingly enough Smoryński later defines in [Smo85] a version of PRA which is equiv-
alent to IΣ1.
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In [Bek97], a characterization of IΣRn is given in terms of reflection principles.
Reflection principles turn out to be very useful in axiomatizing arithmetical
theories.

For a theory T and a class of formulas Γ we define the uniform reflection
principle for Γ over T to be a set of formulas in the following way: RFNΓ(T ) :=
{∀x (2T γ(ẋ) → γ(x)) | γ ∈ Γ}. This set of formulas is often equivalent to
a single formula also denoted by RFNΓ(T ). For ordinals α ≤ ω we define
(T )Γ0 := T , (T )Γα+1 := (T )Γα + RFNΓ((T )

Γ
α) and (T )Γω := ∪β<ω(T )

Γ
β . This can

be extended to transfinite ordinals, provided an elementary system of ordinal
notation is given. If Γ is just the class of Πn-formulas we write (T )nα instead of
(T )Πn

α .
The following facts illustrate the usefulness of reflection principles in describ-

ing theories. Identity in the statements below, refer to the set of theorems of a
theory.

Theorem 9.1.3 (Leivant ([Lei83])). IΣn = RFNΠn+2
(EA) (n ≥ 1)

Theorem 9.1.4 (Beklemishev ([Bek97])). IΣRn = (EA)n+1ω (n ≥ 1)

Fact 9.1.5 (Kreisel, Levy ([KL68])). T + RFNΠn
(T ) is not contained in

any consistent Σn-extension of T .

Proof. Let S be some collection of Σn-sentences such that T + S extends T +
RFNΠn

(T ). We also have

T + S ` ∀x (2T (TrΠn
(ẋ))→ TrΠn

(x)).

By compactness we have for some particular Σn-sentence σ that T + σ `
∀x (2T (TrΠn

(ẋ)) → TrΠn
(x)). Consequently, T + σ ` ∀x (2T (TrΠn

(p¬σq)) →
TrΠn

(p¬σq)) and thus T ` σ → (2T (p¬σq)→ ¬σ). But we also have T ` ¬σ →
(2T (p¬σq) → ¬σ) hence T ` 2T (p¬σq) → ¬σ. Löb’s rule gives us T ` ¬σ in
which case T + S is inconsistent. a

Corollary 9.1.6. IΣn (n ≥ 1) is not contained in any consistent Σn+2-extension
of EA.

Proof. By Theorem 9.1.3 and Fact 9.1.5. a

From Theorem 9.1.4 we see that we can also take (EA)2ω as a definition
for PRA. Whenever we shall do so, we shall also work with the canonical
axiomatization of (EA)2ω, that is, the following.

Since we have partial truth definitions and we are talking global reflection
we have that {∀x (2Tπ(ẋ) → π(x)) | π ∈ Π2} can be expressed by a single
sentence RFNΠ2

(T ). Let ε denote the sentence axiomatizing EA. We define a
sequence of axioms πi as follows.

π0 := ε,

πm+1 := πm ∧ ∀Π2ϕ (2πm
ϕ→ TrueΠ2

(ϕ)).
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Clearly, πm axiomatizes (EA)2m. An advantage of this axiomatization, is that
the fact that any Σ2-extension of PRA is reflexive, becomes immediate.

Lemma 9.1.7. (In EA.) Any Σ2-extension of (EA)2ω is reflexive.

Proof. Let σ be a Σ2-sentence. Reason in (EA)2ω + σ and assume for a contra-
diction that 2(EA)2m+σ⊥ for some m. We then have 2(EA)2m¬σ and by πm+1 we
obtain ¬σ. a

9.2 Parsons’ theorem

Parsons’ theorem says that IΣ1 is Π2-conservative over PRA. It was proved in-
dependently by C. Parsons ([Par70], [Par72]), G. Mints ([Min72]) and G. Takeuti
([Tak75]). As PRA is often associated with finitism, Parsons’ theorem can be
considered of great importance as a partial realization of Hilbert’s programme.

The first proofs of Parsons’ theorem were all of proof-theoretical nature.
Parsons’ first proof, [Par70], is based upon Gödel’s Dialectica interpretation. His
second proof, [Par72], merely relies on a cut elimination. Mints’ proof, [Min72],
employs the no-counterexample interpretation of a special sequent calculus. The
proof by Takeuti, [Tak75], employs an ordinal analysis in the style of Gentzen.

Over the years, many more proofs of Parsons’ theorem have been published.
In many accounts Herbrand’s theorem plays a central role in providing primi-
tive recursive Skolem functions for Π2-statements provable in IΣ1. (Cf. Sieg’s
method of Herbrand analysis [Sie91], Avigad’s proof by his notion of Herbrand
saturated models [Avi02], Buss’s proof by means of his witness functions [Bus98],
and Ferreira’s proof using Herbrand’s theorem for Σ3 and Σ1-formulas [Fer02].)
A first model-theoretic proof is due to Paris and Kirby. They employ semi-
regular cuts in their proof (cf. [Sim99]:373-381).

In this thesis, we will add two more proofs to the long list. The first proof is
given in Section 9.2.1. It is a proof-theoretic proof and can be seen as a modern
version of Parsons’ second proof. The main ingredient is the cut elimination
theorem for Tait’s sequent calculus.

The second proof is given in Section 10.1. It is a model-theoretic proof. A
central ingredient is an analysis of the difference between PRA and IΣ1 in terms
of iteration of total functions.

9.2.1 A proof-theoretic proof of Parsons’ theorem

The first proof we give of Parsons’ theorem is proof-theoretic. Our presentation
is due to L. Beklemishev. It will become evident that the whole argument is
easily formalizable as soon as the superexponential function2 is provably total.
This is because our proof only uses the standard cut elimination theorem.

In this section we will work with a fragment of first order predicate logic that
only contains ∧,∨,∀,∃ and ¬, where ¬ may only occur on the level of atomic

2We shall write supexp, both for the function itself, as for the sentence asserting its totality.
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formulae. We can define → and unrestricted negation as usual. We shall thus
freely use these connectives too.

A proof system for this fragment of logic in the form of a Tait calculus is
provided in [Sch77]. We will use this calculus in our proof. The calculus works
with sequents which are finite sets and should be read disjunctively in the sense
that Γ = {ϕ1, . . . , ϕn} stands for ϕ1 ∨ . . . ∨ ϕn. We will omit the set-brackets
{}. The axioms of the Tait calculus are:

Γ, ϕ,¬ϕ for atomic ϕ.

The rules are:

Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ
,

Γ, ϕ

Γ, ϕ ∨ ψ
,

Γ, ψ

Γ, ϕ ∨ ψ
,

Γ, ϕ(a)

Γ,∀x ϕ(x)
,

Γ, ϕ(t)

Γ,∃x ϕ(x)
,

plus the cut rule

Γ, ϕ Γ,¬ϕ

Γ
.

In the rule for the universal quantifier introduction it is necessary that the
a does not occur free anywhere else in Γ. And in the rule for the introduction
of the existential quantifier one requires t to be substitutable for x in ϕ. In our
proof we use the nice properties that this calculus is known to posses. Most
notably the cut elimination theorem and some inversion properties.

Let us now fix our versions of PRA and IΣ1 for this section.

Definition 9.2.1 (IΣ1). The theory IΣ1 is an extension of predicate logic with
some easy Π1-fragment of arithmetic (for example the Π1-part of Robinson’s
arithmetic Q), together with all axioms of the form

∀x (¬Progr(ϕ, x) ∨ ϕ(x, ~y)).

Here ϕ is some Σ1-formula and Progr(ϕ, x) is the Π2-formula that is equivalent
to

ϕ(0, ~y) ∧ ∀x (ϕ(x, ~y)→ ϕ(x+ 1, ~y)).

Definition 9.2.2 (PRA). The theory IΣR1 , also called Primitive Recursive Arith-
metic, is the extension of predicate logic that arises by adding a simple Π1-
fragment of arithmetic3 together with the Σ1-induction rule to it. Here, the
Σ1-induction rule is

Γ, ϕ(0, ~y) Γ,∀x (¬ϕ(x, ~y) ∨ ϕ(x+ 1, ~y))

Γ, ϕ(t, ~y)
.

where Γ is a Π2-sequent, ϕ a Σ1-formula and t is free for x in ϕ.
3The same fragment as in Definition 9.2.1.
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Theorem 9.2.3. IΣ1 is Π2-conservative over IΣR1 .

Proof. So, our aim is to prove that if IΣ1 ` π then IΣR1 ` π whenever π is a
Π2-sentence. If IΣ1 ` π, then by induction on the length of such a proof we
see that some sequent Σ, π is provable in the pure predicate calculus. Here Σ
is a finite set of negations of axioms of IΣ1. By the cut elimination theorem for
the Tait calculus we know that there exists a cut-free derivation of the sequent.
Thus we also have the sub-formula property (modulo substitution of terms) for
our cut-free proof of Σ, π.

The proof is concluded by showing by induction on the length of cut-free
derivations that if a sequent of the form Σ,Π is derivable then IΣR1 ` Π. Here Σ
is a finite set of negations of induction axioms of Σ1-formulas and Π is a finite
non-empty set of Π2-formulas.

The basis case is trivial. So, for the inductive step, suppose we have a cut-
free proof of Σ,Π. What can be the last step in the proof of this sequent? Either
the last rule yielded something in the Π-part of the sequent or in the Σ-part of
it. In the first case nothing interesting happens and we almost automatically
obtain the desired result by the induction hypothesis.

So, suppose something had happened in the Σ-part. All formulas in this
part are of the form ∃ a [ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1)) ∧ ¬ϕ(a)], with ϕ∈Σ1.

The last deduction step thus must have been the introduction of the exis-
tential quantifier and we can by a one step shorter proof derive for some term
t the following sequent.

Σ′, ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1)) ∧ ¬ϕ(t),Π

By the inversion property of the Tait calculus (for a proof and precise formu-
lation of the statement consult e.g. [Sch77] page 873) we obtain proofs of the
same length of the following sequents

Σ′, ϕ(0),Π , Σ′,∀x (ϕ(x)→ ϕ(x+ 1)),Π and Σ′,¬ϕ(t),Π.

As all of ϕ(0),∀x (ϕ(x)→ ϕ(x+ 1)) and ¬ϕ(t) are Π2-formulas, we can apply
the induction hypothesis to conclude that we have the following.

IΣR1 ` ϕ(0),Π (1)
IΣR1 ` ∀x (ϕ(x)→ ϕ(x+ 1)),Π (2)
IΣR1 ` ¬ϕ(t),Π (3)

Recall that Π consists of Π2-statements. So, we can apply the Σ1-induction
rule to (1) and (2) and obtain ϕ(t),Π. This together with (3) yields by one
application of the cut rule (in IΣR1 ) the desired result, that is, IΣR1 ` Π. a

Corollary 9.2.4. IΣn is Πn+1-conservative over IΣRn .

Proof. IΣRn is defined as the canonical generalization of Definition 9.2.2. Chang-
ing the indices in the proof of Theorem 9.2.3 immediately yields the result. a
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In [Bek03a] this result is stated as Corollary 4.8. It is a corollary of his Re-
duction property, Theorem 2, which is also formalizable in the presence of the
superexponential function. The proof of Parsons’ theorem we have presented
here is very close to the proof of the reduction property.

9.3 Cuts, consistency and length of proofs

A direct consequence of the formalizability of Parsons’ theorem is that PRA
and IΣ1 are equi-consistent. To be more precise, for every theory T proving the
totality of the superexponentiation we have that

T ` Con(PRA)↔ Con(IΣ1).

Consequently IΣ1 0 Con(PRA). In this section we take PRA to be IΣR1 and
shall see that we can find a definable IΣ1-cut J such that IΣ1 ` ConJ (PRA).
More generally, we shall show that for all n, we can find an IΣn-cut Jn, such
that4 IΣn + σ ` ConJn(IΣRn + σ) for any σ ∈ Σn+1.

As in [Pud86] and [Ign90] we note that Theorem 9.3.1 implies that certain
proofs in PRA must be non-elementary larger than their counterparts in IΣ1.
This, in a sense, says that the use of the cut elimination, whence the super
exponential blow-up, in the proof of Theorem 9.2.3 was essential.

To the best of our knowledge Ignjatovic ([Ign90]) showed for the first time
that IΣ1 proves the consistency of PRA on some definable cut. His reasoning
was based on a paper by Pudlák ([Pud86]). Pudlák showed in this paper by
model-theoretic means that GB proves the consistency of ZF on a cut. The cut
that Ignjatovic exposes is actually an RCA0-cut. (See for example [Sim99] for
a definition of RCA0.)

The elements of Ignjatovic’ cut correspond to complexities of formulas for
which a sort of truth-predicate is available. By an interpretability argument it is
shown that a corresponding cut can be defined in IΣ1. It seems straight-forward
to generalize his result to obtain Corollary 9.3.2

Theorem 9.3.1. (In EA.) For each n∈ω with n≥ 1, there exists some IΣn-cut
Jn such that for all Σn+1-sentences σ, IΣn + σ ` ConJn(IΣRn + σ).

Proof. We recall that IΣRn ≡ (EA)n+1ω . Let ε be the arithmetical sentence ax-
iomatizing EA. In analogy with Section 9.1 we fix the following axiomatization
{inm}m∈ω of IΣRn :

in0 := ε,

inm+1 := inm ∧ ∀
Πn+1π (2inmπ → TrueΠn+1

(π)).

The map that sends m to the code of inm is clearly primitive recursive. We will
assume that the context makes clear if we are talking about the formula or its

4With IΣR
n + σ we mean the theory axiomatized by σ and all theorems of IΣR

n .
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code when writing inm. Similarly for other formulas. An IΣn-cut Jn is defined
in the following way.

J ′n(x) := ∀ y≤x TrueΠn+1
(iny ).

We will now see that J ′n defines an initial segment in IΣn. Clearly IΣn ` J
′
n(0).

It remains to show that IΣn ` J
′
n(m)→ J ′n(m+1).

So, we reason in IΣn and assume J ′n(m). We need to show that TrueΠn+1
(inm+1),

that is,

TrueΠn+1
(inm ∧ ∀

Πn+1π (2inmπ → TrueΠn+1
(π))).

Our assumption gives us TrueΠn+1
(inm) thus we need to show

TrueΠn+1
(∀Πn+1π (2inmπ → TrueΠn+1

(π))) or, equivalently, ∀Πn+1π (2inmπ →
TrueΠn+1

(π)). The latter is equivalent to

∀Πn+1π 2EA(TrueΠn+1
(inm)→ TrueΠn+1

(π))→ TrueΠn+1
(π). (9.1)

But as TrueΠn+1
(inm) → TrueΠn+1

(π) ∈ Πn+2, and as IΣn ≡ RFNΠn+2
(EA), we

get that

∀Πn+1π 2EA(TrueΠn+1
(inm)→ TrueΠn+1

(π))→ (TrueΠn+1
(inm)→ TrueΠn+1

(π)).

We again use our assumption TrueΠn+1
(inm) to obtain (9.1). Thus indeed, J ′n(x)

defines in initial segment. By well known techniques, J ′n can be shortened to a
definable cut.

To finish the proof, we reason in IΣn + σ and suppose 2Jn

IΣR
n+σ
⊥. Thus for

some m∈Jn we have 2inm∧σ⊥ whence also 2inm¬σ. Now m∈Jn, so also m+1∈Jn
and thus TrueΠn+1

(inm ∧ ∀
Πn+1π (2inmπ → TrueΠn+1

(π))). As ∀Πn+1π (2inmπ →
TrueΠn+1

(π)) is a standard Πn+1-formula (with possibly non-standard parame-
ters) we see that we have the required Πn+1-reflection whence 2inm¬σ yields us

¬σ. This contradicts with σ. Thus we get ConJn(IΣRn + σ). a

Corollary 9.3.2. There exists an IΣ1-cut J such that for any Σ2 sentence σ
we have IΣ1 + σ ` ConJ(PRA + σ).

Proof. Immediate from Theorem 9.3.1 as PRA = IΣR1 . a



Chapter 10

Models for PRA and IΣ1

In this chapter we study how models of PRA compare to models of IΣ1. As
a result of this study, we give a model-theoretic proof of Parsons’ theorem.
In Section 10.2 we shall see a second proof of the fact that IΣ1 proves the
consistency of PRA on a definable cut. The proof does not make use of our
previous study on models. However, we shall work with a formulation of PRA
that is reminiscent to the one used in Section 10.1.

10.1 A model theoretic proof of Parsons’ theo-
rem

In this section we shall give a model theoretic proof of Parsons’ theorem. Our
proof has the following outline.

In Subsection 10.1.1 we give a slightly renewed proof of a theorem by Gaif-
man and Dimitracopoulos. This theorem says that under certain conditions
a definitional extension of a theory has nice properties, like proving enough
induction.

In Subsection 10.1.2 we use this theorem to give a characterization of IΣ1

in terms of PRA and closure under iteration of a certain class of functions. In
Theorem 10.1.12 we will see what it takes for a model M of PRA to also be
a model of IΣ1: A class of functions of this model should be majorizable by
another class of functions.

This theorem is at the heart of our model theoretic proof of Parsons’ theo-
rem in Subsection 10.1.3. We will show that any countable model N of PRA
falsifying π ∈ Π2 can be extended to a countable model N ′ of IΣ1+¬π whence
IΣ1 0 π. In extending the model we will, having Theorem 10.1.12 in the back of
our mind, repeatedly majorize functions to finally obtain a model of IΣ1 + ¬π.

Our proof is based on a proof sketch in an unpublished note of Visser
([Vis90b]). The very same note inspired Zambella in his [Zam96] for a proof of
a conservation result of Buss’ S12 over PV.

141
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First, we fix some formulation of PRA and IΣ1 that suits the purposes of
this section.

Definition 10.1.1. The language of PRA is the language of PA plus a family
of new function symbols {Supn | n∈ω}. The non-logical axioms of PRA come
in three sorts.

• Defining axioms for +, ·, and <,1

• Defining axioms for the new symbols

– ∀x Sup0(x) = 2x,

– {Supn+1(0) = 1},

– {∀x Supn+1(x+ 1) = Supn(Supn+1(x)) | n ∈ ω},

• Induction axioms for ∆0({Supi}i∈ω)-formulas in the following form:
∀x (ϕ(0) ∧ ∀ y<x (ϕ(y)→ ϕ(y + 1))→ ϕ(x)).

The logical axioms and rules are just as usual.

The functions Supi describe on the standard model a well-known hierarchy;
Sup0 is the doubling function, Sup1 is the exponentiation function, Sup2 is super-
exponentiation, Sup3 is superduperexponentiation and so on. It is also known
that the Supi form an envelope for PRA, that is, every provably total recursive
function of PRA gets eventually majorized by some Supi. (Essentially this is
Parikh’s theorem [Par71].) Consequently all terms of PRA are majorizable by
a strictly monotone one.

PRA proves all the evident properties of the Supi functions like Supn(1) = 2,
1 ≤ Supn+1(y), x ≤ y → Supn(x) ≤ Supn(y), n≤m→ Supn(x)≤Supm(y) and so
on. Of course PRA proves in a trivial way the totality of all the Supi as these
symbols form part of our language. We have chosen an equivalent variant of
the usual induction axiom so that we end up with a Π1-axiomatization of PRA.
It is easy to see that our definition of PRA is equivalent, or more precisely
equi-interpretable, to any other of our definitions of PRA.

Definition 10.1.2. The theory IΣ1 is the theory that is obtained by adding
to PRA induction axioms ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1)) → ∀x ϕ(x) for all
Σ1({Supi}i∈ω)-formulas ϕ(x) that may contain additional parameters.

Reading conventions Throughout this section we will adhere to the fol-
lowing notational convention. Arithmetical formulas defining the graph of a
function are denoted by lowercase Greek letters. The corresponding lower case
Roman letter is reserved to be the symbol that refers to the function described
by its graph. By the corresponding upper case Roman letter we will denote the
very short formula that defines the graph using the lower case Roman letter and

1We can take for example Kaye’s system PA− from [Kay91] where in Ax 13 we replace the
unbounded existential quantifier by a bounded one.
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the identity symbol only. Context, like indices and so forth, are inherited in the
expected way.

For example, if χn(x, y) is an arithmetical formula describing a function,
in a richer language this function will be referred to by the symbol gn. The
corresponding Gn will refer to the simple formula gn(x) = y in the enriched
language.

10.1.1 Introducing a new function symbol

In our discussion we shall like to work with a theory that arises as an extension
of PRA by a definition. We will add a new function symbol f to the language
of PRA together with the axiom ϕ that defines f . Moreover we would like
to employ induction that involves this new function symbol, possibly also in
the binding terms of the bounded quantifiers. We will see that if the function
f allows for a simple definition and has some nice properties we have indeed
access to the extended form of induction.

Essentially the justification boils down to a theorem of Gaifman and Dimi-
tracopoulos [GD82] a proof of which can also be found in [HP93] (Theorem 1.48
and Proposition 1.3). We will closely follow here a proof of Beklemishev from
[Bek97] which we slightly improved and modified.

We first give the necessary definitions before we come to formulate the main
result, Theorem 10.1.8

Definition 10.1.3 (∆0({gi}i∈I)-formulas, I∆0({gi}i∈I)).
Let {gi}i∈I be a set of function symbols. The ∆0({gi}i∈I)-formulas are the
bounded formulas in the language of PA enriched with the function symbols
{gi}i∈I . The new function symbols are also allowed to occur in the binding
terms of the bounded quantifiers. By I∆0({gi}i∈I) we mean the theory that
comprises

• some open axioms describing some minimal arithmetic2,

• induction axioms for all ∆0({gi}i∈I)-formulas and

• (possibly) defining axioms of the symbols {gi}i∈I .

The defining axioms of the symbols {gi}i∈I are denoted by D({gi}i∈I).

From now on, we may thus write I∆0({Supi}i∈ω) instead of PRA.

Definition 10.1.4 (Tot(ϕ), Mon(ϕ)).
Let ϕ(x, y) be a ∆0({gi}i∈I) formula. By Tot(ϕ) we shall denote the formula
∀x∃ ! y ϕ(x, y)3 stating that ϕ can be regarded as a total function. By Mon(ϕ)
we shall denote the formula ∀x, x′, y, y′ (x ≤ x′ ∧ ϕ(x, y) ∧ ϕ(x′, y′) → y ≤
y′) ∧ Tot(ϕ) stating the monotonicity of the total ϕ.

2For example the open part of Robinson’s arithmetic.
3That is, ∀x∃y ϕ(x, y) ∧ ∀x∀y ∀y′ (ϕ(x, y) ∧ ϕ(x, y′)→ y = y′).
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Definition 10.1.5 (∆0({gi}i∈I , F )-formula, I∆0({gi}i∈I , F )).
Let ϕ be such that I∆0({gi}i∈I) ` Tot(ϕ). Recall that the uppercase letter F
paraphrases the formula f(x) = y. A ∆0({gi}i∈I , F )-formula is a ∆0({gi}i∈I)-
formula possibly containing occurrences of F . By I∆0({gi}i∈I , F ) we denote
the theory I∆0({gi}i∈I) where we now also have induction for ∆0({gi}i∈I , F )
formulas. The defining axiom of f , in our case ϕ, is also in I∆0({gi}i∈I , F ).

Note that f cannot occur in a bounding term in an induction axiom of
I∆0({gi}i∈I , F ). Also note that F is nothing but a formula containing f stating
f(x) = y and consists of just six symbols (if f is unary). Of course later we will
substitute for F an arithmetical definition of the graph of f , that is, ϕ(x, y).

The main interest of the extension of I∆0({gi}i∈I) by a definition of f is in
Theorem 10.1.8 and in its Corollary 10.1.9. The latter says that we can freely use
f(x) as an abbreviation of ϕ(x, y) and have access to ∆0({gi}i∈I , f)-induction
whenever f has a ∆0({gi}i∈I) graph and is provably total and monotone in
I∆0({gi}i∈I).

First we prove some technical but rather useful lemmata. They are slight
improvements of Beklemishev’s Lemma 5.12 and 5.13 from [Bek97]. From now
on we will work under the assumptions of Theorem 10.1.8 so that I∆0({gi}i∈I) is
such that any term t in its language is provably majorizable by some other term
t̃ that is strictly increasing in all of its arguments. Throughout the forthcoming
proofs we will for any term t denote by t̃ such a term that is provably strictly
monotone (in all of its arguments) and majorizing t.

Lemma 10.1.6. For every term s(~a) of I∆0({gi}i∈I , f) and every
R ∈ {≤,≥,=, <,>} there are terms tRs and s̃(a) strictly increasing in all of their
arguments and a ∆0({gi}i∈I , F )-formula ψRs (~a, b, y) such that I∆0({gi}i∈I , F )+
Mon(ϕ) ` ∀ y≥tRs (~a) (s(~a)Rb ↔ ψRs (~a, b, y)) and I∆0({gi}i∈I , F ) + Mon(ϕ) `
∀ ~x (s(~x) ≤ s̃(~x)).

Proof. The proof proceeds by induction on s(~a). In the basis case nothing has to
be done as xiRb, 0Rb and 1Rb are all atomic ∆0({gi}i∈I , F )-formulas. Moreover
all of the xi, 0 and 1 are (provably) strictly monotone in all of their arguments.
For the induction case consider s(~a) = h(s1(~a)), where h is either one of the gi
or h = f . For simplicity we assume here that h is a unary function.

The induction hypothesis provides us with a ∆0({gi}i∈I , F )-formula
ψ=s1(~a, b, y) and terms t=s1(~a) and s̃1(~a) such that

I∆0({gi}i∈I , F ) + Mon(ϕ) ` ∀ y≥t=s1(~a) (s1(~a) = b↔ ψ=s1(~a, b, y)),

and

I∆0({gi}i∈I , F ) + Mon(ϕ) ` ∀ ~x (s1(~x) ≤ s̃1(~x)).

We now want to say that h(s1(~a))Rb in a ∆0({gi}i∈I , F ) way. This can be done
by ∃ y′, y′′≤y (ψ=s1(~a, y

′, y)∧h(y′) = y′′∧y′′Rb) whenever y ≥ t=s1(~a)+ s̃(~a). Here
we define s̃(~a) to be just f(s̃1(~a)) in case h = f and g̃i(s̃1(~a)) in case h = gi.
Clearly I∆0({gi}i∈I , F ) + Mon(ϕ) ` ∀ ~x (s(~x) ≤ s̃(~x)). Indeed one easily sees
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that

I∆0({gi}i∈I , F ) + Mon(ϕ) ` ∀ y≥t=s1(~a) + s̃(~a) [h(s1(~a))Rb↔
∃ y′, y′′≤y (ψ=s1(~a, y

′, y) ∧ h(y′) = y′′ ∧ y′′Rb)].

It is also easy to see that t=s1(~a) + s̃(~a) is indeed monotone. In case h = f we
need Mon(ϕ) here.

A similar reduction applies to the case when the function g has more than
one argument. a

It is possible to simplify the above reduction a bit by distinguishing between
h = f and h 6= f and also R == and R 6==, or by proving the lemma just for
R == and showing that all the other cases can be reduced to this. We are not
very much interested in optimality at this point though.

Lemma 10.1.7. For every ∆0({gi}i∈I , f)-formula θ(~a) there is a
∆0({gi}i∈I , F )-formula θ0(~a, y) and a provably monotonic term tθ(~a) such that
I∆0({gi}i∈I , F ) + Mon(ϕ) ` ∀ y≥tθ(~a) (θ(~a)↔ θ0(~a, y)).

Proof. The lemma is proved by induction on θ.

• Basis. In this case θ(~a) is s1(~a)Rs2(~a). Applying Lemma 10.1.6 we see
that4 s1(~a)Rs2(~a)↔ ∃ b≤y (ψ=s2(~a, b, y) ∧ ψ

R
s1
(~a, b, y)) whenever

y ≥ ts1(~a) + ts2(~a).

• The only interesting induction case is where a bounded quantifier is in-
volved. We consider the case when θ(~a) is ∃x≤s(~a) ξ(~a, x). The induction
hypothesis yields a provably monotonic term tξ(~a, x) and a ∆0({gi}i∈I , F )-
formula ξ0(~a, x, y) such that provably

∀ y≥tξ(~a, x) (ξ(~a, x)↔ ξ0(~a, x, y))

. Combining this with Lemma 10.1.6 we get that provably

∃x≤s(~a) ξ(~a, x)↔ ∃x′≤y (ψ=s (~a, x
′, y) ∧ ∃x≤x′ ξ0(~a, x, y))

5

whenever y ≥ s̃(~a) + t=s (~a) + tξ(~a, s̃(~a)).

a

Theorem 10.1.8. Let I∆0({gi}i∈I) be such that any term t in its language is
provably majorizable by some other term t̃ that is strictly increasing in all of its
arguments. We have that I∆0({gi}i∈I , F ) + Mon(ϕ) ` I∆0({gi}i∈I , f).

4If we only want to use Lemma 10.1.6 with R being = we can observe that s1(~a)Rs2(~a)↔
∃ b, c≤y (ψ=s1 (~a, b, y) ∧ ψ

=
s2
(~a, c, y) ∧ bRc) whenever y ≥ ts1 (~a) + ts2 (~a).

5Alternatively, one could take ∃x≤y (ψ≥s (~a, x, y) ∧ ξ0(~a, x, y)) for y ≥ t≥s (~a) + tξ(~a, s̃(~a)).
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Proof. We will prove the least number principle for ∆0({gi}i∈I , f)-formulas in
I∆0({gi}i∈I , F ) + Mon(ϕ) as this is equivalent to induction for ∆0({gi}i∈I , f)-
formulas. So, let θ(x,~a) be a ∆0({gi}i∈I , f)-formula and reason in I∆0({gi}i∈I , F )
+Mon(ϕ). By Lemma 10.1.7 we have a strict monotonic term tθ(x,~a) and
a ∆0({gi}i∈I , F )-formula θ0(x,~a, y) such that θ(x,~a) ↔ θ0(x,~a, y) whenever
y ≥ tθ(x,~a).

Now assume ∃x θ(x,~a). We will show that ∃x (θ(x,~a) ∧ ∀x′<x ¬θ(x′,~a)).
Let x be such that θ(x,~a). We now fix some y ≥ tθ(x,~a). Thus we have
θ0(x,~a, y). Applying the least number principle to the ∆0({gi}i∈I , F )-formula
θ0(x,~a, y) we get a minimal x0 such that θ0(x0,~a, y). As x0 < x and tθ is
monotone we have y ≥ tθ(x,~a) ≥ tθ(x0,~a) and thus θ(x0,~a). If now x′ < x0
such that θ(x′,~a) then also θ0(x

′,~a, y) which would conflict the minimality of
x0 for θ0. Thus x0 is the minimal element such that θ(x0,~a). a

As in [Bek97] (Remark 5.14) we note here that Theorem 10.1.8 shows that
∆0({gi}i∈I , f)-induction is actually provable from ∆0({gi}i∈I , F )-induction where
the bounding terms are just plain variables. Also we note that Lemma 10.1.6
and Lemma 10.1.7 do not use the full strength of I∆0({gi}i∈I , F ).

Corollary 10.1.9. Let I∆0({gi}i∈I) be such that any term t in its language is
provably majorizable by some other term t̃ that is strictly increasing in all of its
arguments. Let f be ∆0({gi}i∈I)-definable by ϕ. Then, I∆0({gi}i∈I)+Mon(ϕ) `
I∆0({gi}i∈I , f).

Proof. Immediate from Theorem 10.1.8 by replacing every occurrence of F by
ϕ. a

10.1.2 PRA, IΣ1 and iterations of total functions

This subsection contains two main results. In Theorem 10.1.11 we shall char-
acterize the difference between IΣ1 and PRA in terms of provable closure of
iteration of a certain class of functions.

In Theorem 10.1.12 we use this characterization to give a sufficient condition
for a model of PRA to be also a model of IΣ1.

Let us first specify what we mean by function iteration. If f denotes a
function we will denote by f it the (unique) function satisfying the following
primitive recursive schema: f it(0)=1, f it(x+ 1)=f(f it(x)).

Definition 10.1.10. Let ϕ(x, y) be some formula. By ϕit(x, y) we denote
∃σ ϕ̃it(σ, x, y) where ϕ̃it(σ, x, y) is the formula
Finseq(σ) ∧ lh(σ) = x+ 1 ∧ σ0 = 1 ∧ σx = y ∧ ∀ i<x ϕ(σi, σi+1).

Note that if PRA proves the functionality of a ∆0({Supi}i∈ω)-formula ϕ, it
also proves the functionality of ϕ̃it, for example by proving by induction on σ
that ∀σ ∀x, y, y′, σ′≤σ (ϕ̃it(σ, x, y) ∧ ϕ̃it(σ′, x, y′)→ σ = σ′ ∧ y = y′).

As we will need upperbounds on sequences of numbers a short remark
on coding is due here. By [a0, . . . , an] we will denote the code of the se-
quence a0, . . . , an of natural numbers via some fixed coding technique. By
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[a0, . . . , an]u[b0, . . . , bm] we will denote the code of the sequence
a0, . . . , an, b0, . . . , bm that arises from concatenating b0, . . . , bm to a0, . . . , an
(to the right).

The projection functions are referred to by sub indexing. So, σi will be
ai if σ = [a0, . . . , an] and i ≤ n and zero if i > n, and n + 1 is called the
length of σ. We say that σ is an initial subsequence of σ′ if σ = [a0, . . . an] and
σ′ = [a0, . . . an, . . . am] and m ≥ n. We denote this by σ v σ′.

Further, we shall employ well known expressions like lh(σ), giving the length
of a sequence σ. If we write down statements involving sequences we will tacitly
assume that the statements actually make sense. For example, ∀ i<lh(x) ψ will
thus actually denote Finseq(x) ∧ ∀ i<lh(x) ψ.

We shall not fix any specific coding protocol as any protocol with elementary
projections, concatenation etcetera is good for us.

The following theorem tells us what is the difference between PRA and IΣ1

in terms of totality statements of ∆0({Supi}i∈ω)-definable functions.

Theorem 10.1.11. IΣ1 ≡ PRA+ {Tot(ϕ)→ Tot(ϕit) | ϕ ∈ ∆0({Supi}i∈ω)}.

Proof. For one inclusion we only need to show that IΣ1 ` Tot(ϕ) → Tot(ϕit)
but this follows easily from a Σ1-induction on x in ∃σ ∃ y ϕ̃it(σ, x, y) under
the assumption that ∀x∃ y ϕ(x, y). We shall thus concentrate on the harder
direction PRA + {Tot(ϕ)→ Tot(ϕit) | ϕ ∈ ∆0({Supi}i∈ω)} ` IΣ1.

To this end we reason in PRA + {Tot(ϕ) → Tot(ϕit) | ϕ ∈ ∆0({Supi}i∈ω)}
and assume ∃ y ψ(0, y)∧∀x (∃y ψ(x, y)→ ∃ y ψ(x+1, y)) for some ∆0({Supi}i∈ω)-
formula ψ(x, y). Our aim is to obtain ∀x∃ y ψ(x, y).

Let Leastψ,x(y) denote the formula ψ(x, y)∧∀ y′<y ¬ψ(x, y′). We are going to
define in a ∆0({Supi}i∈ω)-way a formula ϕ(x, y) so that f it(x+1) = [y0, · · · , yx]
with ∀ i≤x Leastψ,i(yi).

ϕ(x, y) :=





(i) (x = 0 ∧ y = 0) ∨
(ii) (x = 1 ∧ ∃ y′<y (y = [y′] ∧ Leastψ,0(y

′))) ∨
(iii) (x > 1 ∧ ∀ i<lh(x) Leastψ,i(xi)∧

∃ y′<y (y = xu[y′] ∧ Leastψ,lh(x)(y
′))) ∨

(iv) (x > 1 ∧ ¬(∀ i<lh(x) Leastψ,i(xi)) ∧ y = 0)

Thus, the function f defined by ϕ has the following properties. It is always
zero unless x=1 or x is of the form [y0, · · · , yn] where each yi is the smallest
witness for ∃y ψ(i, y).

We note, that by our assumptions ∃y ψ(0, y) and ∀x (∃y ψ(x, y)→ ∃y ψ(x+1, y)),
the function f is total. As the definition of ϕ is clearly ∆0({Supi}i∈ω) we may
conclude Tot(f it).

We shall show that f it is ∆0({Supi}i∈ω)-definable, and that provably Mon(f it).
If we know this, then our result follows immediately. Because, by an easy
I∆0({Supi}i∈ω, f

it)-induction we conclude ∀x ψ(x, (f it(x+1))x), whence ∀x∃y ψ(x, y).
By Corollary 10.1.9 we conclude PRA+{Tot(ϕ)→ Tot(ϕit) | ϕ ∈ ∆0({Supi}i∈ω)} `
∀x∃y ψ(x, y) and we are done.
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We will first see inside our theory that Mon(f it). The monotonicity of f it is
intuitively clear but we have to show that we can catch this intuition using only
∆0({Supi}i∈ω)-induction.

For example, we can first prove by induction on x that all of the f it(x+1) are
‘good sequences’ where by a good sequence we mean one of the form [y0, . . . , yx]
with the yi minimal witnesses to ∃y ψ(i, y). To make this a ∆0({Supi}i∈ω)-
induction we should reformulate the statement as for example
∀z ∀σ, x, y≤z (ϕ̃it(σ, x+ 1, y)→ Goodseq(y)).

Now assume ϕ̃it(σ′, x′, y′). We will show by induction on x that

∀x≤x′ ∃σ≤σ′ ∃ y≤y′ ϕ̃it(σ, x′ − x, y) (+)

from which monotonicity follows. If x = 0 we take σ′ = σ and y = y′. For the
inductive step, let σ ≤ σ′ and y ≤ y′ be such that ϕ̃it(σ, x′ − x, y). We assume
that x+ 1 ≤ x′ hence lh(σ) > 1, for if not, the solution is trivial.

By σ−1 we denote the sequence that is obtained from σ by deleting the
last element. Clearly ϕ̃it(σ−1, x

′ − x − 1, (σ−1)x′−x−1) and ϕ((σ−1)x′−x−1, y).
Thus (σ−1)x′−x−1 is a good sequence which implies that clause (iii) in the def-
inition of ϕ is used to determine y. Consequently (σ−1)x′−x−1 v y and thus
(σ−1)x′−x−1 ≤ y ≤ y′. Moreover we note that σ−1 v σ and thus σ−1 ≤ σ ≤ σ′.

We now want to show the ∆0({Supi}i∈ω)-ness of ϕit(x, y) by providing an
upperbound on the σ in ϕ̃it(σ, x, y). Under any reasonable choice of our coding
machinery, we can find an n ∈ ω such that

(a) [

x times︷ ︸︸ ︷
y, · · · , y] ≤ Supn(x+ y),

(b) Supn(x+ y)u[y] ≤ Supn(x+ y + 1).

For such an n it is not hard to see that

∃σ ϕ̃it(σ, x, y)↔ ∃σ′≤Supn(x+ y) ϕ̃it(σ, x, y).

This, we see by proving by induction on σ that

∀σ ∀x, y≤σ (ϕ̃it(σ, x, y)→ ∃σ′≤Supn(x+ y) ϕ̃it(σ, x, y)).

We note that this is sufficient as ϕ̃it(σ, x, y) → x, y ≤ σ. The only interesting
possibility in the induction step is when we get for some new x + 1, y that
ϕ̃it(σ+1, x+1, y). For σ′′ := (σ+1)−1 we have that σ

′′ < σ+1 and ϕ̃it(σ′′, x, y−1).
By the induction hypothesis we may assume that σ′′ ≤ Supn(x+ y−1). By the
definition of ϕ̃it, we now see that ϕ̃it(σ′′u[y], x+ 1, y). But,

σ′′u[y] ≤ Supn(x+ y−1)u[y]
≤ Supn(x+ y)u[y]
≤ Supn(x+ y + 1).

a
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We note that we filled the gap between PRA and IΣ1 by transforming an
admissible rule of PRA to axiom form. Indeed Tot(ϕ) |∼Tot(ϕit) is an admissible
rule of PRA. For if PRA ` Tot(ϕ), then f is a primitive recursive function as
is well known. But f it is constructed from f by a simple recursion. Thus f it is
primitive recursive and hence provably total in PRA. The same phenomenon
occurs in passing from IΣR1 to IΣ1 where the (trivially) admissible Σ1-induction
rule is added in axiom form to PRA to obtain IΣ1.

The fact that we allow for variables in Theorem 10.1.11 is essential. For if
not, the logical complexity of PRA + {Tot(ϕ) → Tot(ϕit) | ϕ∈∆0({Supi}i∈ω)}
would be6 ∆3 and so would be the logical complexity of IΣ1. But it is well
known that IΣ1 can not be proved by any consistent collection of Σ3-sentences.

A parameter-free version of PRA+{Tot(ϕ)→ Tot(ϕit) | ϕ∈∆−0 ({Supi}i∈ω)}
will be equivalent to parameter-free Σ1-induction, IΣ1

−.

We now come to prove a theorem that tells us when a model of PRA is also
a model of IΣ1. This lemma is formulated in terms of majorizability behavior
of some total functions. A total function of a model M is a relation ϕ(x, y)
(possibly with parameters from M) for which M |= Tot(ϕ). Often we will write
f ≤ g as short for ∀x (∃ y ϕ(x, y) → ∃ y′ (χ(x, y′) ∧ y ≤ y′)) and say that f is
majorized by g. Thus if f ≤ g we automatically have Tot(ϕ)→ Tot(χ).

Theorem 10.1.12. LetM be a model of PRA. If every ∆0({Supi}i∈ω)-definable
total function (with parameters) ofM is majorized bym+Supn for somem ∈M
and some n ∈ ω, thenM is also a model of IΣ1.

Proof. Let M be satisfying our conditions. To see that M |= IΣ1 we need
in the light of Theorem 10.1.11 to show that M |= Tot(ϕ) → Tot(ϕit) for any
∆0({Supi}i∈ω) function ϕ with parameters inM. So, we consider some function
f such thatM |= Tot(ϕ). We choose m ∈ M \ {0} and n ∈ ω large enough so
that

(a.) M |= f ≤ m+ Supn,

(b.) M |= ∀x (m+ Supn+1(mx+m+ 1) ≤ Supn+1(mx+m+m)).

The second condition is automatically satisfied if m is a non-standard ele-
ment.

An easy ∆0({Supi}i∈ω)-induction shows that (m+Supn)
it(x) ≤ Supn+1(mx+

m). (Remember that we have excluded m = 0.) The case x = 0 is trivial as

6Actually we should be more careful here as we work in a richer language. However this
makes no essential difference as all the Supn are ∆1-definable over PRA.
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1 ≤ Supn+1(m). For the inductive step we see that7

(m+ Supn)
it(x+ 1) =

(m+ Supn)((m+ Supn)
it(x)) ≤i.h.

m+ Supn(Supn+1(mx+m)) ≤def.
m+ Supn+1(mx+m+ 1) ≤(b.)
Supn+1(mx+m+m) = Supn+1(m(x+ 1) +m).

We can use the obtained bounds to show the totality of f it by estimating
the size of σ that witnesses ϕ̃it(σ, x, y). We know (outside PRA) that σ is of the
form

[1, f(1), f(f(1)), . . . , fx(1)] ≤
[1,m+ Supn(1),m+ Supn(f(1)), . . . ,m+ Supn(f

x−1(1))] ≤
[1,m+ Supn(1), (m+ Supn)

2(1), . . . , (m+ Supn)
2(fx−2(1))] ≤

...
...

[1,m+ Supn(1), (m+ Supn)
2(1), . . . , (m+ Supn)

x(1)] ≤
[(m+ Supn)

x(1), . . . , (m+ Supn)
x(1)] ≤

[Supn+1(mx+m), . . . ,Supn+1(mx+m)]

Every time we used dots here in our informal argument, some ∆0({Supi}i∈ω)-
induction should actually be applied. To neatly formalize our reasoning we
choose some k ∈ ω large enough for our n and m such that (inM)

(c.) [1] ≤ Supn+k(2m)

(d.) Supn+k(m(x+ 1) +m) u [Supn+1(m(x+ 1) +m)] ≤
Supn+k(m(x+ 2) +m)8

With these choices for m,n and k it is easy to prove by ∆0({Supi}i∈ω)-
induction that

∀x∃σ≤Supn+k(m(x+ 1) +m)∃ y≤Supn+1(mx+m) ϕ̃it(σ, x, y).

If x = 0 then ϕ̃it([1], 0, 1) and by (c.) we have [1] ≤ Supn+k(m(0+1)+m). Also
1 ≤ Supn+1(m). Now suppose ϕ̃it(σ, x, y) with σ and y below their respective
bounds. We have by the definition of ϕ̃it that ϕ̃it(σ u [f(y)], x+ 1, f(y)) (again
we do as if we had f available in our language). We need to show that the new
values do not grow too fast. But,

f(y) ≤I.H. f(Supn+1(mx+m)) ≤(a.)
m+ Supn(Supn+1(mx+m)) ≤(b.) f(Supn+1(m(x+ 1) +m))
7This looks like a legitimate induction but remember that (m + Supn)

it has an a priori
Σ1({Supi}i∈ω)-definition. The argument should thus be encapsulated in a ∆0({Supi}i∈ω)-

induction, for example by proving ∀ z ∀σ, x, y≤z ( ˜(m+ Supn)
it
(σ, x, y) → y ≤ Supn+1(mx +

m)). The essential reasoning though boils down to the argument given here.
8It is not hard to convince oneself that under any reasonable coding protocol such a k does

exist.
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as we have seen before. By (d.) we get that

σ u [f(y)] ≤I.H. Supn+k(m(x+ 1) +m) u [Supn+1(m(x+ 1) +m)]
≤(d.) Supn+k(m(x+ 2) +m).

a

10.1.3 The actual proof of Parsons’ theorem

In the setting of this section we formulate Parsons’ theorem as follows.

Theorem 10.1.13. ∀π ∈ Π2 (IΣ1 ` π ⇒ PRA ` π)

Before we give the proof of Parsons’ theorem we first agree on some model
theoretic notation.

We recall the definition ofM ′ being a 1-elementary extension ofM , denoted
by M ≺1 M

′. This means that M ⊆ M ′ and that for ~m ∈ M and σ(~y) ∈ Σ1

we have M |= σ(~m) ⇔ M ′ |= σ(~m). In this case we also say that M is a
1-elementary submodel of M ′. It is easy to see that

M ≺1 M
′ ⇔ [M |= σ(~m)⇒M ′ |= σ(~m)] for all σ(~y) ∈ Σ2.

A 1-elementary chain is a sequence M0 ≺1 M1 ≺1 M2 ≺1 . . . . It is well
known that the union of a 1-elementary chain is a 1-elementary extension of
every model in the chain. It is worthy to note that in a 1-elementary chain the
truth of Σ2-sentences (with parameters) is preserved from left to right and the
truth of Π2-sentences (without parameters) is preserved from right to left.

By Th(M,C) we denote the first-order theory of M with all constants from
C added to the language. This makes sense if we know how to interpret the
constants of C in M .
We also recall the definition of the collection principle.

BΓ := {∀x<t∃ y ϕ(x, y)→ ∃ s∀x<t∃ y<s ϕ(x, y) | ϕ ∈ Γ}

together with a minimum of arithmetical axioms, e.g. PA−. We now come to
the actual proof of Theorem 10.1.13.

Proof of Theorem 10.1.13. Let a countable modelM |= PRA+σ be given with
σ ∈ Σ2. We will construct a countable model M ′ of IΣ1 + σ using Theorem
10.1.12.

Our strategy will be to make any ∆0({Supi}i∈ω)-definable total function of
M that is not bounded by any of the m+Supn (n ∈ ω, m ∈M) either bounded
by some m + Supn (n ∈ ω, m ∈ M ′) or not total in the PRA-model M ′. The
model M ′ will be the union of a Σ1-elementary chain of models M = M0 ≺1
M1 ≺1 M2 . . . ≺1 M ′ = ∪i∈ωMi.

At each stage either the boundedness of a total ∆0({Supi}i∈ω)-definable
function is guaranteed (a Π1-sentence: ∀x, y (ϕ(x, y) → y ≤ m + Supn(x))) or
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its non-totality (a Σ2-sentence: ∃x∀ y ¬ϕ(x, y)). As we shall work with a 1-
elementary chain of models, functions that are dealt with need no more attention
further on in the chain. Their interesting properties, that is boundedness or non-
totality, are stable. By choosing the order in which functions are dealt with in
a good way, eventually all total funtions of all models Mi will be considered.
We shall see that as a result of this process every total function in M ′ that is
∆0({Supi}i∈ω)-definable is bounded by some M + Supn.

To properly order the functions that we shall deal with, we fix a bijective
pairing function in this proof satisfying x, y ≤ 〈x, y〉. We do as if the models
Mn were already defined and write fn0, fn1, fn2, . . . for the list of the (countably
many) total ∆0({Supi}i∈ω)-definable functions of Mn. We emphasize that we
allow the functions fni to contain parameters from Mn. Furthermore we define
gn to be fab for the unique a, b ∈ ω such that 〈a, b〉 = n.

We define M0 :=M .

We will defineMn+1 to be such that gn becomes (or remains) either bounded
or non-total in it and Mn ≺1 Mn+1. If we can do so, we are done. For suppose
M =M0 |= PRA+ σ. As PRA is Π1-axiomatizable in the language containing
the {Supi}i∈ω we get that M ′ |= PRA and likewise M ′ |= σ.

If now M ′ |= Tot(ϕ) for some ϕ ∈ ∆0({Supi}i∈ω), we see that for some n,
Mn |= Tot(ϕ) as soon as Mn contains all the parameters that occur in ϕ. Thus
f = gm for some m ≥ n. Thus inMm+1 the function f will be surely majorized,
for Mm+1 |= ¬Tot(ϕ) ⇒ M ′ |= ¬Tot(ϕ). Consequently M ′ |= f ≤ m′ + Supk
for some m′ ∈Mm+1 ⊆M ′, k ∈ ω. By Theorem 10.1.12 we see that M ′ |= IΣ1.

If Mn |= gn ≤ m + Supk for some m ∈ Mn and k ∈ ω we set Mn+1 := Mn.
Clearly Mn ≺1 Mn+1 and gn is bounded in Mn+1 (regargless its totality).

So, suppose that gn is total in Mn and that Mn |= ¬(gn ≤ m+ Supk) for all
m ∈Mn and all k ∈ ω. We obtain our required model Mn+1 in two steps.

Step 1.

We go from Mn ≺1 Mn1 |= B∆0({Supi}i∈ω)(+PRA). To this purpose, we add
a fresh constant d to our language and consider

T := Th(Mn, {m}m∈Mn
) ∪ {d > Supk(m) | k ∈ ω, m ∈Mn}.

As T is finitely satisfiable in Mn, we can find a countable model Mn0 |= T . Let
Mn1 be the (initial) submodel ofMn0 with domain {x ∈Mn0 | ∃ k∈ω ∃m∈Mn x ≤
Supk(m)}. Clearly, Mn1 is indeed a submodel, that is, it is closed under all the
Supk. For if x ≤ Supl(m) then Supk(x) ≤ Supk(Supl(m)) ≤ Supk+l+2(m). We
see that Mn1 is a model of PRA as PRA is Π1-axiomatized. As Mn ⊆Mn1, we
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get Mn ≺1 Mn1. For,

Mn |= ∃x ϕ(x) , ϕ(x) ∈ Π1 ⇒ for some m∈Mn

Mn |= ϕ(m) ⇒
Mn0 |= ϕ(m) ⇒
Mn1 |= ϕ(m) ⇒
Mn1 |= ∃x ϕ(x).

We now see thatMn1 |= B∆0({Supi}i∈ω). So, supposeMn1 |= ∀x<t∃ y ϕ(x, y)
for some t ∈ Mn1 and ϕ ∈ ∆0({Supi}i∈ω). Clearly Mn0 |= ∀x<t∃ y<d ϕ(x, y)
for some d ∈Mn0, actually for any d ∈Mn0 \Mn1. Now by the ∆0({Supi}i∈ω)
minimal number principle we get a minimal d0 such thatMn0 |= ∀x<t∃ y<d0 ϕ(x, y).
If d0 were in Mn0 \ Mn1, then d0 − 1 would also suffice as a bound on the
y’s. The minimality of d0 thus imposes that d0 ∈ Mn1. Consequently Mn1 |=
∃ d0 ∀x<t∃ y<d0 ϕ(x, y) and Mn1 |= B∆0({Supi}i∈ω).

Step 2.

We go from9 Mn1 |= B∆0({Supi}i∈ω)(+PRA) to a model Mn1 ≺1 Mn3 |=
PRA+ ¬Tot(χn). Mn+1 will be the reduct of Mn3 to the original language.

If Mn1 |= ¬Tot(χn) nothing has to be done and we take Mn3 = Mn1. So,
we assume that Mn1 |= Tot(χn). We consider the set

Γ := Th(Mn1, {m}m∈Mn1
) ∪ {gn(c) > m+ Supk(c) | m ∈Mn1, k ∈ ω}

with c a fresh constant symbol. As gn is not majorizable inMn1 we see that any
finite subset of Γ is satisfiable whence Γ is satisfiable. Let Mn2 be a countable
model of Γ. Of course, we can naturally embed Mn1 in Mn2.

We will now see that c > Mn1. For suppose c ≤ m ∈ Mn1. Then
Mn1 |= ∀x≤m∃ z gn(x)=z.

10 By ∆0({Supi}i∈ω)-collection we get Mn1 |=
∃ d0 ∀x≤m∃ z≤d0 gn(x)=z. But then Mn1 |= gn(c) ≤ d0 whence Mn1 |=
¬(gn(c) > d0 + Supk(c)). A contradiction.

Define Mn3 to be the (initial) submodel of Mn2 with domain {m ∈ Mm2 |
∃ k ∈ ω Mn2 |= m < Supk(c)}. As c ≥ Mn1 we get Mn1 ⊆ Mn3. We
now see that Mn1 ≺1 Mn3. For suppose Mn1 |= ∃x ϕ(x) with ϕ(x) ∈ Π1

then Mn1 |= ϕ(m0) for some m0 ∈ Mn1. Consequently Mn2 |= ϕ(m0) and as
Mn3 ⊂e Mn2 and ϕ(m0) ∈ Π1, also Mn3 |= ϕ(m0) whence Mn3 |= ∃x ϕ(x).
Clearly Mn3 |= ¬Tot(χn) as gn(c) can not have a value in Mn3. a

Corollary 10.1.14. ∀π ∈ Π2 (BΣ1 ` π ⇒ PRA ` π)

Proof. A direct proof of this fact is given in Step 1 in the above proof. a

9Or from the reduct of Mn1 to the original language for that matter.
10We actually should substitute the ∆0({Supi}i∈ω)-graph of gn here.
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10.2 Cuts, consistency and total functions

In Section 9.3 an explicit IΣ1-cut J is exposed such that IΣ1 ` ConJ(PRA).
In this section, we shall give an alternative proof of this fact. The interesting
difference lies in the concept used in this proof. The cut that we used in Section
9.3 was defined in terms of truth predicates. The cut that we shall expose in
this section will be defined in terms of totality statements of recursive functions.

The proof we present here is a simplification of an argument by Visser. In an
unpublished note [Vis90b], Visser sketched a modification of a proof of Paris and
Wilkie from [WP87] to obtain our Theorem 10.2.3. Lemma 8.10 from [WP87],
implies that for every r∈ω there is an (I∆0+exp)-cut such that for every σ∈Σ2,
I∆0 + σ + exp proves the consistency of I∆0 + σ +Ωr on that cut.

10.2.1 Basic definitions

Let us first give a definition of PRA that is useful to us in our proof. Again, we
will work with the functions Supn(x) as introduced in Section 10.1. However,
this time we will not extend our language. Rather we shall work with arith-
metical definitions of the Supn(x). Let us recall the defining equations for the
functions Supn(x).

- Sup0(x) = 2·x

- Supz+1(0) = 1

- Supz+1(x+ 1) = Supz(Supz+1(x))

We see that Supz(x) = y can be expressed by a Σ1-formula:11

(Supz(x) = y) := (∃s S̃up(s, z, x, y)),

where S̃up(s, z, x, y) is the following ∆0-formula:

Finseq(s) ∧ lh(s)=z+1 ∧
lh(sz)=x+1 ∧ ∀ i≤z (Finseq(si) ∧ [(i<z)→ lh(si) = (si+1)lh(si+1)−2])

∧ ∀ j<lh(s0) (s0)j = 2·j ∧
∀ i<lh(s)−1 ((si+1)0 = 1 ∧ ∀ j<lh(si+1)−1 ((si+1)j+1 = (si)(si+1)j ))

∧ (sz)x = y.

The intuition behind the formula S̃up(s, z, x, y) is very clear. The s is a sequence
of sufficiently large parts of the graphs of the Supz′ ’s. Thus,

s =





[[Sup0(0),Sup0(1), . . . ,Sup0(lh(s0)− 1)],
[Sup1(0),Sup1(1), . . . ,Sup1(lh(s1)− 1)],

...
[Supz(0),Supz(1), . . . ,Supz(lh(sz)− 1)]].

11By close inspection of the defining formula we see that Supz(x)=z can actually be regarded
as a ∆0(exp)-formula.
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Rather weak theories already prove the main properties of the Supz functions
(without saying anything about the definedness) like

Supn(1) = 2,
Supn(2) = 4,
1 ≤ Supn+1(y),
x ≤ y → Supn(x) ≤ Supn(y),
(n≤m ∧ x≤y)→ Supn(x)≤Supm(y),

and so on.

Definition 10.2.1. PRA is the first-order theory in the language {+, ·,≤, 0, 1}
using only the connectives ¬,→ and ∀, with the following non-logical axioms.

[A.] Finitely many defining Π1-axioms for +, ·, ≤, 0 and 1.

[B.] Finitely many identity axioms of complexity Π1.

[C.] For every ϕ(x,~a)∈∆0 an induction axiom of complexity Π1 of the form:12

∀x ∀z (ϕ(0, z) ∧ ∀ y<x (ϕ(y, z)→ ϕ(y+1, z))→ ϕ(x, z)).

[D.] For all z∈ω a totality statement (of complexity Π2) for the function

Supz(x) in the following form: ∀x∃s∃ y≤s S̃up(s, z, x, y). Here and in
the sequel z denotes the numeral corresponding to z, that is, the string
z times︷ ︸︸ ︷

1 + . . .+ 1.

The logical axioms and rules are just as usual.

We shall need in our proof of Theorem 10.2.3 a formalization of a proof system
that has the sub-formula property. Like Paris and Wilkie we shall use a notion
of tableaux proofs rather than some sequent calculus. In our discussion below
we consider theories T that are formulated using only the connectives→, ¬ and
∀. The other connectives will still be used as abbreviations.

Definition 10.2.2. A tableau proof of a contradiction from a set of axioms T
containing the identity axioms is a finite sequence Γ0,Γ1, . . . ,Γr where the Γi
satisfy the following conditions.

• For 0 ≤ i ≤ r, Γi is a sequence of sequences of labeled formulas. The
elements of Γi are denoted by Γji . The elements of the Γji are denoted by
ϕki,j(l) where l is the label of ϕki,j and is either 0 or 1. In case l = 1 in

ϕki,j(l), we call ϕ
k
i,j the active formula of both Γji and Γi. Only non-atomic

formulas can be active.

12We mean of course a Π1-formula using only ¬,→ and ∀, that is logically equivalent to
the formula given here. By coding techniques, having just one parameter z in our induction
axioms, is no real restriction. It prevents, however, getting a non-standard block of quantifiers
in non-standard PRA-axioms.
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• Γ0 contains just one finite non-empty sequence of labeled formulas. We
require ϕk0,0∈T for k < lh(Γ00).

• In every Γjr (j < lh(Γr)) there is an atomic formula that also occurs
negated in Γjr.

• Every 0 ≤ i < r contains exactly one sequence Γji with an active formula
in it. This sequence in its turn contains exactly one active formula.

• For 0 ≤ i < r, we have lh(Γi) ≤ lh(Γi+1) ≤ lh(Γi) + 1.

• For 0 ≤ i < r, we have lh(Γji ) ≤ lh(Γji+1) ≤ lh(Γji ) + 2.

• For 0 ≤ i < r, we have ϕki,j = ϕki+1,j for k < lh(Γji ).

• lh(Γji ) < lh(Γji+1) iff Γji contains the active formula of Γi. In this case,

with n = lh(Γji ) and ϕ
m
i,j the active formula, one of the following holds.13

(β) ϕmi,j is of the form ¬¬θ in which case Γni+1,j = θ and lh(Γji+1) = n+1.

(γ) ϕmi,j is of the form θ1 → θ2. In this case Γni+1,j = ¬θ1 and only in
this case lh(Γi+1) = lh(Γi) + 1. Let p := lh(Γi). Γpi+1 is defined as

follows: lh(Γpi+1) = lh(Γji+1) = n + 1, Γki+1,p = Γki+1,j for k < n and
Γni+1,p = θ2.

(δ) ϕmi,j is of the form ¬(θ1 → θ2). Only in this case lh(Γji+1) = lh(Γji )+2

and Γni+1,j = θ1 and Γn+1i+1,j = ¬θ2.

(ε) ϕmi,j is of the form ∀x θ(x). In this case lh(Γji+1) = n+1 and Γni+1,j =
θ(t) for some term t that is freely substitutable for x in θ(x).

(ζ) ϕmi,j is of the form ¬∀x θ(x). In this case lh(Γji+1) = n + 1 and

Γni+1,j = ¬θ(y) for some variable y that occurs in no formula of Γji .

It is well-known that ϕ is provable from T iff there is a tableau proof of
a contradiction from T ∪ {¬ϕ}. The length of tableaux proofs can grow su-
perexponentially larger than their regular counterparts. A pleasant feature of
tableaux proofs is the sub-formula property.

We will work with some suitable ∆1-coding of assignments that are always
zero on all but finitely many variables. The constant zero valuation is denoted
just by 0. Also do we use well-known satisfaction predicates like SatΠ1

(π, σ) for
formulas π ∈ Π1 and valuations σ. By Val(t, σ) we denote some ∆1 valuation
function for terms t and assignments σ. By Σ1(x) we denote the predicate that
only holds on the standard model on codes of (syntactical) Σ1-sentences.

13We start with (β), so that we have the same labels as in Definition 8.9 from [WP87].
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10.2.2 IΣ1 proves the consistency of PRA on a cut

Theorem 10.2.3. There exists an IΣ1-cut J such that for all B∈Σ2 we have
IΣ1 +B ` ConJ (PRA +B)

Proof. We will expose an IΣ1-cut and show that IΣ1 + B ` ConJ(PRA + B)
for any B ∈ Σ2(formulated using only ¬, → and ∀). If we would have a J-
proof of ⊥ from PRA + B in IΣ1 + B we can also find a tableau proof of a
contradiction (not necessarily in J) from PRAJ +B, as IΣ1 proves the totality
of the superexponentiation function. By PRAJ we denote the axiom set of PRA
intersected with J .

Thus, it suffices to show that IΣ1 + B ` TabCon(PRAJ + B). By TabCon

we mean the formalization of the assertion that there is no tableau proof of a
contradiction.

The cut that does the job is the following:14

J(z) := ∀ z′≤z ∀x∃y Supz′(x) = y.

First we see that J(z) indeed defines a cut in IΣ1. Obviously IΣ1 ` J(0). We
now see IΣ1 ` J(z) → J(z+1). For, reason in IΣ1 and suppose J(z). In order
to obtain J(z+1) it is sufficient to show that ∀x∃y Supz+1(x) = y. This follows
from an easy Σ1-induction. As B ∈ Σ2 we may assume that B = ∃x A(x) with
A ∈ Π1.

We reason in IΣ1+B and assume ¬TabCon(PRAJ+B). As B holds, for some
a we have A(a). We fix this a for the rest of the proof. Let p = Γ0,Γ1, . . . ,Γr
be a hypothetical tableau proof of a contradiction from PRAJ +B.

Via some easy inductions a number of basic properties of p is established,
like the sub-formula property and the fact that every Σ1!-formula in p comes
from a PRA-axiom of the form [D.], etcetera. Inductively we define for every
Γji a valuation σi,j .

- σ0,0 = 0.

- If Γji contains no active formula, σi+1,j = σi,j .

- If Γji contains an active formula one of (β)-(ζ) applies. Let m=lh(Γji ).

(β) σi+1,j = σi,j .

(γ) σi+1,j = σi+1,m = σi,j .

(δ) σi+1,j = σi,j .

(ε) σi+1,j = σi,j .

(ζ) In this case essentially an existential quantifier is eliminated. We
treat the three possible eliminations.15

14Formally speaking we should use the S̃up(s, z, x, y) predicate here.
15Again, to see (in IΣ1) that these are the only three possibilities, an induction is executed.
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∗ The first existential quantifier in B is eliminated and B is re-
placed by A(y). In this case σi+1,j = σi,j for all variables differ-
ent from y. Furthermore we define σi+1,j(y) = a.

∗ The first existential quantifier in a formula of the form

∃s∃ y≤s S̃up(s, z, t, y) for some term t and number z∈J is elim-

inated and replaced by ∃ y≤v S̃up(v, z, t, y) for some variable v.
In this case σi+1,j = σi,j for all variables different from v. Fur-
thermore we define σi+1,j(v) to be the minimal number b such
that

∃ y≤b S̃up(b,Val(z, σi,j),Val(t, σi,j), y).

Note that, as z ∈ J , such a number b must exist.

∗ A bounded existential quantifier in a formula of the form ∃x≤t θ(x)
is eliminated and ∃x≤t θ(x) is replaced by y ≤ t ∧ θ(y) for
some variable y. In this case θ(y) is in ∆0 (yet another induc-
tion). We define σi+1,j(y) to be the minimal c ≤ Val(t, σi,j) such
that Sat∆0

(pθ(c)q, σi,j) if such a c exists. In case no such c ex-
ists, we define σi+1,j(y) = 0. For the other variables we have
σi+1,j = σi,j .

It is not hard to see that σi,j(x) has a Σ1 or even ∆1-graph. The proof is now
completed by showing by induction on i:

∀ i≤r ∃ j<lh(Γi)∀ k<lh(Γji ) (Σ1(pϕ
k
i,jq)→ SatΣ1

(pϕki,jq, σi,j)). (†)

Note that the statement is indeed Σ1 as in IΣ1 we have the Σ1-collection princi-
ple which tells us that the bounded universal quantifiers can be somehow pushed
inside the unbounded existential quantifier of the SatΣ1

.
Once we have shown (†), we have indeed finished the proof as every Γjr

(j<lh(Γr)) contains some atomic formula and its negation. Atomic formulas are
certainly Σ1 which gives for some j<lh(Γr) and some atomic formula θ, both
SatΣ1

(pθq, σr,j) and SatΣ1
(p¬θq, σr,j) and we have arrived at a contradiction.

Hence TabCon(PRAJ +B).

As announced, (†) will be proved by induction on i. If i=0, as there are no
Σ1-formulas in Γ00, (†) holds in a trivial way.

For the inductive step, let i<r and j<lh(Γi) such that

∀ k<lh(Γji ) (Σ1(pϕ
k
i,jq)→ SatΣ1

(pϕki,jq, σi,j)).

We look for j′<lh(Γi+1) such that

∀ k<lh(Γj
′

i+1) (Σ1(pϕ
k
i+1,j′q)→ SatΣ1

(pϕki+1,j′q, σi+1,j′)). (‡)

If Γji contains no active formula, then Γji+1=Γji and σi+1,j=σi,j , and we can just
take j′=j.
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So, we may assume that Γji contains an active formula, say ϕmi,j , and one of
(β)-(ζ) holds. In the cases (β), (γ) and (δ) it is clear which j ′ should be taken
such that (‡) holds. We now concentrate on the two remaining cases.

(ζ). Here ϕmi,j is of the form ∃x θ(x). We only need to consider the case that
∃x θ(x) ∈ Σ1. By an easy induction we see that ∃x θ(x) is either ∆0 or a
subformula (modulo substitution of terms) of an axiom of PRA from group [D].

In case ϕmi,j = ∃x θ(x) and ∃x θ(x) ∈ ∆0, for some v /∈ Γji , ϕ
m
i+1,j = θ(v).

As we know that SatΣ1
(pϕmi,jq, σi,j), we see that σi+1,j is tailored such that

Sat∆0
(pϕmi+1,jq, σi+1,j) holds. Clearly also SatΣ1

(pϕmi+1,jq, σi+1,j) and we can
take j=j′ to obtain (‡).

The other possibility is ϕmi,j = ∃s∃ y≤s S̃up(s, z, t, y) for some (possibly non-

standard) term t. Consequently ϕmi+1,j = ∃ y≤v S̃up(v, z, t, y) for some v /∈ Γji .
Again σi+1,j is tailored such that Sat∆0

(pϕmi+1,jq, σi+1,j) holds and we can take
j=j′ to obtain (‡).

(ε). We only need to consider the case ϕmi,j = ∀x θ(x) with θ(x) ∈ Σ1. In case
∀x θ(x) ∈ Σ1, the induction hypothesis and the definition of σi+1,j guarantees
us that j=j′ yields a solution of (‡). So, we may assume that ∀x θ(x) /∈ Σ1.
By an easy induction we see that thus ∀x θ(x) is A(a) or θ(x) has one of the
following forms:

1. A subformula (modulo substitution of terms) of an axiom of PRA of the
form [A] or [B],

2. A subformula (modulo substitution of terms) of an induction axiom [C],

3. ∃s∃ y≤s S̃up(s, z, t, y) for some (possibly non-standard) term t and some
z∈J .

Our strategy in all cases but 3. will be to show that16

∀σ SatΠ1
(p∀x θ(x)q, σ). ♣

This is sufficient as

∀σ SatΠ1
(p∀x θ(x)q, σ) ⇒

∀σ ∀x Sat∆0
(pθ(v)q, σ[v/x]) ⇒

∀σ′ Sat∆0
(pθ(v)q, σ′) ⇒

∀σ Sat∆0
(pθ(t)q, σ) ⇒

∀σ SatΣ1
(pθ(t)q, σ).

Here v is some fresh variable, θ[v/x] denotes the formula where x is substituted
for v in θ(v), and σ[v/x] denotes the valuation which (possibly) only differs from
σ in that it assigns to the variable v the value x.

16∀σ SatΠ1
(pϕq, σ) is often denoted by TrueΠ1

(ϕ).
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The strategy to prove 3. is quite similar. The formula

∀x∃s∃ y≤s S̃up(s, z, x, y) is a standard formula that holds if z ∈ J , whence for
some variable v we have

∀σ SatΠ2
(p∀x∃s∃ y≤s S̃up(s, v, x, y)q, σ[v/z])

and thus also

∀σ SatΠ2
(p∀x∃s∃ y≤s S̃up(s, z, x, y)q, σ).

We immediately see that

∀σ SatΣ1
(p∃s∃ y≤s S̃up(s, z, t, y)q, σ).

The proof is thus finished if we have shown ♣ in case ∀x θ(x) is either A(a)
or a subformula of an axiom of the groups [A], [B] and [C]. The only hard case
is whenever ∀x θ(x) is a subformula of a PRA axiom of group [C], as the other
cases concern true standard Π1-sentences only. By an easy induction we see
that it is sufficient to show that for every ϕ ∈ ∆0

∀x SatΠ1
(p∀z (ϕ(0, z) ∧ ∀ y<v (ϕ(y, z)→ ϕ(y + 1, z))→ ϕ(v, z))q, σ0,0[v/x]).

This is proved by a Π1-induction on x. Note that in IΣ1 we have indeed
access to Π1-induction as IΣ1 ≡ IΠ1. The fact that ϕ can be non-standard
urges us to be very precise.

If x=0 we are done if we have shown

SatΠ1
(p∀z (ϕ(0, z) ∧ ∀ y<0 (ϕ(y, z)→ ϕ(y + 1, z))→ ϕ(0, z))q, σ0,0)

or equivalently

∀z Sat∆0
(pϕ(0, w)→ ϕ(0, w)q, σ0,0[w/z]).

By an easy induction on the length of ϕ we can show that for any σ

Sat∆0
(pϕ(0, w)→ ϕ(0, w)q, σ).

For the inductive step we have to show

SatΠ1
(p∀z (ϕ(0, z) ∧ ∀ y<v (ϕ(y, z)→ ϕ(y + 1, z))→ ϕ(v, z))q, σ0,0[v/x+ 1])

or equivalently that for arbitrary17 z

Sat∆0
(pϕ(0, w) ∧ ∀ y<v (ϕ(y, w)→ ϕ(y + 1, w))→ ϕ(v, w)q, σ0,0[v/x+ 1][w/z]).

The reasoning by which we obtain this, is almost like ϕ were standard. So, we
suppose

Sat∆0
(pϕ(0, w) ∧ ∀ y<v (ϕ(y, w)→ ϕ(y + 1, w))q, σ0,0[v/x+ 1][w/z]) (\)

17By σ[v/x][w/z] we mean sequential substitution. This is not an important detail, as we
may assume that we have chosen v and w such that no variable clashes occur.
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and set out to prove

Sat∆0
(pϕ(v, w)q, σ0,0[v/x+ 1][w/z]).

The induction hypothesis together with some basic properties of the Sat predi-
cates gives us

Sat∆0
(pϕ(0, w) ∧ ∀ y<v (ϕ(y, w)→ ϕ(y + 1, w))→ ϕ(v, w)q, σ0,0[v/x][w/z]). (])

A witnessing sequence for (\) is also a witnessing sequence for

Sat∆0
(pϕ(0, w) ∧ ∀ y<v (ϕ(y, w)→ ϕ(y + 1, w))q, σ0,0[v/x][w/z]).

Combining this with (]) gives us Sat∆0
(pϕ(v, w)q, σ0,0[v/x][w/z]). Also from (\)

we get Sat∆0
(pϕ(v, w)→ ϕ(v+1, w)q, σ0,0[v/x][w/z]), so that we may conclude

Sat∆0
(pϕ(v+1, w)q, σ0,0[v/x][w/z]). A witnessing sequence for the latter is also

a witnessing sequence for

Sat∆0
(pϕ(v, w)q, σ0,0[v/x+ 1][w/z]).

a
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Chapter 11

Modal logics with PRA and
IΣ1

In this chapter we shall present two modal logics which, in a sense, fully de-
scribe what PRA and IΣ1 have to say about each other in terms of provability
and interpretability. The questions that the logics can decide on are ques-
tions like IΣ1 `

? Con(PRA), PRA + Con(PRA) `? IΣ1, PRA + Con(PRA) ¤?

PRA+ Con(IΣ1) + ¬IΣ1, IΣ1 ¤
? PRA+ Con(PRA), IΣ1 + Con(IΣ1)¤

? PRA+
Con(Con(PRA)), etc. In this chapter, PRA shall denote (EA)2ω with the axiom-
atization as fixed in Section 9.1.

In Section 11.1 we shall first compute the closed fragment of the provability
logic of PRA with a constant for IΣ1. The full provability logic of PRA with
a constant for IΣ1 actually has already been determined in [Bek96]. We give
an elementary proof here so that we can extend it when computing the closed
fragment of the interpretability logic of PRA with a constant for IΣ1 in Section
11.2.

11.1 The logic PGL

Inductively we define F , the formulas of PGL.

F := ⊥ | > | S | F ∧ F | F ∨ F | F → F | ¬F | 2F

The symbol S is a constant in our language just as ⊥ is a constant. There are
no propositional variables. As always we will use 3A as an abbreviation for
¬2¬A. We define 20⊥ := ⊥ and 2n+1⊥ := 2(2n⊥). We also define 2γ⊥ to
be > for limit ordinals γ.

Throughout this section we shall reserve B,B0, B1, . . . to denote boolean
combinations of formulas of the form 2n⊥ with n ∈ ω + 1.

Definition 11.1.1 (The logic PGL). The formulas of the logicPGL are given
by F . The logic PGL is the smallest normal extension of GL in this language

163
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that contains the following two axiom schemes.

S1 : 2(S→ B)→ 2B
S2 : 2(¬S→ B)→ 2B

It is good to emphasize that PGL is a variable free logic. By our notational
convention both in S1 and in S2 the B is a boolean combination of formulas of
the form 2n⊥ with n ∈ ω. Immediate consequences of S1 and S2 are that both
3(S ∧B) and 3(¬S ∧B) are equivalent in PGL to 3B.

Every sentence in F can also be seen as an arithmetical statement as follows:
we translate S to the canonical sentence IΣ1 (the single sentence axiomatizing
the theory IΣ1), ⊥ to, for example, 0=1 and > to 1=1. As usual we inductively
extend this translation to what is sometimes called an arithmetical interpreta-
tion by taking for the translation of 2 the canonical proof predicate for PRA.

If there is no chance of confusion we will use the same letter to indicate both
a formal sentence of PGL and the arithmetical statement expressed by it. With
this convention we can formulate the main theorem of this subsection.

Theorem 11.1.2. For all sentences A ∈ F we have

PRA ` A⇔ PGL ` A.

Proof. The implication “⇐” is proved in the next subsection in Corollary 11.1.3
and Lemma 11.1.4. The other direction is proved in the Subsection after that,
in Lemma 11.1.5. a

11.1.1 Arithmetical Soundness of PGL

To see the arithmetical soundness of PGL, we only should check the validity of
S1 and S2. Axiom S1 can be seen as a direct consequence of the formalization of
Parsons’ theorem, Theorem 9.2.3 which can be formalized as soon as the totality
of the superexponential function is provable.

Corollary 11.1.3. PRA ` 2PRA(IΣ1 → B) → 2PRAB for B ∈ Π2 and thus
certainly whenever B is as in S1.

Lemma 11.1.4. EA ` ∀Π3B (2PRA(¬IΣ1 → B)→ 2PRAB)

Proof. Theorem 9.1.3 gives us that IΣn ` RFNΠn+2
(EA) ([Lei83]). Conse-

quently, the formalization of IΣ1 ` RFNΠ3
(EA) is a true Σ1-sentence and thus

provable in EA. As EA ` 2IΣ1
(RFNΠ3

(EA)) we also have

EA ` 2EA(IΣ1 → RFNΠ3
(EA)). (∗)

Now we reason in EA, fix some B∈Π3 and assume 2PRA(¬IΣ1 → B). We get

2PRA(¬IΣ1 → B) →
2PRA(¬B → IΣ1) →

∃π∈Π2 2EA(¬B ∧ π → IΣ1) → by (∗)
∃π∈Π2 2EA(¬B ∧ π → RFNΠ3

(EA)) → as B ∨ ¬π ∈ Π3

∃π∈Π2 2EA(¬B ∧ π → (2EA(B ∨ ¬π)→ B ∨ ¬π)) (∗∗)
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But, by simple propositional logic, we also have

2EA(¬(¬B ∧ π)→ (2EA(B ∨ ¬π)→ B ∨ ¬π))

which combined with (∗∗) yields 2EA(2EA(B ∨ ¬π) → (B ∨ ¬π)). By Löb’s
axiom we get 2EA(B ∨ ¬π) which is the same as 2EA(π → B). Thus certainly
we have 2PRAB, as π was just a part of PRA. a

We note that Lemma 11.1.4 actually holds for a wider class of formulas than just
boolean combinations of 2α⊥ formulas. For example ¬(A ¤ B) is always Π3.
One can also isolate a set of sentences that is always Π2 in PRA. (See Subsection
12.1.1.) When we study the logic PIL it will become clear why we only need
to include these low-complexity instantiations of the above arithmetical facts in
our axiomatic systems: In the closed fragment we have simple normal forms.

11.1.2 Arithmetical completeness of PGL

Lemma 11.1.5. For all A in F we have that if PRA ` A then
PGL ` A.

Proof. The completeness of PGL actually boils down to an exercise in normal
forms in modal logic. The only arithmetical ingredients are the soundness of
PGL, the fact that PRA ` 2A whenever PRA ` A, and the fact that PRA 0
2α⊥ for α ∈ ω.

In Lemma 11.1.7 we will show that 2A is always equivalent in PGL to 2α⊥
for some α ∈ ω+1. Then, in Lemma 11.1.8 we show that if PGL ` 2A then
PGL ` A. So, if PGL 0 A then PGL 0 2A. As PGL ` 2A↔ 2α⊥ for some
α ∈ ω (not ω+1 as we assumed PGL 0 2A!) and PGL is sound we also have
PRA ` 2A↔ 2α⊥. Hence PRA 0 2A and also PRA 0 A. a

We work out the exercise in modal normal forms. Although this is already
carried out in the literature (see e.g. Boolos [Boo93], or Visser [Vis92b]) we
repeat it here to obtain some subsidiary information which we shall need later
on.

Recall that we will in this subsection reserve the letters B,B0, B1, . . . for
boolean combinations of 2α⊥-formulas. Thus, a sentence B can be written in
conjunctive normal form, that is,

∧∧
i(
∨∨

j ¬2
aij⊥ ∨

∨∨
k 2

bik⊥).

Each conjunct
∨∨

j ¬2
aij⊥∨

∨∨
k 2

bik⊥ can be written as 2αi⊥ → 2βi⊥ where
αi:=min({aij}) and βi:=max({bik}).

By convention the empty conjunction is just > and the empty disjunction is
just ⊥. In order to have this convention in concordance with our normal forms
we define min(∅)=0 and max(∅)=ω. In

∧∧
i(2

αi⊥ → 2βi⊥) we can leave out
the conjuncts whenever αi ≤ βi, for, in that case, PGL ` 2αi⊥ → 2βi⊥.

So, if we say that some formula B is in conjunctive normal form we will
in the sequel assume that B is written as

∧∧
i(2

αi⊥ → 2βi⊥) with αi > βi.
The empty conjunction gives > and if we take α0=ω > 0=β0, we get with one
conjunct just ⊥.



166 CHAPTER 11. MODAL LOGICS WITH PRA AND IΣ1

Lemma 11.1.6. If a formula B can be written in the form
∧∧

i(2
αi⊥ → 2βi⊥)

with αi>βi, then we have that PGL ` 2B ↔ 2β+1⊥ where β=min({βi}).

Proof. The proof is actually carried out in GL. We have that 2(
∧∧

i(2
αi⊥ →

2βi⊥))↔
∧∧

i2(2
αi⊥ → 2βi⊥). We will see that 2(2αi⊥ → 2βi⊥) is equiva-

lent to 2βi+1⊥.
So, we assume 2B. As βi < αi we know that βi+1 ≤ αi and thus 2βi+1⊥ →

2αi⊥. Now 2(2αi⊥ → 2βi⊥) → 2(2βi+1⊥ → 2βi⊥). One application of L3
yields 2(2βi⊥) i.e. 2βi+1⊥.

On the other hand we easily see that 2(2βi⊥) → 2(2αi⊥ → 2βi⊥) hence
we have shown the equivalence. Finally we remark that (

∧∧
i2

βi+1⊥)↔ 2β+1⊥
where β = min({βi}). a

Lemma 11.1.7. For any formula A in F we have that A is equivalent in PGL
to a boolean combination of formulas of the form S or 2β⊥. If, on top of that,
A is of the form 2C, then A is equivalent in PGL to 2α⊥ for some α ∈ ω+1.

Proof. By induction on the complexity of formulas in F . The base cases are
trivial. The only interesting case in the induction is where we consider the case
that A = 2C. Note that C, by induction being a boolean combination of 2α⊥
formulas and S, can be written as (S→ B0)∧ (¬S→ B1). So, by Lemma 11.1.6
we have that for suitable indices β, β′, β′′:

2C ↔
2((S→ B0) ∧ (¬S→ B1)) ↔
2(S→ B0) ∧2(¬S→ B1) ↔

2B0 ∧2B1 ↔

2β
′+1⊥ ∧2β

′′+1⊥ ↔
2β⊥.

a

Lemma 11.1.8. If PGL ` 2A then PGL ` A.

Proof. By Lemma 11.1.7 we can write A as a boolean combination of formulas
of the form S or 2β⊥. Thus let A↔ (S→ B0)∧ (¬S→ B1) with B0 and B1 in
conjunctive normal form and assume ` 2A. For appropriate indices αi>βi and
α′j>β

′
j we have B0 =

∧∧
i(2

αi⊥ → 2βi⊥) and B1 =
∧∧

j(2
α′j⊥ → 2β

′
j⊥). Using

S1, S2 and Lemma 11.1.6 we get that 2A ↔ 2β+1⊥ with β = min({βi, β
′
j}).

By assumption β = ω, thus all the βi and β
′
j were ω and hence ` A. a

11.1.3 Modal Semantics for PGL, Decidability

In this subsection we will provide a modal semantics for PGL. Actually we
will give a modelM as depicted in Figure 11.1 which in some sense displays all
there is to know about closed sentences with a constant for IΣ1 in PGL.
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〈3, 0〉

〈1, 0〉

〈0, 0〉

〈1, 1〉 ° S

〈2, 1〉 ° S

〈3, 1〉 ° S

〈2, 0〉

...

〈0, 1〉 ° S

Figure 11.1: The modelM

Definition 11.1.9. We define the modelM as follows,M := 〈M,R,°〉. Here
M := {〈n, i〉 | n ∈ ω, i ∈ {0, 1}} and 〈n, i〉R〈m, j〉 ⇔ m < n. Furthermore
〈n, i〉 ° S⇔ i = 1.

Theorem 11.1.10. ∀mM,m ° A⇔ PGL ` A

Proof. ⇐ This direction is obtained by induction on the complexity of proofs
in PGL. As M is a transitive and upwards well-founded model, it is
indeed a model of all instantiations of the axioms L1, L2 and L3. Thus,
consider S1.

So, suppose at some world m (= 〈m, i〉), we have that 〈m, i〉 ° 2(S→ B).
Then 〈n, 1〉 ° B for n < m. Recall that B does not contain S. It is well-
known that the forcing of B depends solely on the depth of the world,
so, we also have 〈n, 0〉 ° B. Thus mRn yields n ° B. Consequently
m ° 2B, which gives us the validity of S1.

The S2-case is treated completely similarly. It is also clear that this di-
rection of the theorem remains valid under applications of both modus
ponens and the necessitation rule.

⇒ Suppose PGL 6` A. By Lemma 11.1.8 PGL 6` 2A, thus
PGL ` 2A ↔ 2α⊥ for a certain α ∈ ω. By the first part of this proof
we may conclude that m ° 2A ↔ 2α⊥ for any m. As 〈α, i〉 6° 2α⊥, we
automatically get 〈α, i〉 6° 2A. So, for some 〈β, j〉 with 〈α, i〉R〈β, j〉 we
have 〈β, j〉 ° ¬A showing the “non-validity” of A.

a
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The set of theorems of PGL is clearly recursively enumerable. If a formula
is not provable in PGL, then, by Theorem 11.1.10, in some node of the model
M it is refuted. Thus the theoremhood of PGL is actually decidable.

11.2 The logic PIL

We shall now present the closed fragment of the interpretability logic of PRA
with a constant for IΣ1. This section has some similarities with Visser’s paper
on exponentiation, [Vis92b].

In that paper the closed fragment of the interpretability logic of the arith-
metical theory Ω is presented. (The theory Ω is also known as I∆0 +Ω1.) The
modal language is enriched with an additional constant exp. The arithmetical
translation of this constant is the Π2-formula stating the totality of the expo-
nential function.

A fundamental difference between Visser’s [Vis92b] and this section is that
although IΣ1 is a proper extension of PRA, no new recursive functions are
proved to be total, as IΣ1 is a Π2-conservative extension of PRA. In this sense
the gap between PRA and IΣ1 is smaller than the gap between Ω and Ω+ exp.
This difference is also manifested in the corresponding logics already when we
just constrain ourselves to provability. For example we have that

PRA + Con(PRA) ` Con(IΣ1),

whereas

Ω + Con(Ω) 0 Con(Ω + exp).

Actually, Ω+exp+Con(Ω) does not even prove Con(Ω+exp). It does hold how-
ever that Ω + Con(Con(Ω)) ` Con(Ω + exp) and there are more similarities. We
have that Con(PRA) is not provable in IΣ1. Similarly Con(Ω) is not provable
in Ω + exp. In turn IΣ1 is not provable in PRA together with any iteration of
consistency statements and the same holds for exp and Ω.1

The interpretability logics have similarities and differences too. For example
we have that PRA¤PRA+¬IΣ1 and Ω¤Ω+¬exp. Also PRA+Con(PRA)¤IΣ1

and Ω+Con(Ω)¤Ω+ exp. On the other hand IΣ1 /¤ PRA+Con(PRA) whereas
Ω+ exp¤Ω+Con(Ω). However we do have that IΣ1¤Ω+Con(PRA). We have
that IΣ1 /¤ PRA+Con(PRA) but PRA itself cannot see this. PRA can only see
that IΣ1 ¤ PRA+ Con(PRA)→ ¬Con(PRA).

The differences between the pairs of theories is probably best reflected by the
corresponding universal models. The interested reader is suggested to compare
the universal models from this paper to the ones from [Vis92b].

1It is well known that IΣ1 ≡ RFNΠ3
(EA) (Theorem 9.1.3) and that IΣ1 is not contained

in any Σ3-extension of EA (Fact 9.1.5). Consistency statements are all Π1-sentences. For the
case of Ω and exp reason as follows. Take any non-standard model of true arithmetic together
with the set {2c>ωk1 (c) | k∈ω}. Take the smallest set containing c being closed under the ω1
function. Consider the initial segment generated by this set. This initial segment is a model
of Ω and of all true Π1 sentences but clearly not closed under exp.
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Inductively we define I, the formulas of PIL.

I := ⊥ | > | S | I ∧ I | I ∨ I | I → I | ¬I | 2I | I ¤ I.

Again, the constants of the language are ⊥,> and S, and we will reserve the
symbols B,B0, B1, . . . to denote boolean combinations of 2α⊥ formulas. We
will write C ≡ D as short for (C ¤ D) ∧ (D ¤ C) and we say that they are
equi-interpretable.

Definition 11.2.1 (The logic PIL). The formulas of the logic PIL are given
by I. The logic PIL is the smallest normal extension of ILW in this language
that contains the following four axiom schemes.

S1 : 2(S→ B)→ 2B
S2 : 2(¬S→ B)→ 2B S3 : ¬S ∧B ≡ B
S4 : (B ¤ S ∧B)→ 2¬B

It is good to stress that PIL is a variable free logic too. As the interpretabil-
ity logic ILW is a part of PIL we have access to all known reasoning in IL and
ILW. In this section, unless mentioned otherwise ` refers to provability in PIL.

Fact 11.2.2.

(1.) ` 2A↔ ¬A¤⊥

(2.) ` 2α+1⊥ → 3β>¤A if α ≤ β

(3.) ` A ≡ A ∨3A

(4.) ` A¤3A→ 2¬A

As an example we prove (2.). We reason in PIL and use our notational
conventions. It is sufficient to prove the case when α = β. Thus,
2α+1⊥ → 2(2α⊥)→ 2(¬A→ 2α⊥)→ 2(3α> → A)→ 3α>¤A.

Fact (4.) is Feferman’s principle and can be seen as a “coordinate free”
version of Gödel’s second incompleteness theorem. It follows immediately from
W realizing that A¤⊥ is by (1.) nothing but 2¬A.

Again we can see any sentence in I as an arithmetical statement translating
¤ as the intended arithmetization of smooth interpretability over PRA and 2 as
an arithmetization of provability in PRA and propagating this inductively along
the structure of the formulas as usual. With this convention we can formulate
the arithmetical completeness theorem for PIL.

Theorem 11.2.3. For all sentences A ∈ I we have PRA ` A⇔ PIL ` A.

Proof. The implication “⇐” is proved in the next subsection in Lemma 11.2.4
and Lemma 11.2.5. The other direction is proved in the Subsection after that,
in Lemma 11.2.8. a
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11.2.1 Arithmetical soundness of PIL

In [Vis91] it has been shown that ILW is sound for any reasonably formulated
theory extending I∆0 + Ω1. So, to check for soundness of PIL with respect to
PRA we only need to see that all translations of S3 and S4 are provable in PRA.

We shall give two soundness proofs for S3 and S4. The first proofs, con-
sisting of Lemma 11.2.4 and 11.2.5 use finite approximations of theories. The
second proofs make use of reflection principles and definable cuts. In accordance
with Chapter 4, we could call the first proofs P-style, and the second, M-style
soundness proofs.

Lemma 11.2.4. PRA ` B¤PRAB ∧¬IΣ1 for B∈Σ2, so, certainly for B as in
S3.

Proof. We want to show inside PRA that PRA+B ¤PRA+B +¬IΣ1. As we
know that every finite Σ2-extension of PRA is reflexive, we are by Orey-Hájek
(Lemma 2.1.1) done if we can prove

PRA ` ∀n 2PRA+B(3PRA[n]+B+¬IΣ1
>). (11.1)

We will set out to prove that

(i) EA ` ∀n 2PRA+B(2PRA[n]+B+¬IΣ1
⊥ → 2PRA[n]+B⊥),

(ii) EA ` ∀n 2PRA+B(2PRA[n]+B⊥ → ⊥),

from which 11.1 immediately follows.

The proof of (i) is just a slight modification of the proof of Lemma 11.1.4.
We reason in EA and fix some n:

2PRA+B ( 2PRA[n]+B+¬IΣ1
⊥

→ 2PRA[n]+BIΣ1

→ 2PRA[n]+BRFNΠ3
(EA)

→ 2EA(PRA[n] ∧B → RFNΠ3
(EA))

→ 2EA(PRA[n] ∧B → (2EA¬(PRA[n] ∧B)→ ¬(PRA[n] ∧B)))
→ 2EA(2EA¬(PRA[n] ∧B)→ ¬(PRA[n] ∧B))
→ 2EA¬(PRA[n] ∧B)
→ 2EA(PRA[n]→ ¬B)
→ 2PRA[n]¬B
→ 2PRA[n]+B⊥ ).

The proof of (ii) is just a formalization of the fact that every finite Σ2-
extension of PRA is reflexive. So, again we reason in EA. Recall that we have
PRA[n]=(EA)2n in our axiomatization of PRA. Thus, by definition,
2PRA[n+1](2PRA[n]π → π) for π∈Π2. Consequently, for our ¬B∈Π2, we get
2PRA[n+1](2PRA[n]¬B → ¬B).

Obviously we also have 2PRA[n+1]+BB. Combining, we get a proof of (ii):
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2PRA[n+1]+B ( 2PRA[n]+B⊥
→ 2PRA[n]¬B
→ ¬B
→ ⊥ ).

a

Lemma 11.2.5. PRA ` B ¤PRA B ∧ IΣ1 → 2PRA¬B for B∈Σ2, so, certainly
for B as in S4

Proof. The theory PRA+B+IΣ1 is, verifiably in PRA, equivalent to the finitely
axiomatizable theory IΣ1 +B. Now we will reason in PRA.

We suppose that PRA+B ¤PRA+B + IΣ1. As PRA+B + IΣ1 is finitely
axiomatizable we have that PRA[k] + B ¤ PRA + B + IΣ1 for some natural
number k. PRA + B is reflexive as it is a finite Σ2-extension of PRA and
thus 2PRA+BCon(PRA[k] +B). So, certainly 2PRA+B+IΣ1

Con(PRA[k] +B)
and thus

PRA +B + IΣ1 ¤ PRA[k] +B + Con(PRA[k] +B).

Consequently,

PRA[k] +B ¤ PRA[k] +B + Con(PRA[k] +B)

and by Feferman’s principle we get that 2PRA[k]+B⊥. Thus 2PRA+B⊥ and also
2PRA(B → ⊥), i.e., 2PRA¬B. a

Lemma 11.2.5 certainly proves the correctness of axiom scheme S4. The
proof also yields the following insights.

Corollary 11.2.6. A consistent reflexive theory U does not interpret any finitely
axiomatized theory extending it. In particular PRA does not interpret IΣ1.

Corollary 11.2.7. PRA+ ¬IΣ1 is not finitely axiomatizable.

We now give alternative proofs of Lemma 11.2.4 and 11.2.5.

Second Proof of Lemma 11.2.4. We consider B∈Σ2 and want to show in EA
that PRA+B ¤ PRA+B + ¬IΣ1. We fix the IΣ1-cut J as given by Corollary
9.3.2 and reason in EA. Clearly

PRA +B ¤ (PRA +B + (IΣ1 ∨ ¬IΣ1)).

So, we are done if we can show that PRA + B + IΣ1 ¤ PRA + B + ¬IΣ1. By
Corollary 9.3.2 we get that 2IΣ1+BConJ(PRA +B).

Using this cut J to relativize the identity translation, we find an inter-
pretation that witnesses IΣ1 + B ¤ S12 + 3PRAB. As S12 + 3PRAB is finitely



172 CHAPTER 11. MODAL LOGICS WITH PRA AND IΣ1

axiomatizable, interpretability and smooth interpretability are in this case the
same. We now get

IΣ1 +B ¤

S12 +3PRAB ¤ by W

S12 +3PRAB +2IΣ1+B⊥ ¤

S12 +3PRAB +2PRA(B → ¬IΣ1) ¤

S12 +3PRA(B + ¬IΣ1) ¤

PRA+B + ¬IΣ1.

a

Second Proof of Lemma 11.2.5. We have B∈Σ2 and assume in EA that PRA+
B¤PRA+B+ IΣ1. We have already seen in the above proof that PRA+B+
IΣ1 ¤ S12 +3PRAB.

Thus, by transitivity PRA +B ¤ S12 +3PRAB, and

PRA +B ¤ by W

S12 +3PRAB +2PRA+B⊥ ¤

⊥.

This is the same as 2PRA+B⊥, i.e., 2PRA¬B. a

11.2.2 Arithmetical Completeness of PIL

This subsection is mainly dedicated to prove the next lemma.

Lemma 11.2.8. For all A in I we have that if PRA ` A then PIL ` A.

Proof. The reasoning is completely analogous to that in the proof of Lemma
11.1.5. We thus need to prove a Lemma 11.2.15 stating that for any formula A
in I we have that 2A is equivalent over PIL to a formula of the form 2α⊥, and
a Lemma 11.2.16 which tells us that PIL ` A whenever PIL ` 2A. a

In a series of rather technical lemmas we will work up to the required lem-
mata. It is good to recall that in this chapter, B will always denote some boolean
combination of formulas of the form 2α⊥.

Lemma 11.2.9. PIL ` S ∧B ≡ (S ∧3β>) ∨3β+1> for some β ∈ ω + 1.

Proof. S ∧B ≡ (S ∧B) ∨3(S ∧B) ≡ ¬(¬(S ∧B) ∧2¬(S ∧B)), but
¬(S ∧ B) ∧ 2¬(S ∧ B) ↔ (S → ¬B) ∧ 2(S → ¬B) ↔ (S → ¬B) ∧ 2¬B.
Now we consider a conjunctive normal form of ¬B. Thus, ¬B is equivalent to∧∧

i(2
αi⊥ → 2βi⊥) for certain αi > βi (possibly none). So, by Lemma 11.1.6,

2¬B ↔
∧∧

i2
βi+1⊥ ↔ 2β+1⊥ for β = min({βi}). So,

(S→ ¬B) ∧2¬B ↔
(S→ ¬B) ∧2β+1⊥ ↔
(S→ ¬B) ∧ (S→ 2β+1⊥) ∧2β+1⊥ ↔
(S→ (

∧∧
i(2

αi⊥ → 2βi⊥) ∧2β+1⊥)) ∧2β+1⊥ (1)
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As αi > βi ≥ β we have β + 1 ≤ αi whence 2
β+1⊥ → 2αi⊥. Thus,

∧∧

i

(2αi⊥ → 2
βi⊥) ∧2β+1⊥ ↔

∧∧

i

2
βi⊥ ↔ 2

β⊥,

and (1) reduces to (S→ 2β⊥) ∧2β+1⊥. Consequently,

(S ∧B) ∨3(S ∧B) ↔
¬(¬(S ∧B) ∧2¬(S ∧B)) ↔
¬((S→ 2β⊥) ∧2β+1⊥) ↔
(S ∧3β>) ∨3β+1>.

a

By a proof similar to that of Lemma 11.2.9 we get the following lemma.

Lemma 11.2.10. PIL ` B ≡ 3γ
′

> for certain γ′ ∈ ω + 1.

In PIL we have a substitution lemma in the sense that ` F (C) ↔ F (D)
whenever ` C ↔ D. We do not have a substitution lemma for equi-interpretable
formulas2 but we do have a restricted form of it.

Lemma 11.2.11. If (provably in PIL) C ≡ C ′, D ≡ D′, E ≡ E′ and F ≡ F ′,
then PIL ` C ∨D ¤ E ∨ F ↔ C ′ ∨D′ ¤ E′ ∨ F ′.

We reason in PIL. Suppose that C ∨D ¤ E ∨ F . We have for any G that
C ′ ∨D′¤G↔ (C ′¤G)∧ (D′¤G). As C ′¤C¤ (C ∨D) and D′¤D¤ (C ∨D)
we have that C ′ ∨ D′ ¤ C ∨ D. Likewise we obtain E ∨ F ¤ E ′ ∨ F ′ thus
C ′∨D′¤C ∨D¤E∨F ¤E′∨F ′. The other direction is completely analogous.

Lemma 11.2.12. S ∧ 3α> ¤ (S ∧ 3β>) ∨ 3γ> is provably equivalent in PIL
to

{
2ω⊥ if α ≥ min({β, γ})
2α+1⊥ if α < β, γ

Proof. The case when α ≥ min({β, γ}) is trivial as 3α> → 3δ> whenever
α ≥ δ. So, we consider the case when ¬(α ≥ min({β, γ})), that is, α < β, γ.

Then we have 3β>¤3α+1>¤3(3α>)¤3(S∧3α>) and likewise for 3γ>
in place of 3β>. Thus, together with our assumption, we get S ∧ 3α> ¤ (S ∧
3β>)∨3γ>¤3(S∧3α>). By Feferman’s principle we get 2¬(S∧3α>) whence
2α+1⊥. The implication in the other direction is immediate by Fact 11.2.2. a

Lemma 11.2.13. 3α>¤ (S ∧3β>) ∨3γ> is provably equivalent in PIL to

{
2ω⊥ if α ≥ min({β + 1, γ})
2α+1⊥ if α < β + 1, γ

2We have that ¬S ≡ >. If the substitution lemma were to hold for equi-interpretable
formulas then S ≡ ¬(¬S) ≡ ⊥ which will turn out not to be the case.
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Proof. The proof is completely analogous to that of Lemma 11.2.12 with the
sole exception in the case that α = β < γ. In this case

3
γ>¤3α+1>¤3(3α>)¤3(S ∧3α>)¤ S ∧3α>

and thus (S ∧3α>) ∨3γ>¤ S ∧3α>. An application of S4 yields the desired
result, i.e. 2α+1⊥.

In case α ≥ β + 1 it is useful to realize that 3α> ¤ 3β+1> ¤ 3(3β>) ¤
3(S ∧3β>)¤ S ∧3β>. a

Lemma 11.2.14. If C and D are both boolean combinations of S and sentences
of the form 2γ⊥ then we have that PIL ` (C ¤D)↔ 2δ⊥ for some δ ∈ ω+1.

Proof. So, let C and D meet the requirements of the lemma and reason in PIL.
We get that

C ¤D ↔ (S ∧B0) ∨ (¬S ∧B1)¤ (S ∧B2) ∨ (¬S ∧B3)

for some B0, B1, B2 and B3. The right-hand side of this bi-implication is equiv-
alent to

((S ∧B0)¤ (S ∧B2) ∨ (¬S ∧B3)) ∧ ((¬S ∧B1)¤ (S ∧B2) ∨ (¬S ∧B3)). (∗)

We will show that each conjunct of (∗) is equivalent to a formula of the form
2ε⊥. Starting with the left conjunct we get by repeatedly applying Lemma
11.2.11 that

S ∧B0 ¤ (S ∧B2) ∨ (¬S ∧B3) ↔ Lemma 11.2.9
(S ∧3α>) ∨3α+1>¤ (S ∧B2) ∨ (¬S ∧B3) ↔ S3
(S ∧3α>) ∨3α+1>¤ (S ∧B2) ∨B3 ↔ Lemma 11.2.10

(S ∧3α>) ∨3α+1>¤ (S ∧B2) ∨3
γ′> ↔ Lemma 11.2.9

(S ∧3α>) ∨3α+1>¤ (S ∧3β>) ∨3β+1> ∨3γ
′

> ↔
(S ∧3α>) ∨3α+1>¤ (S ∧3β>) ∨3γ> ↔
(S ∧3α>¤ (S ∧3β>) ∨3γ>) ∧
(3α+1>¤ (S ∧3β>) ∨3γ>) ↔ Lemma 11.2.12
2µ⊥ ∧ (3α+1>¤ (S ∧3β>) ∨3γ>) ↔ Lemma 11.2.13
2µ⊥ ∧2λ⊥ ↔
2δ⊥

for suitable indices α, β, . . . . For the right conjunct of (∗) we get a similar
reasoning. a

Lemma 11.2.14 is the only new ingredient needed to prove the next two
lemmas in complete analogy to their counterparts 11.1.7 and 11.1.8 in PGL.

Lemma 11.2.15. For any formula A in I we have that A is equivalent in PIL
to a boolean combination of formulas of the form S or 2β⊥. If, on top of that,
A is of the form 2C, then A is equivalent in PIL to 2α⊥ for some α ∈ ω + 1.

Lemma 11.2.16. For all A in I we have that PIL ` A whenever PIL ` 2A.
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〈3, 0〉

〈1, 0〉

〈0, 0〉

〈1, 1〉 ° S

〈2, 1〉 ° S

〈3, 1〉 ° S

〈2, 0〉

...

〈0, 1〉 ° S

Figure 11.2: The (simplified) model N

11.2.3 Modal Semantics for PIL, Decidability

As in the case of PGL, we shall define a universal model for the logic PIL.
PIL.

Definition 11.2.17 (Universal model for PIL). The Veltman model N =
〈M,R, {Sm}m∈M ,°〉 is obtained from the modelM = 〈M,R,°〉 as defined in
Definition 11.1.9 as follows. We define 〈m, 1〉Sn〈m, 0〉 for nR〈m, 1〉 and close off
as to have the Sn relations reflexive, transitive and containing R the amount it
should.

Theorem 11.2.18. ∀n N , n ° A⇔ PIL ` A

Proof. The proof is completely analogous to that of Theorem 11.1.10. We only
should check that all the instantiations of S3 and S4 hold in all the nodes of N .

We first show that S3 holds at any point n. So, for any B, consider any point
〈m, i〉 such that nR〈m, i〉°B. As 〈m, i〉Sn〈m, 0〉, we see that n ° B ¤B ∧ ¬S.

To see that any instantiation of S4 holds at any world n we reason as follows.
If n ° 3B we can pick the minimal m ∈ ω such that (m, 0) ° B. It is clear that
no Sn-transition goes to a world where B∧S holds, hence n ° ¬(B¤B∧S). a

The modal semantics gives us the decidability of the logic PIL. In our case
it is very easy to obtain a so-called simplified Veltman model. This is a model
〈M,R, S,°〉 where S now is a binary relation. Accordingly we define

x ° A¤B ⇔ ∀y (xRy ° A⇒ ∃z (ySz ° B)).
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Our model model N is transformed into a simplified Veltman model by defining
nSm ⇔ ∃k nSkm. A perspicuous picture is readily drawn. The S-relation is
depicted in Figure 11.2 by a wavy arrow.

11.2.4 Adding reflection

Just as always, if we want to go from all provable statements to all true state-
ments, we have to only add reflection. As we are in the closed fragment and as
we have good normal forms, this reflection only amounts to iterated consistency
statements.

The logics PGLS and PILS are defined as follows. The axioms of PGLS
(resp. PILS) are all the theorems of PGL (resp. PILS) together with S and
{3α> | α ∈ ω}. It’s sole rule of inference is modus ponens.

Theorem 11.2.19. PGLS ` A⇔ N |= A

Proof. By induction on the length of PGLS ` A we see that PGLS ` A ⇒
N |= A.

To see the converse, we reason as follows. Consider A ∈ F such that N |= A.
By Lemma 11.1.7 we can find an A′ which is a boolean combination of S and
3α> (α ∈ ω + 1), such that PGL ` A ↔ A′. Thus PRA ` A ↔ A′ and also
N |= A↔ A′. Consequently N |= A′.

Moreover, as A′ is a boolean combination of S and 3α> (α ∈ ω + 1), for
some m ∈ ω, S∧

∧∧m
i=13

i> → A′ is a propositional logical tautology whence A′

is provable in PGLS. Also PGLS ` A↔ A′ whence PGLS ` A. a

Clearly the theorems of PGLS are recursively enumerable. As PGLS is a
complete logic in the sense that it either refutes a formula or proves it, we see
that theoremhood of PGLS is actually decidable.

Theorem 11.2.20. PILS ` A⇔ N |= A

Proof. As the proof of Theorem 11.2.19 a

Clearly, PILS is a decidable logic too.



Chapter 12

Remarks on IL(PRA)

In this chapter we shall study the interpretability logic of PRA. A modal char-
acterization of IL(PRA) is still an open question. The best candidate so far
is ILBR∗, where B is Beklemishev’s principle. We shall study this principle in
Section 12.1, where amongst others, a frame condition is given for B.

Sections 12.2 and 12.3 make some remarks on upperbounds for IL(PRA).
Section 12.3 also has an interest independent from IL(PRA). We shall study
the universal model for the closed fragment of GLP.

12.1 Beklemishev’s principle

It is possible to write down a valid principle for the full interpretability logic of
PRA. This was first done by Beklemishev (see [Vis97]). Beklemishev’s principle
B exploits the fact that any finite Σ2-extension of PRA is reflexive, together with
the fact that we have a good Orey-Hájek characterization for reflexive theories.

It turns out to be possible to define a class of modal formulae which are
under any arithmetical realization provably Σ2 in PRA. This are the so-called
essentially Σ2-formulas, we write ES2. Let us start by defining this class and
some related classes. In our definition, A will stand for the set of all modal
interpretability formulae.

ED2 := 2A | ¬ED2 | ED2 ∧ ED2 | ED2 ∨ ED2

ES2 := 2A | ¬2A | ES2 ∧ ES2 | ES2 ∨ ES2 | ¬(ES2 ¤A)
EPc

2 := 2A | 3A | EPc
2 ∨ EPc

2 | EPc
2 ∧ EPc

2 | A¤A
ES3 := 2A | ¬2A | A¤A | ES3 ∧ ES3 | ES3 ∨ ES3 | ¬(ES2 ¤A)
ES4 := 2A | A¤A | ¬ES4 | ES4 ∧ ES4 | ES4 ∨ ES4 | ES4 → ES4

We can now formulate Beklemishev’s principle B.

B := A¤B → A ∧2C ¤B ∧2C for A ∈ ES2

177
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12.1.1 Arithmetical soundness of B

By Lemma 9.1.7 we know that PRA+ σ is reflexive for any Σ2(PRA)-sentence
σ. Thus, we get by Orey-Hájek, Corollary 2.1.7, that

PRA ` σ ¤PRA ψ ↔ ∀x 2PRA(σ → Conx(PRA + ψ)). (12.1)

Consequently, for σ ∈ Σ2(PRA), ¬(σ ¤PRA ψ) ∈ Σ2(PRA) and we see that, in-
deed, ∀A∈ES2 ∀∗ A

∗ ∈ Σ2(PRA). We shall now see the arithmetical soundness
of B.

Theorem 12.1.1. For any formulas B and C we have that ∀A∈ES2 ∀∗PRA `
(A¤B → A ∧2C ¤B ∧2C)∗.

Proof. For some A ∈ ES2 and arbitrary B and C, we consider some realization
∗ and let α := A∗, β := B∗ and γ := C∗. We reason in PRA and assume
α¤PRA β. As α is Σ2(PRA), we get by (12.1) that

∀x 2PRA(α→ Conx(PRA + β)). (12.2)

We now consider n large enough (see Lemma 1.2.3 and Remark 1.2.4) such that

2PRA(2PRAγ → 2PRA,n2PRAγ), (12.3)

Combining (12.2) and (12.3), we see that for any x, (omitting the subscripts)
2(α∧2γ → Conx(PRA + β ∧2γ)). Clearly, α∧2γ is still a Σ2(PRA)-sentence.1

Again by (12.1) we get α ∧2γ ¤ β ∧2γ. a

Let MESn be the schema A¤B → A ∧2C ¤B ∧2C with A ∈ ESn.

Corollary 12.1.2. IL(IΣR
n ) ` MESn+1 for n = 1, 2, 3.

Proof. For n = 1 this is just Theorem 12.1.1. The proof can easily be generalized
for n = 2 and n = 3 using Theorem 9.1.4 and realizing that any Σn+1-extension
of IΣRn is reflexive. a

12.1.2 A frame condition

Let us first fix some notation. If C is a finite set, we write xRC as short for∧∧
c∈C xRc. Similar conventions hold for the other relations. The A-critical

cone of x, CAx is in this section defined as CAx := {y | xRy∧∀z (ySxz → z 6° A)}.
We define xR∗y :⇔ y = x∨ xRy. By x↑ we denote the set of worlds that lie

above x w.r.t. the R relation. That is, x↑ := {y | xRy}. With ySx↑ we denote
the set of those z for which ySxz.

We will consider frames both as modal models without a valuation and as
structures for first- (or sometimes second) order logic. We say that a model M
is based on a frame F if F is precisely M with the ° relation left away. From
now on we will write A ≡ B instead of (A¤B) ∧ (B ¤A).

1If we use Lemma 2.1.1, this observation is not necessary.
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In this subsection we give the frame condition of Beklemishev’s principle.
Our frame condition holds on the class of finite frames. At first sight, the
condition might seem a bit awkward. On second sight it is just the frame
condition of M with some simulation built in. First we approximate the class
ES2 by stages.

Definition 12.1.3.
ES02 := ED2

ESn+1
2 := ESn2 | ESn+1

2 ∧ ESn+1
2 | ESn+1

2 ∨ ESn+1
2 | ¬(ESn2 ¤ Form)

It is clear that ES2 = ∪iESi2. We now define some first order formulas Si(b, u)
that say that two nodes in a frame b and u look a like. The larger i is, the more
the two points look alike. We use the letter S as to hint at a simulation. For
i ≥ 1 the relation Si(b, u) is in general not symmetric.

Definition 12.1.4.
S0(b, u) := b↑=u↑
Sn+1(b, u) := Sn(b, u)∧

∀c (bRc→ ∃c′ (uRc′ ∧ Sn(c, c
′) ∧ cSbc

′ ∧ c′Su↑ ⊆ cSb↑))

By induction on n we easily see that ∀n F |= Sn(b, b) for all frames F and
all b∈F .

Lemma 12.1.5. Let F be a model. For all n we have the following. If F |=
Sn(b, u) then b ° A⇒ u ° A for all A∈ESn2.

Proof. We proceed by induction on n. If n=0, A∈ES02 can be written as∨∨
i(2Ai ∧

∧∧
j 3Aij). Clearly, if b↑ = u↑ then b ° A⇒ u ° A.

Now consider A∈ESn+1
2 and b and u such that F |= Sn+1(b, u). We can write

A =
∨∨

i

(Ai0 ∧
∧∧

j 6=0

¬(Aij ¤Bij)),

with Aij in ESn2. If b ° A, then for some i, b ° Ai0 ∧
∧∧

j 6=0 ¬(Aij ¤ Bij). As
Sn+1(b, u) → Sn(b, u), and by the induction hypothesis we see that u ° Ai0.
So, we only need to see that u ° ¬(Aij ¤ Bij) for j 6=0. As b ° ¬(Aij ¤ Bij),

for some c∈C
Bij

b we have c ° Aij . By Sn+1(b, u) we find a c′ such that uRc′,

cSbc
′, and c′Su↑ ⊆ cSb↑. This guarantees that c

′∈C
Bij
u . Moreover we know that

Sn(c, c′), thus by the induction hypothesis, as c ° Aij , we get that c′ ° Aij .
Consequently u ° ¬(Aij ¤Bij).

a

Lemma 12.1.6. Let F be a finite frame. For all i, and any b∈F , there is a
valuation V bi on F and a formula Abi∈ESi2 such that F |= Si(b, u)⇔ u ° Abi .

Proof. The proof proceeds by induction on i. First consider the basis case, that
is, i=0. Let b↑ be given by the finite set {xj}j∈J . We define

y ° pj ↔ y=xj
y ° r ↔ bRy
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Let Ab0 be 2r ∧
∧∧

j 3pj . It is now obvious that u ° A0 ⇔ u↑=b↑.

For the inductive step, we fix some b and reason as follows. First, let V b
i

and Abi be given by the induction hypothesis such that u ° Abi ⇔ F |= Si(b, u).
We do not specify the variables in Ai but we suppose they do not coincide with
any of the ones mentioned below. Let b↑ = {xj}j∈J . The induction hypothesis

gives us sentences Aji (no sharing of variables) and valuations V ji such that

F, u ° Aji ⇔ F |= Si(xj , u).

Let {qj}j∈J be a set of fresh variables. V bi+1 will be V bi and V ji on the old
variables. For the {qj}j∈J we define V bi+1 to act as follows:

y ° qj ⇔ y 6∈xjSb↑.

Moreover we define

Abi+1 := Abi ∧
∧∧

j

¬(Aji ¤ qj).

Now we will see that under the new valuation V b
i+1,

(i) u ° Abi+1 ⇒ F |= Si+1(b, u),

(ii) F |= Si+1(b, u)⇒ u ° Abi+1.

For (i) we reason as follows. Suppose u ° Abi+1. Then also u ° Abi and thus
F |= Si(b, u). It remains to show that

F |= ∀c (bRc→ ∃c′ (uRc′ ∧ Si(c, c
′) ∧ cSbc

′ ∧ c′Su↑ ⊆ cSb↑)).

To this purpose we consider and fix some xj in b↑. As u ° Abi+1, we get

that u ° ¬(Aji ¤ qj). Thus, for some c′∈C
qj
u , c′ ° Aji . Clearly c′ ° ¬qj whence

xjSbc
′. Also ∀t (c′Suy ⇒ y ° ¬qj) which, by the definition of V bi+1 translates

to c′Su↑ ⊆ xjSb↑. Clearly also uRc′. By c′ ° Aji and the induction hypothesis
we get that Si(xj , c

′). Indeed we see that F |= Si+1(b, u).
For (ii) we reason as follows. As F |= Si+1(b, u), also F |= Si(b, u) and by

the induction hypothesis, u ° Abi . It remains to show that u ° ¬(Aji ¤ qj) for
any j. So, let us fix some j. Then, by the second part of the Si+1 requirement
we find a c′ such that

uRc′ ∧ Si(xj , c
′) ∧ xjSbc

′ ∧ c′Su↑ ⊆ xjSb↑.

Now, uRc′ ∧ xjSbc
′ ∧ c′Su↑ ⊆ xjSb↑ gives us that c

′∈C
qj
u . By Si(xj , c

′) and the

induction hypothesis we get that c′ ° Aji . Thus indeed u ° ¬(Aji ¤ qj). a

Notice that in the proof of this lemma, we have only used conjunctions to
construct the formulas Abi .

Definition 12.1.7. For every i we define the frame condition Ci to be

∀ a, b (aRb→ ∃u (bSau ∧ Si(b, u) ∧ ∀ d, e (uSadRe→ bRe))).
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Definition 12.1.8. Let F be a finite frame. For all i, we have that

for all A∈ESi2, F |= A¤B → A ∧2C ¤B ∧2C,
if and only if
F |= Ci.

Proof. First suppose that F |= Ci and that a ° A¤B for some A∈ESi2 and some
valuation on F . We will show that a ° A ∧2C ¤B ∧2C for any C. Consider
therefore some b with aRb and b ° A ∧ 2C. The Ci condition provides us with
a u such that

bSau ∧ Si(b, u) ∧ ∀ d, e (uSadRe→ bRe) (∗)

As F |= Si(b, u), we get by Lemma 12.1.5 that u ° A. Thus, as aRu and
a ° A ¤ B, we know that there is some d with uSad and d ° B. If now dRe,
by (∗), also bRe and hence e ° C. Thus, d ° B ∧ 2C. Clearly bSad and thus
a ° A ∧2C ¤B ∧2C.

For the opposite direction we reason as follows. Suppose that F 6|= Ci. Thus,
we can find a, b with

aRb ∧ ∀u (bSau ∧ Si(b, u)→ ∃ d, e (uSadRe ∧ ¬bRe)) (∗∗).

By Lemma 12.1.6 we can find a valuation V bi and a sentence Abi∈ESi2 such that
u ° Abi ⇔ F |= Si(b, u). Let q and s be fresh variables. Moreover, let D be the
following set.

D := {d∈F | bSadRe ∧ ¬bRe for some e }.

We define a valuation V that is an extension of V b
i by stipulating that

y ° q ↔ (y∈D) ∨ ¬(bSay),
y ° s ↔ bRy.

We now see that

(i) a ° Abi ¤ q,

(ii) a ° ¬(Abi ∧2s¤ q ∧2s).

For (i) we reason as follows. Suppose that aRb′ and b′ ° Abi . If ¬(bSab
′), b′ ° q

and we are done. So, we consider the case in which bSab
′. As Si(b, b

′), (∗∗) now
yields us a d∈D such that b′Sad. Clearly bSad and thus, by definition, d ° q.

To see (ii) we notice that b ° Abi ∧2s. But if bSay and y ° q, by definition
y∈D and thus y ° ¬2s. Thus b∈Cq∧2sa and a ° ¬(Ai ∧2s¤ q ∧2s). a

The following theorem is now an immediate corollary of the above reasoning.

Theorem 12.1.9. A finite frame F validates all instances of Beklemishev’s
principle if and only if ∀i F |= Ci.
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Definition 12.1.10. Let Bi be the principle A ¤ B → A ∧ 2C ¤ B ∧ 2C for
A ∈ ESi2.

Corollary 12.1.11. For a finite frame we have F |= Bi ⇔ F |= Ci.

For the class of finite frames, we can get rid of the universal quantification in
the frame condition of Beklemishev’s principle. Remember that depth(x), the
depth of a point x, is the length of the longest chain of R-successors starting in
x.

Lemma 12.1.12. If Sn(x, x
′), then depth(x) = depth(x′).

Proof. Sn(x, x
′)⇒ S0(x, x

′)⇒ x↑ = x′↑. a

Lemma 12.1.13. If Sn(x, x
′) & depth(x) ≤ n, then Sm(x, x′) for all m.

Proof. The proof goes by induction on n. For n = 0, the result is clear. So, we
consider some x, x′ with Sn+1(x, x

′) & depth(x) ≤ n+1. We are done if we can
show Sm+1(x, x

′) for m ≥ n+ 1.
This, we prove by a subsidiary induction on m. The basis is trivial. For the

inductive step, we assume Sm(x, x′) for some m ≥ n + 1 and set out to prove
Sm+1(x, x

′), that is

Sm(x, x′) ∧ ∀y (xRy → ∃y′ (ySxy
′ ∧ Sm(y, y′) ∧ y′Sx′↑ ⊆ ySx↑))

The first conjunct is precisely the induction hypothesis. For the second conjunct
we reason as follows. As m ≥ n+ 1, certainly Sn+1(x, x

′). We consider y with
xRy. By Sn+1(x, x

′), we find a y′ with

ySxy
′ ∧ Sn(y, y

′) ∧ y′Sx′↑ ⊆ ySx↑.

As xRy and depth(x) ≤ n+1, we see depth(y) ≤ n. Hence by the main induction,
we get that Sm(y, y′) and we are done. a

Definition 12.1.14. A B-simulation on a frame is a binary relation S for which
the following holds.

1. S(x, x′)→ x↑ = x′↑

2. S(x, x′) & xRy → ∃y′(ySxy′ ∧ S(y, y′) ∧ y′Sx′↑ ⊆ ySx↑)

If F is a finite frame that satisfies Ci for all i, we can consider
⋂
i∈ω Si. This

will certainly be a B-simulation.

Definition 12.1.15. The frame condition CB is defined as follows. F |= CB if
and only if there is a B-simulation S on F such that for all x and y,

xRy → ∃y′(ySxy
′ ∧ S(y, y′) ∧ ∀d, e (y′SxdRe→ yRd)).

An immediate consequence of Lemma 12.1.13 is the following theorem.
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Theorem 12.1.16. For F a finite frame, we have

F |= B ⇔ F |= CB.

Note that the M-frame condition can be seen as a special case of the frame
condition of B: we demand that S be the identity relation.

It is not hard to see that the frame condition of M0 follows from C0. And
indeed, ILB ` M0 as 3A ∈ ES2 and A¤B → 3A¤B. Actually, we have that
ILB1 ` M0.

12.1.3 Beklemishev and Zambella

Zambella proved in ([Zam94]) a fact concerning Π1-consequences of theories
with a Π2 axiomatization. As we shall see, his result has some repercussions on
the study of the interpretability logic of PRA.

Lemma 12.1.17 (Zambella). Let T and S be two theories axiomatized by Π2-
axioms. If T and S have the same Π1-consequences then T + S has no more
Π1-consequences than T or S.

In [Zam94], Zambella gave a model-theoretic proof of this lemma. As was
sketched by G. Mints (see [BV04]), also a finitary proof based on Herbrand’s
theorem can be given. This proof can certainly be formalized at the pres-
ence of the superexponentiation function where it yields a principle for the
Π1-conservativity logic of Π2-axiomatized theories. We denote it here Zc. In
the formulation, ¤c denotes formalized Π1-conservativity.

Zc (A ≡c B)→ A¤c A ∧B for A and B in EPc
2.

For reflexive theories we know that Π1-conservativity coincides with interpretabil-
ity. Thus, we see that Zambella’s lemma has its repercussions on the inter-
pretability logic of PRA.

As PRA is Π2-axiomatized, and as any Σ2-extension of PRA is reflexive,
we see that we have Zc for extensions of PRA that are both Σ2 and Π2. Put
differently, we are interested in ∆2-extensions of PRA. Thus, we can formulate
Zambella’s principle for interpretability logic.

Z (A ≡ B)→ A¤A ∧B for A and B in ED2

For the Π1-conservativity logic of PRA, the principle Zc is really informative
(see [BV04]). However, we shall now see that Zambella’s principle does not give
us additional information for IL(PRA) as Z is provable in ILB. We also include
a direct proof that Z follows semantically from ILB on finite frames. In our
proofs it becomes clear that we actually only need B0 and C0.

Lemma 12.1.18. Let F be a finite frame with F |= C0, then F |= Z.
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Proof of Lemma 12.1.18. Let M be any model based on F . Consider α, β ∈
ED2 with

` α↔
∨

i≤n

(
∧

j

2Ai ∧3Bij). (12.4)

Next, consider any a ∈M with a ° α ≡ β. The aim is to show that a ° α¤α∧β.
To this purpose, we consider any b with aRb ° α. We define a sequence of worlds
bm0 , b

m
1 , b

m
2 , b

m
3 , m ∈ ω satisfying the following properties. (Recall that S0(x, y)

is just x↑ = y↑.)

1. bm0 Sab
m
1 Sab

m
2 Sab

m
3 Sab

m+1
0

2. bm0 , b
m
1 ° α & S0(bm0 , b

m
1 )

3. ∀d, e (bm1 SadRe→ bm0 Re)

4. bm2 , b
m
3 ° β & S0(b

m
2 , b

m
3 )

5. ∀d, e (bm3 SadRe→ bm2 Re)

Then, for some m ∈ ω, we will have that bm2 ° α∧β. Let us see that this follows
from properties 1.-5. For any m, we have by 2. that bm1 ° α. Thus, in any bm1
some disjunct of (12.4) should hold.

Let k be the first time that bk1 ° α, by satisfying some disjunct
∧
j(2Ai ∧

3Bij) that was satisfied by some bl1 for some l < k. Note that k ≥ 1. We now
claim that bk−12 ° α ∧ β.

By 4., clearly bk−12 ° β. As l ≤ k − 1, we get by 1., 2. and 3. that
∀e (bk−12 Re→ bl1Re) and thus, bk−12 ° 2Ai.

By 1., 4. and 5. we see that ∀e (bk1Re → bk−12 Re), whence bk−12 °
∧
j 3Bij .

Thus, indeed bk−12 °
∧
j(2Ai ∧3Bij) and b

k−1
2 ° α ∧ β.

The proof is thus finished if we can properly define our sequence of worlds.
The sequence b00, b

0
1, · · · is defined in the obvious way.

• b00 = b

• As aRbm0 , by C0, we can find bm1 with bm0 Sab
m
1 , S0(b

m
0 , b

m
1 ) and

∀d, e (bm1 SadRe→ bm0 Re).

• As bm0 ° α and S0(b
m
0 , b

m
1 ), also bm1 ° α. As a ` α ¤ β, we can find bm2

with bm1 Sab
m
2 ° β.

• Again, as aRbm2 , by C0, we can find bm3 with bm2 Sab
m
3 , S0(b

m
2 , b

m
3 ) and

∀d, e (bm3 SadRe→ bm2 Re).

• As bm2 ° β and S0(b
m
2 , b

m
3 ), also bm3 ° β. As a ` β ¤ α, we can find bm+1

0

with bm3 Sab
m+1
0 ° β.

a
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We shall now give a purely syntactical proof of ILB0 ` Z.

Lemma 12.1.19. ILB ` B’, where B’ : A¤B → A∧C ¤B ∧C with A ∈ ES2
and C a CNF of boxed formulas.

Proof. Easy. a

Theorem 12.1.20. ILB0 ` Z

Proof. First we notice that in IL, every ED2-formula is equivalent to its dis-
junctive normal form. Thus, we need to prove the statement only for formulas
in DNF.

Let A,B ∈ ED2 where a DNF of A is given by
∨n
i=1(2Ai ∧Ci). Here Ci is

short for
∧ki

j=13Cij for some suitable indices. From now on we shall only give
the range of the indices if necessary.

We show that for our B ∈ ED2 we have

(
∨

(2Ai ∧Ci) ≡ B)→
∨

(2Ai ∧Ci)¤ (
∨

(2Ai ∧Ci)) ∧B

Thus, our two assumptions are:

∨
(2Ai ∧Ci)¤B, (12.5)

B ¤
∨

(2Ai ∧Ci). (12.6)

By (12.6) and B′ on
∧
Ci, whereCi stands for

∨
2¬Cij , we get B∧

∧
Ci¤⊥,

i.e.,

2(B →
∨

Ci). (12.7)

Now we consider any disjunct of A, say 2An ∧Cn and prove that 2An ∧Cn ¤

A ∧B.
Clearly 2An ∧Cn¤B. Together with (12.7) and using B′ this yields 2An ∧

Cn ¤B ∧2An ∧ (
∨
Ci). By propositional logic we see conclude the following.

B ∧2An ∧ (
∨
Ci) ↔

∨
i(B ∧Ci ∧2An)

↔
∨
i(B ∧Ci ∧2An ∧

∧
j 6=iCj)

Now we consider any disjunct with index m of the latter, and show that

B ∧Cm ∧2An ∧
∧

j 6=m

Cj ¤A ∧B.

Clearly B ∧Cm ∧2An ∧
∧
j 6=mCj ¤A. By B′ we get

B ∧Cm ∧2An ∧
∧

j 6=m

Cj ¤A ∧2An ∧
∧

j 6=m

Cj .
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But, A ∧
∧
j 6=mCj gives us 2Am ∧Cm ∧

∧
j 6=mCj . We can conclude with the

following argument.

A ∧
∧
j 6=mCj ¤ 2Am ∧Cm ∧

∧
j 6=mCj by (12.5) and B′

¤ B ∧2Am ∧
∧
j 6=mCj by (12.7)

¤ B ∧2Am ∧ (
∨
Ci) ∧

∧
j 6=mCj

¤ B ∧2Am ∧Cm

¤ A ∧B

a

We see that Zambella’s principle does not add any information to ILB. The
best candidate for IL(PRA) is thus ILBR∗. The principles B, R and W seem to
be as independent from each other as can be.

12.2 Upperbounds

Let Sub(Γ) be the set of realizations that take their values in Γ. We define the Γ-
interpretability logic of T to be set of all formulas in FormIL that are provable in
T under any realization in Sub(Γ). We denote this logic by ILΓ(T). Clearly we
have that IL∆(T) ⊆ ILΓ(T) whenever Γ ⊆ ∆. This observation can be used to
obtain a rough upperbound for IL(PRA). In order to do so, we first calculate
the Γ-provability logic of PRA for a specific Γ. This is defined completely
analogously to its interpretability variant and is denoted by PLΓ(PRA).

First we define the set B of arithmetical sentences as follows.

B := ⊥ | > | 2(B) | 3(B) | B → B | B ∨ B | B ∧ B

Definition 12.2.1. The logic RGL is obtained by adding the linearity axiom
schema 2(2A → B) ∨ 2(¡B → A) to GL. Here ¡B is an abbreviation of
B ∧2B.

Theorem 12.2.2. PLB(PRA) = RGL

Proof. Let Ln be the linear frame with n elements. For convenience we call the
bottom world n−1 and the top world 0. It is well known that RGL ` A ⇔
∀n (Ln |= A). Our proof will thus consist of showing that ∀ ∗ ∈Sub(B) PRA `
A∗ ⇔ ∀n (Ln |= A).

For the ⇐ direction we assume that ∃ ∗ ∈Sub(B) PRA 0 A∗ and show that
for some m∈ω, Lm 6|= A. So, fix a ∗ for which PRA 0 A∗. The arithmetical
formula A∗ can be seen as a formula in the closed fragment of GL. By the
completeness of GL we can find a GL model such that M,x ° ¬A∗. By ρ(y)
we denote the rank of y, that is, the length of the longest R-chain that starts in
y. Let ρ(x) = n. As the valuation of ¬A∗ at x solely depends on the rank of x
(see for example [Boo93], Chapter 7, Lemma 3), we see that Ln+1, n ° ¬A∗ for
every possible valuation on Ln+1 (we also denote this by Ln+1, n |= ¬A

∗). We
define Ln+1,m ° p⇔ Ln+1,m |= p∗. It is clear that Ln+1, n ° ¬A.
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For the ⇒ direction we fix some n∈ω such that Ln 6|= A and construct a ∗
in Sub(B) such that PRA 0 A∗. Let Ln be a model with domain Ln such that
Ln, n−1 ° ¬A. Instead of applying the Solovay construction we can directly
assign to each world m the arithmetical sentence

ϕm := 2m+1
PRA⊥ ∧3

m
PRA>.

From now on we will omit the subscript PRA. It is easy to see that

1. PRA ` ϕl → ¬ϕm if l 6= m,

2. PRA ` ϕl → 2(
∨∨

m<l ϕm),

3. PRA ` ϕl →
∧∧

m<l3ϕm.

We set p∗ :=
∨∨

Ln,m°p ϕm. Notice that ∗ is in Sub(B). Using 1., 2. and 3. we
can prove a truth lemma, that is, for all m

Ln,m ° C ⇒ PRA ` ϕm → C∗ and
Ln,m 6° C ⇒ PRA ` ϕm → ¬C

∗.

By this truth lemma, Ln, n−1 ° ¬A⇒ PRA ` ϕn−1 → (¬A)∗ and consequently
PRA ` 3ϕn−1 → ¬2A

∗. Thus N |= 3ϕn−1 → ¬2A
∗. As ϕn−1 is consistent

with PRA we see that N |= 3ϕn−1 whence N |= ¬2A∗ and thus PRA 0 A∗. a

Definition 12.2.3. The logic RIL is obtained by adding the linearity axiom
schema 2(2A→ B) ∨2(¡B → A) to ILW.

Theorem 12.2.4. RIL = ILB(PRA)

Proof. We will expose a translation from formulas ϕ in FormIL to formulas ϕtr

in FormGL such that

RIL ` ϕ⇔ RGL ` ϕtr (∗)
and

RIL ` ϕ↔ ϕtr. (∗∗)

If we moreover know (∗∗∗) : RIL ` ϕ⇒ ∀ ∗ ∈Sub(B) PRA ` ϕ∗ we would be
done. For then we have by (∗∗) and (∗∗∗) that

∀ ∗ ∈Sub(B) PRA ` ϕ∗ ↔ (ϕtr)∗

and consequently

∀ ∗ ∈Sub(B) PRA ` ϕ∗ ⇔
∀ ∗ ∈Sub(B) PRA ` (ϕtr)

∗
⇔

RGL ` ϕtr ⇔
RIL ` ϕ.

We first see that (∗∗∗) holds. Certainly ILW ⊆ ILB(PRA). Thus it remains
to show that PRA ` 2(2A∗ → B∗) ∨2(¡B∗ → A∗) for any formulas A and B
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in FormIL and any ∗∈Sub(B). As any formula in the closed fragment of ILW

is equivalent to a formula in the closed fragment of GL (see [Hv91]), Theorem
12.2.2 gives us that indeed the linearity axiom holds for the closed fragment of
GL.

Our translation will be the identity translation except for ¤. In that case
we define

(A¤B)tr := 2(Atr → (Btr ∨3Btr)).

We first see that we have (∗∗). It is sufficient to show that RIL ` p¤ q →
2(p → (q ∨ 3q)). We reason in RIL. An instantiation of the linearity axiom
gives us 2(2¬q → (¬p∨ q))∨2((¬p∨ q)∧2(¬p∨ q)→ ¬q). The first disjunct
immediately yields 2(p→ (q ∨3q)).

In case of the second disjunct we get by propositional logic 2(q → 3(p∧¬q))
and thus also 2(q → 3p). Now we assume p ¤ q. By W we get p ¤ q ∧ 2¬p.
Together with 2(q → 3p), this gives us p ¤ ⊥, that is 2¬p. Consequently we
have 2(p→ (q ∨3q)).

We now prove (∗). By induction onRIL ` ϕ we see thatRGL ` ϕtr. All the
specific interpretability axioms turn out to be provable under our translation in
GL. The only axioms where the 2A→ 22A axiom scheme is really used is in
J2 and J4. To prove the translation of W we also need L3.

If RGL ` ϕtr then certainly RIL ` ϕtr and by (∗∗), RIL ` ϕ. a

We thus see that RIL is an upperbound for IL(PRA). Using the translation
from the proof of Theorem 12.2.4, it is not hard to see that both the principles
P and M are provable in RIL. This tells us that the upperbound is actually
not very informative as we know that IL(PRA) 0 M. Choosing larger Γ will
generally yield a smaller ILΓ(PRA) and thus a sharper upperbound.

In [Vis97] it is shown that IL(PRA) 0 A¤3B → 2(A¤3B), which implies
that M is certainly not derivable. We can also find explicit realizations that
violate M, as the following lemma tells us.

Lemma 12.2.5. For n ≥ 1, we have that IL(IΣR
n ) 0 M.

Proof. We will expose a realization ∗ such that IΣRn 0 (p¤q → p∧2r¤q∧2r)∗.
It is well-known that IΣRn ( IΣn ( IΣRn+1 and that, for every n≥1, IΣn is

finitely axiomatized. Let σn be the single sentence axiomatizing IΣn. It is also
known that (for n ≥ 1) IL(IΣn) = ILP and that ILP 0 p¤ q → p∧2r¤ q∧2r.
Thus, for any n≥1 we can find αn, βn and γn such that

IΣn 0 αn ¤ βn → αn ∧2γn ¤ βn ∧2γn.

Note that EA ` αn¤IΣn
βn ↔ σn∧αn¤IΣR

n
σn∧βn and ` 2IΣn

γn ↔ 2IΣR
n
(σn →

γn). Thus, we have

IΣRn 0 σn ∧ αn ¤ σn ∧ βn → σn ∧ αn ∧2(σn → γn)¤ σn ∧ βn ∧2(σn → γn)

and we can take p∗ = σn ∧ αn, q∗ = σn ∧ βn and r∗ = σn → γn. a
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We see that the realizations used in the proof of Lemma 12.2.5 get higher and
higher complexities. The complexity is certainly higher than Σ2. By Theorem
12.1.1 we know that this is necessarily so. This observation also indicates that
an arithmetical completeness proof can not work with only Σ2-realizations.

It is an open question if IL(PRA) ⊆ ILM. For IΣRn , n ≥ 2 we know that
IL(IΣR

n ) ⊂ ILM. This follows from the next lemma.

Lemma 12.2.6. ILΣ2
(IΣR

n ) = IL∆n+1
(IΣR

n ) = ILM whenever n ≥ 2.

Proof. We shall use that the logic of Π1-conservativity for theories containing
IΣ1 is ILM ([HM90], [HM92]). By U ¤Π1

V we denote the formalization of the
statement “U is Π1-conservative over V ”.

If, for two classes of sentences we have X ⊆ Y , then ILY (T) ⊆ ILX(T). We
will thus show that ILΣ2

(IΣR
n ) ⊆ ILM and ILM ⊆ IL∆n+1

(IΣR
n ).

First, we prove by induction on the complexity of a modal formula A that
∀ ∗ ∈Sub(∆n+1) IΣRn ` A

∗
Π1
↔ A∗¤ and that the logical complexity of A∗Π1

is
at most ∆n+1. The basis is trivial and the only interesting induction step is
whenever A = (B ¤ C). We reason in IΣRn :

(B ¤ C)∗¤ ↔def.
IΣRn +B∗¤ ¤ IΣRn + C∗¤ ↔i.h.
IΣRn +B∗Π1

¤ IΣRn + C∗Π1
↔Orey-Hájek

IΣRn +B∗Π1
¤Π1

IΣRn + C∗Π1
↔def.

(B ¤ C)∗Π1

Note that we have access to the Orey-Hájek characterization as B∗Π1
is at

most of complexity ∆n+1 and thus IΣRn + B∗Π1
is a reflexive theory. Also note

that (B ¤ C)∗Π1
is a Π2-sentence and thus certainly ∆n+1 whenever n ≥ 2.

If now ILM ` A then IΣRn ` A
∗
Π1

and thus whenever ∗ ∈ Sub(∆n+1), IΣ
R
n `

A∗¤ and ILM ⊆ IL∆n+1
(IΣR

n ).
If ILM 0 A then for some ∗ ∈ Sub(Σ2) we have IΣ

R
n 0 A∗Π1

whence IΣRn 0 A∗¤.
We may conclude that ILΣ2

(IΣR
n ) ⊆ ILM. a

12.3 Encore: graded provability algebras

In this final subsection, we shall make some remarks on the universal model of
the closed fragment of GLP as introduced by Ignatiev in [Ign93a]. We shall
see that upperbounds as provided in Theorem 12.2.2 are not easily improved by
switching to the closed fragment of GLP.

12.3.1 The logic GLP

Japaridze’s logicGLP, as defined below ([Dzh86]) has for each n ∈ ω a modality
[n]. An arithmetical reading of [n]ϕ is “ϕ is provable in T together with all true
Πn-statements”. GLP is known to be sound and complete with respect to this
reading for sound arithmetical theories T containing EA.
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Definition 12.3.1. The axioms of GLP are

1. Boolean tautologies,

2. [n]([n]ϕ→ ϕ)→ [n]ϕ for all n,

3. [m]ϕ→ [n]ϕ for m ≤ n,

4. 〈m〉ϕ→ [n]〈m〉ϕ for m < n.

The rules of GLP are modus ponens and necessitation.

It is easy to see that GLP does not allow for a natural Kripke semantics.
Ignatiev however, gave a nice universal model for the closed fragment of GLP.
The closed fragment of GLP is related to ordinal notation systems and com-
binatoric principles independent from PA, like “every worm dies” (see [Bek04],
[Bek03b]).

The universal model U for GLP should satisfy two main properties.

• GLP ` ϕ⇒ ∀x U , x ° ϕ

• GLP 0 ϕ⇒ ∃x U , x ° ¬ϕ

From the arithmetical soundness of GLP, we know that GLP 0 [m0] · · · [mn]⊥
for any sequence m0 · · ·mn. Thus, we should be able to find an x ∈ U with
x ° 〈m0〉 · · · 〈mn〉>. It is easy to see that GLP ` 〈1〉> → 〈0〉n> for any n.
Thus, for example, any time the model contains a transition to witness 〈1〉>,
there should be chains of transitions of arbitrary length witnessing the 〈0〉n>.

If ϕ is a formula in the language of GLP, we denote by ϕ+ the formula
that arises by making all the modalities one higher. Thus, (〈0〉> ∧ [1]⊥)+ =
〈1〉> ∧ [2]⊥. It is clear that GLP ` ϕ ⇒ GLP ` ϕ+. This phenomenon is
also nicely reflected in the universal model. The Rn-transitions, corresponding
to the 〈n〉-modality, repeat the behavior of the lower modalities. All these
considerations combine to yield Ignatiev’s model as depicted in figure 12.1. (We
have not depicted the arrows that should be there by transitivity.)

The depth of U will be ε0. In the next subsection we shall give a formal
definition.

12.3.2 A universal model for GLP0

We shall make extensive use of ordinals to describe our universal model U . In
this section, all ordinals denote ordinals below ε0. We will denote them by lower
case Greek letters.

Definition 12.3.2. If α = α′ + ωγ with α′ + ωγ in Cantor Normal Form, (α′

might be 0 in the case of the empty sum) then d(α) := γ and α− := α′.

For simplicity we set d(0) = 0. The intuition behind the construction of
Uα (the universal model up to stage α) is as follows. For U0 we just take one
irreflexive point. If we wish to construct Uα, we first take the union of all the
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...

...

...

...

...

...

...

· · ·

0

1(= 〈1, 0〉)

2

〈ω, 0〉

ω + 1

ω + 2

〈ω + ω, 0〉

〈ω2, 0〉

ω2 + 1

〈ω2 + ω, 0〉

ωω + 1

〈ωω+1, 0〉

ωω+1 + 1

〈ω, 1〉

〈ωω, 0〉

〈ω2, 2〉
〈ω2, 1〉

〈ω + ω, 1〉

〈ω2 + ω, 1〉

〈ωω, 1〉〈ωω, 2〉
· · ·

〈ωω, ω, 0〉

〈ωω+1, 1〉

〈ωω+1, 2〉〈ωω+1, ω, 0〉

〈ωω+1, ω + 1〉

〈ωω+1, ω, 1〉

〈ωω, ω, 1〉

Figure 12.1: The universal model for GLP0
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Uβ with β < α (the Uβ come with natural embeddings). Then, we consider
Ud(α). We make all the relations in Ud(α) one higher (that is, an Rn becomes an
Rn+1-relation) and then place it R0-below ∪β<αUβ . In this process we see that
the maximal length of an Rn+1-chain is always certainly a power of ω behind
the maximal length of an Rn-chain. Of course, in the limit all the lengths catch
up.

Definition 12.3.3 (Universal model). U := {x ∈
∏
i<ω[0, ε0) | ∀i (x)i+1 ≤

d((x)i)} and xRny iff ((x)n > (y)n and (x)i = (y)i for all i < n.

We will write elements of U as finite sequences, omitting all the zero elements.
The sole exception of course, is the sequence ~0 which we shall denote by 0.

We can also define the universal model up to stage α for α < ε0.

Uα := {x ∈
∏

i<ω

[0, ε0) | (x)0 ≤ α ∧ ∀i (x)i+1 ≤ d((x)i)}

Lemma 12.3.4. The formal definition of U captures the intuitive construction
of it.

Proof. One just has to carefully describe the process in the intuitive picture.
Every model comes with a set of embeddings into larger models. As an interme-
diate coding of the process one can use the definition of Iα as given in Definition
12.3.5. It is not hard to show that ∀α<ε0 Iα = Uα and that

⋃
α<ε0

Iα = U . a

Definition 12.3.5.
I0 := {~0 ∈

∏
i<ω[0, ε0)}, that is, just one irreflexive point,

(Iα)
+ := {x ∈

∏
i<ω[0, ε0) | ∃ y∈Iα ((x)0 = 0 ∧ ∀i (x)i+1 = (y)i)},

Iα := (Id(α))
+ ⊕ ~⋃

β<αIβ .

Here the ~⋃ is the familiar direct limit, and ⊕ is the relation defined by the
following.
B+ ⊕ A := {y ∈

∏
i<ω[0, ε0) | ∃ z∈B

+ ((y)0=sup{(x)0|x∈A} ∧ ∀i (z)i+1 =
(y)i+1)} ∪A

In [Ign93a] it is shown that, indeed, U is a universal model for the closed
fragment of GLP. His proofs make at various points reference to the arith-
metical interpretation. In the next subsection we shall prove that the model is
sound for GLP, by a proof that uses modal considerations only.

12.3.3 Bisimulations and soundness

In this subsection, we shall make extensive use of bisimulations.

Definition 12.3.6 (n-bisimilarity).

• x, x′ are 0-bisimilar, we write x '0 x
′, if ∀p [x ° p⇔ x′ ° p]

• x, x′ are n+ 1-bisimilar, we write x 'n+1 x′, if
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– x, x′ are n-bisimilar

– ∀ i<ω ∀y (xRiy → ∃y
′ (x′Riy

′ & y and y′ are n-bisimilar))

– ∀ i<ω ∀y′ (x′Riy
′ → ∃y (xRiy & y′ and y are n-bisimilar))

Lemma 12.3.7. Let M and N be models of the same modal signature. If m ∈
M and n ∈ N are l-bisimilar, then

M,m ° ϕ⇔ N,n ° ϕ

for every ϕ with rk(ϕ) ≤ l. Here rk(ϕ) is the modality rank of ϕ, that is, the
maximal number of nested modalities in ϕ.

Proof. The lemma is well-known and can easily be proven for example with a
variant of Ehrenfeucht-Fräıssé games and the first order translation of modal
logic. (See also [BRV01], [CZ97].) a

Lemma 12.3.8.

(i) β < α & γ < d(α)⇒ β + ωγ < α
(ii) β < α & γ ≤ d(α)⇒ β + ωγ ≤ α

Proof. By elementary observations on the Cantor Normal Forms (CNF’s) of α
and β. a

Definition 12.3.9 (Nested width). An ordinal α has nested width at least
n, we write NW(α) ≤ n, iff the CNF of α contains at most n terms and each
exponent of each term has nested width at least n.

We note that for each α, there is an n with NW(α) ≤ n, and that NW(α) ≤ n→
NW(α) ≤ n+ 1. As all our ordinals are below ε0, we see that for any p and α,
there are only finitely many β < α with NW(β) ≤ p.

Definition 12.3.10. We define an alternative fundamental sequence as follows.
α〈p〉 := max{ξ < α | NW(ξ) ≤ p}

It is immediate that ∀p α〈p〉 < α. If α is a limit ordinal, we have ∪p∈ωα〈p〉 =
α. We also note that α〈p〉 is monotone in both α and p.

Lemma 12.3.11 (Bisimulation lemma). Let ~α, ~β ∈ U with for all i,

αi > βi〈p〉
βi > αi〈p〉

then, ~α 'p ~β.

Proof. By induction on p. The case p = 0 is trivial, so let us consider the
induction step. We assume that for all i, αi > βi〈p+ 1〉 and βi > αi〈p+ 1〉. We

have to see that we can reply any Rn-step from ~α to ~α′ with an Rn-step from
~β to a ~β′ so that α′ 'p β′ and vice versa.
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So, we suppose that we make some Rn-step in ~α, that is, we go from

~α = α0, · · · , αn−1, αn, · · · to
~α′ := α0, · · · , αn−1, α

′
n, · · · , α

′
m.

We now reply this step in ~β by going to a ~β′ with the same length as ~α′ defined
as follows.

β′m := α′m〈p〉+ 1

β′k := α′k〈p〉+ ωβ
′
k+1 for n ≤ k < m

β′k := βk for 0 ≤ k < n

We now claim that for all i, we have

(a) α′i > β′i〈p〉,
(b) β′i > α′i〈p〉.

Let us first see (a). By induction and using Lemma 12.3.8, we see that α′i ≥ β
′
i

for n ≤ i ≤ m. For i < n we have α′i = αi > βi〈p+ 1〉 ≥ βi〈p〉 = β′i〈p〉.

For n ≤ i ≤ m, (b) follows by the definition of ~β′ and an easy induction. For
i < n we reason as in (a).

The induction hypothesis now gives us that ~α′ 'p ~β′. Thus, we only need

to see that going from ~β to ~β′ is indeed a transition in U . That is, we need to
see that β′n < βn (with this it is also clear that for all i, d(β ′i) ≥ β

′
i+1).

We know that β′n ≤ α′n < αn. By an easy induction we see that NW(β′i) ≤
p+ 1 for n ≤ i ≤ m. Thus, αn〈p+ 1〉 ≥ β′n. Combining this with our assump-
tion, we get βn > αn〈p+ 1〉 ≥ β′n. a

Theorem 12.3.12. GLP is sound with respect to U .

Proof. By induction on GLP-proofs. Löb’s axioms follow from the fact that
the model is transitive and conversely well-founded. The only axioms that need
some special attention are

〈n〉ϕ→ [m]〈n〉ϕ m > n and
〈n〉ϕ→ 〈m〉ϕ m ≤ n.

The first follows from elementary observations on U . For the second, we reason
as follows. It suffices to show that 〈n+ 1〉ϕ→ 〈n〉ϕ. So, suppose that for some

~α ∈ U we have ~α ° 〈n+ 1〉ϕ. Thus, for some ~α′ with ~αRn+1 ~α′ we have ~α′ ° ϕ.

Let p := rk(ϕ). By Lemma 12.3.7 it suffices to find some ~β with ~α′Rn~β and
~α′ 'p ~β. Now, if

~α : α0, · · · , αn−1, αn, αn+1, · · · goes to
~α′ : α0, · · · , αn−1, αn, α′n+1, · · · , α

′
m,

we define ~β of the same length as ~α′ as follows.

βm := α′m〈p〉+ 1
βk := α′k〈p〉+ ωβk+1 for n ≤ k < m
βk := αk for 0 ≤ k < n
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By induction and Lemma 12.3.8 we see that βk ≤ α′k for n + 1 ≤ k ≤ m. As

α′n+1 < αn+1, we see by Lemma 12.3.8 that βn < αn. Moreover, ~α′ and ~β

satisfy the requirements of Lemma 12.3.11 and we conclude that ~α′ 'p ~β. a

Definition 12.3.13. The Main Axis MA on U is defined as follows.

MA := {x ∈ U | ∀i (x)i+1 = d((x)i)}

Corollary 12.3.14. Any point ~α ∈ U is p-bisimilar to some ~β ∈ MA.

Proof. Given α and p, we consider ~β with βk = αk〈p〉+ ωβk+1 . a

Let D denote the arithmetical translation of the closed fragment of GLP,
where [0] is translated to ”provable in PRA ”.

Lemma 12.3.15. PLD(PRA) = RGL

Proof. By Lemma 12.2.2, it is clear that PLD(PRA) ⊆ RGL. For the other
inclusion, we only need to see that

PRA ` 2(2A→ B) ∨2(¡B → A) (12.8)

for any A,B ∈ D. With the arithmetical completeness and the modal semantics
at hand, it is easy to see (12.8).

For, suppose for a contradiction that at some x, we have x ° 3(2A∧¬B)∧
3(¡B∧¬A). By Corollary 12.3.14 we can find y0 and y1 on the main axis with
y0 ° 2A ∧ ¬B and y1 ° ¡B ∧ ¬A. As y0 and y1 lie on the main axis, we have
y0 = y1, y0Ry1 or y1Ry0. All of these possibilities lead to a contradiction. a

12.3.4 Finite approximations

The soundness proof we gave in Theorem 12.3.12 used the observation that
U is a conversely well-founded model. This implies that our proof is not even
formalizable in PA, as the depth of U is ε0. Yet, we have the idea that this much
induction is not needed to reason about the closed fragment of the decidable
logic GLP.

One way to get some sort of soundness available in weaker theories is by
means of finite approximations of U .

Definition 12.3.16. α ≺ β iff α < β and NW(α) ≤ min{n | NW(β) ≤ n}

Definition 12.3.17 (Finite approximations). F0 := {~0 ∈
∏
i<ω[0, ε0)}, that

is, just one irreflexive point,

Fα := (Fd(α))
+ ⊕ ~⋃

β≺αFβ .

Here the ⊕ and the (·)+ are as in Definition 12.3.5.

Lemma 12.3.18. There exists increasing sequences αi with ~⋃
i<ωFαi

= U .

Proof. An example is αi := ωi · i. a
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Lemma 12.3.19. If ϕ is a closed formula that is provable in GLP, then there
is a proof of ϕ in which only closed formulas occur.

Proof. If such a proof contains propositional variables, we may substitute > for
them and obtain the desired proof. a

Theorem 12.3.20. If a closed formula ϕ is provable in GLP using only closed
formulas of complexity ≤ n, then Fα |= ϕ for any α with min{p | NW(α) ≤ p} ≥
n.

Proof. By induction on such a proof. We note that all the points that are needed
to repeat the proof of Theorem 12.3.12 are available in Fα. a

Corollary 12.3.21. EA+ supexp ` Con(GLP0 + {〈 〉>, 〈1〉>, 〈2〉>, . . . })

Proof. We reason in EA+ supexp. Suppose for a contradiction that for some m,
GLP0 ` [m]⊥. Then, for some n≥m we have GLP0 `n [m]⊥. That is, [m]⊥ is
is provable in GLP0 using only formulas of complexity ≤ n.

The number of points in Fωn·n is certainly bounded by some term using
supexp(n). Sharper bounds may be obtained by analyzing in more detail the
number of β for which β ≺ α for a given α. As Fωn·n 6|= ϕ, we get a contraction
by Theorem 12.3.20. a
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Samenvatting

Deze dissertatie is in de eerste plaats een verhandeling over wiskundige inter-
pretaties. Hierbij worden interpretaties zelf onderzocht, maar ook worden zij
gebruikt als hulpmiddel bij de bestudering van formele theorieën.

Vergelijken met behulp van interpretaties zegt op natuurlijke wijze iets over
de (bewijs) sterkte van formele theorieën. Immers, wat zou het kunnen beteke-
nen dat een theorie S minstens zo sterk is als een theorie T?

Als eerste en meest eenvoudige uitleg kan worden gegeven dat S alles bewijst
wat ook door T bewezen wordt. In symbolen schrijft men

∀ϕ (T ` ϕ⇒ S ` ϕ).

Een directe complicatie doet zich hier voor als T en S ‘verschillende talen spre-
ken’. Onmiddellijk dient zich nu het idee van een vertaling aan om tot de
volgende uitleg van “S is minstens zo sterk als T” te komen.

Voor een zekere vertaling j moet S alle vertaalde stellingen van T bewijzen.
Dit zou in symbolen als volgt kunnen worden weergegeven.

∃j ∀ϕ (T ` ϕ⇒ S ` ϕj) (12.9)

In grote lijnen is een dergelijke vertaling j hetzelfde als een interpretatie van
T in S. Dat wil zeggen, via (12.9) is de notie van interpretatie gedefinieerd.
Opdat de notie van interpreteerbaarheid daadwerkelijk informatief is, zijn er
nog enkele restricties aan j opgelegd. Zo zal j bijvoorbeeld zekere structuur
moeten behouden waardoor alles naar een trivialiteit vertalen, zeg ∀x (x = x),
uitgesloten wordt.

Het wordt nu ook al snel duidelijk wat de verdiensten van interpretaties voor
de grondslagen van de wiskunde zijn. Sinds de onvolledigheidsstellingen van
Gödel is het bekend dat er niet zo iets kan zijn als een volledige axiomatisering
van de wiskunde. Formele wiskundige systemen kunnen dus niet op natuurlijke
wijze worden ingebed in één universeel formeel systeem. De vraag is dan, hoe
verschillende formele systemen zich tot elkaar verhouden, hoe zij vergeleken
kunnen worden. Interpretaties bieden hier een mogelijke uitkomst.

In dit proefschrift worden interpretaties tussen eerste orde theorieën met een
zekere minimale rekenkracht bestudeerd. Zoals gezegd, worden in het proef-
schrift interpretaties gebruikt om theorieën te vergelijken, maar ook zijn zij zelf
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het onderwerp van studie. In dit laatste geval ligt de nadruk op het structurele
gedrag van interpreteerbaarheid, hetgeen zich onder andere in zogeheten inter-
preteerbaarheidslogicas manifesteert. Het proefschrift valt op natuurlijke wijze
uiteen in drie delen.

Deel één In het eerste deel wordt de notie van interpretatie gëıntroduceerd
en vergeleken met andere noties met zekere meta-mathematische importantie.
Dit resulteert in de zogeheten karakteriseringen van interpreteerbaarheid, waar-
bij consistentie uitspraken, definieerbare snedes en Π1-conservativiteit centrale
begrippen zijn.

Interpreteerbaarheid, als zijnde een zuiver syntactische notie, wordt gefor-
maliseerd en ook de karakteriseringen vinden in een volledig geformaliseerde
omgeving plaats. Hierbij wordt voor elke implicatie in de karakterisering nauw-
keurig bijgehouden welke principes uit de meta-theorie worden gebruikt. De
karakteriseringen krijgen een bijzonder elegante vorm als zij in termen van ca-
tegorieëntheorie worden uitgedrukt.

Aan het eind van het eerste deel wordt de focus verlegd naar interpreteer-
baarheidslogicas en in het bijzonder wordt gesproken over een modale karakteri-
sering van IL(All), de interpreteerbaarheidslogca van alle redelijke rekenkundige
theorieën . Er wordt een nieuw geldig principe R voor deze logica gepresenteerd
en dit principe wordt aritmetisch correct bewezen. De correctheid wordt op twee
manieren bewezen. Er worden modale systemen gepresenteerd die met deze twee
bewijsmethoden corresponderen. Alle tot dusver bekende andere principes in
IL(All) worden in beide modale systemen aritmetisch correct bewezen.

Deel twee Het tweede deel van het proefschrift is volledig gewijd aan modale
semantiek van interpreteerbaarheidslogicas. Een centrale vraag is hier of een
logica volledig is ten opzichte van haar modale semantiek. Modale volledig-
heidsbewijzen worden gegeven voor de logica’s IL, ILM, ILM0, ILW en ILW∗.
De volledigheidsbewijzen voor ILM0 en ILW∗ kunnen als eerste bewijzen wor-
den aangemerkt. Ook zijn er enige toepassingen van de volledigheidsbewijzen.

Er wordt een poging gedaan een soort uniformiteit in volledigheidsbewijzen
aan te brengen. Echter, hier valt zeker nog werk te verrichten. Een stap in de
goede richting is de invoering van de full labels en de ontwikkeling van de theorie
hiervan.

In het laatste hoofdtuk wordt een modaal onvolledigheidsbewijs gegeven van
ILP0W

∗. In dit bewijs speelt het principe R een centrale rol.

Deel drie In het derde en laatste deel van het proefschrift wordt een studie
naar primitief recursieve rekenkunde (PRA) uitgevoerd. Met name de verhou-
ding tot IΣ1 wordt bekeken. De stelling van Parsons wordt op twee verschillende
manieren bewezen. Eén bewijs is model-theoretisch van aard en geeft inzicht
in bewijsbare geslotenheidseigenschappen van de bewijsbaar totaal recursieve
functies.
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Hoewel PRA en IΣ1 equi-consistent over PRA zijn, is het wel mogelijk om
in IΣ1 de consistentie van PRA op een definieerbare snede te bewijzen.

Een belangrijk probleem is de modale karakterisering van IL(PRA), de in-
terpreteerbaarheidslogica van PRA. Er wordt een frame conditie voor Bekle-
mishev’s principe berekend. Ook wordt laten zien dat Beklemishev’s principe
minstens zo sterk is als het principe van Zambella.

Er wordt een karakterisering gegeven van het gesloten fragment van de in-
terpreteerbaarheidslogica van PRA met een constante voor IΣ1. Ook wordt
een grove bovengrens voor IL(PRA) gegeven. Deze bovengrens wordt berekend
door de mogelijke substituties in Solovay’s stelling te beperken.

De toegift van het proefschrift behandelt modale semantiek voor het gesloten
fragment van GLP. Er wordt een kleine variatie op het model van Ignatiev
gegeven, een model met ‘diepte ε0’. Dit model wordt aan een modale analyse
onderworpen zonder dat er verdere aritmetische ingrediënten aan te pas komen.


