Towards the Interpretability Logic of all Reasonable
Arithmetical Theories

Joost J. Joosten

12 december 1998

Abstract

The subject of this paper is the interpretability logic of all reasonable
arithmetical theories, which we baptize GIL. This logic has long been
conjectured by Albert Visser to be ILW™. No modal completeness re-
sult was known for ILW*. In order to provide a completeness proof
of ILW*, a good understanding of the sublogic ILM, seems indispens-
able. But there was no modal completeness result for ILM, either.
In this paper a method for constructing models is developed. By this
model-construction method we obtain a new proof of the modal com-
pleteness and decidability of ILM. Moreover do we obtain the modal
completeness of ILM,. Furthermore, a new principle, Py, is introduced
and studied. This principle is seen to be arithmetically valid and is
completely independent with regard to the other principles studied
here. The new logic ILPy turns out to be modally incomplete. The
conjecture of ILW™* being the interpretability logic of all reasonable
arithmetical theories is thus falsified.

1 Introduction

A miracle happens. This is the openings phrase of an article by Albert
Visser [Vis97] and hereby of this paper as well. The miracle mentioned
emerges in metamathematical considerations of interpretations. Interpreta-
tions are interesting mathematical objects on their own. They frequently
turn up in various areas. As a classical example one can mention the use
of interpretations in establishing the undecidability of certain theories as
exposed in [TMR53] Tarski, Mostowski, Robinson. The notion is frequently
encountered in relative consistency results as well. Interpretations are also
a very natural device when comparing different structures. Rather then
paying importance to the names of the individual objects one would merely



like to be able to talk about alikeness and imbeddability or better: inter-
pretability. It turns out that the notion of interpretability can be formalized
within the language of sufficiently strong mathematical theories. The meth-
ods used here are the same as when it came to formalizing the provability
predicate. Actually, one makes explicit use of the formalized provability
predicate to formalize interpretability and indeed both topics are closely
related. Proceeding along like this yields a logic of interpretability with a
Kripke-like semantics. As complex as is the notion of interpretability, as
simple a method can be distilled representing this originally very complex
notion. Solovay’s method establishing arithmetical completeness of prov-
ability logic can be generalized to obtain arithmetically complete systems of
interpretability logic and behold: decidability! Yes miracles do exist.

The logic of interpretability can thus be viewed as an extension to the logic
of provability. The logic of provability includes important results concern-
ing formal provability and provides a very sophisticated way of representing
important results of, for example, Godel, [G6d92], and Léb, [Lob55]. The
subject of study in provability logic as with interpretability logic is formal
theories. Provability is quite a stable notion though and does not distinguish
between even very different theories. From quite weak theories onwards, all
the provability logics come out the same. It is known that all theories in
which 1A+ EXP is interpretable and which are ¥1-sound under the trans-
lation, have the same provability logic: Lob’s logic. See for example [Vis97],
or [Vis84]. One could think of three approaches if one wants to obtain dif-
ferent logics, for fine tuning so to say.

First one could try to descend to theories weaker than Ay + EXP,
where Lobs logic is still arithmetically valid. This becomes an extremely
difficult venture and despite intensive investigations very little is known on
this subject. See e.g. [BV93]. Another direction would be to alter the bare
logic. One could switch to, for example, intuitionistic logic in its relation
to Heyting arithmetic obtaining a variety of new valid principles. Signifi-
cant progress is made, [Iem98], [Vis94], but for example it is still unknown
whether the provability logic of Heyting Arithmetic is axiomatizable at all.
A third possibility would be to enrich the modal language. Where the logic
of provability employs only one modal operator O, for formal provability,
the language of interpretability logic includes also a binary modality > for
interpretability. Although O can be defined in terms of >, one prefers to use
both modalities. The whole provability logic now becomes a sublogic of the
logic of interpretability. Moreover, distinctions between different theories
are reflected by having different corresponding interpretability logics. So,



interpretability is not that stable a notion as provability is. Furthermore,
all sorts of arithmetical results can now be expressed, as we will see later,
very elegantly like for example the model existence lemma, CA > A, or a
more intricate formalization of the second incompleteness theorem of Godel,
CA = (A OA).

For two main interpretability logics, arithmetical completeness results are
known. On the one hand that is the interpretability logic of PA, ILM,
and on the other hand the interpretability logic of any (sufficiently strong)
finitely axiomatizable theory, ILP. As these two logics are different, it seems
very natural to ask for the core logic, that is the interpretability logic of all
reasonable arithmetical theories. “Reasonable” in this context is not such a
tight notion and can be read here as “containing IAg + SUPEXP”. Look-
ing for this notion is not just a matter of a simple intersection of all logics;
Stronger logics can prove more but also have more expressive power. The
primary aim of this paper is to contribute to the quest for the interpretabil-
ity logic of all reasonable arithmetical theories. In due time many seemingly
relevant interpretability logics have seen the light and many of them faded
away already. The situation at the start of this research is sketched below.
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IL, ILP and ILM are known to be decidable and modally complete. ILM
and ILP are also arithmetically complete with regard to some theories. See
e.g. [JdJ98]. In an article soon to appear, [dJV], ILW is shown to be de-
cidable and modally complete. In [Vis90] ILW was put forward as the
interpretability logic of all reasonable arithmetical theories. After the dis-

covery that My is a valid principle in [Vis91], the conjecture was updated
to ILW*(= ILW M,).

By the end of this paper we obtain a new picture which is given below. We



develop a strategy for obtaining modal completeness without necessarily
also obtaining decidability. This method is applied to ILM to get both
completeness and decidability. The same method shows to be fruitful when
it is applied to ILM,; we obtain the modal completeness of ILM,. ILW* is
shown to be inadequate as a candidate for GIL, the logic of all reasonable
arithmetical theories. This is done by introducing a new arithmetically valid
principle Py, which is not derivable over ILW*.
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2 The landscape: Interpretability

2.1 The formalization of interpretability

The subject of our study as mentioned before is formal theories. The main
tool used will be the notion of interpretability. There are many notions
of interpretability, so we have to choose one for the default notion. When
we talk in this paper about interpretability we refer to the notion of rela-
tive interpretability used in [TMR53]. A relative interpretation comprises
a translation t and a relativizing formula o(x). t is a translation from the
language of T” into the language of T. To every predicate constant P in the
language of T", the translation assigns a formula P? in the language of T.
The relativizing formula o is in the language of T as well. The translation
is defined such that:

cto=y)isz=y,
e for any other atom one has ¢(P(Z)) to be PY(Z),
e t commutes with the Boolean connectives,

o t(Vza) is Vo (o(x) — t(a)) and consequently ¢(Jza) will be
Jz(o(z) A t(a)).



So it will be clear what it means to say that a theory S interprets a theory
T, namely S proves every translated theorem of 7' for some translation.
This will be abbreviated by stating S > 7. Now if a theory T is strong
enough one can do sufficient coding and hence talk within the theory 7T itself
about interpretability. So within a theory one can formalize statements like
a > (B, stating “T' 4+ « interprets T + 3”. The intuitive reading should be
something like “for some translation, T' + a proves the translation of every
theorem of T+ $”. And actually like this it can be formalized. For an
extensive treatment one can see for example [JdJ98], [Vis97] or [Ber90]. If
we are not too concerned about correct notation, we can think of formalized
interpretability as the following %3-sentence:

at B 3J(Or(a = 7) AVy(Azr(y) = Or(a = y”).  (+)

In this sentence Axp is the formula expressing the fact: “y is the code of an
axiom of T”. The O is a notion expressing provability in T'. We will always
use an intensional translation of the notion of provability. That is, not just
any notion which externally happens to be the same as provability, but a
notion in which the meaning of provability is really coded. See for example
[Boo93]. It is only important that the provability notion will generate the
Hilbert-Bernays conditions (also called Lob conditions) and consequently all
of Lob’s provability logic. There are provability predicates known for which
the Hilbert-Bernays conditions are not derivable and for which the second
incompleteness theorem of Gédel does not hold (see for example [Sha94] or
[Vis89]), but we will not consider them. The J in (4) is the interpretation
itself, comprising a translation from the one language into the other as well
as a relativizing formula, defining the domain of the interpreted theory. If
Tt S is true, one has a uniform method of finding a model of S in any model
of T. Thinking in terms of submodels can be very useful for acquainting
oneself with some intuition on arithmetically valid principles. For example
S>RARDP>T — S>> T can be thought of as a reflection of the following
argument: “If in any model of S one can define a model of R, and if in any
model of R one can define a model of T', one can consequently define in any
model of S, a model of T.”

2.2 Valid arithmetical principles

Some principles are easily seen to hold in a general arithmetical setting.
From now on we will only study arithmetical theories that are reasonable. As
mentioned before, reasonable can be read as “containing 1Ay + SUPEXP”.
We will treat some principles which hold in every reasonable arithmetical



theory. Precisely these principles are later collected to be studied in a modal
setting.

e We call J1 the principle of O(aw — ) — a > 8. This reflects the fact
that the identity function is a special case of an interpretation. If one
takes J in (4) to be the identity, a tautology arises. (The relativizing
formula can in this example just be taken z = x.)

e The principle J2 reads a>SAB>y — ab>~y. We already encountered a
plea for this principle when we viewed it as a statement of models. By
more elementary means one can also see this principle to be true. The
observation that the composition of two interpretations is again an
interpretation, more or less explains the principle. Finally one should
convince oneself that this reasoning can be done within the theory.
(Here one has to use technical facts like - O(8 — /) — O(87 —

7]0])_)

e The principle J3 is ab> yA B>y — aV B> 7. Reading this as a
statement of models legitimizes it immediately. If in any model of A,
and in any model of B, one can define a submodel for C', well then in
any model of AV B one can define a submodel for C. For if AV B
holds, either one of them holds, but in both cases a model of C' can
be defined. In terms of interpretations .J3 reflects that one can choose
which interpretation to use, depending on « or -« to hold.

e Another principle, J4: a > 8 — (Ca — <f), reflects that inter-
pretations yield relative consistency results. One can also see J4 to
be a direct consequence of J1 and J2. For this we write the conse-
quent as O0-3 — O-qa. Now suppose a > 8 and O-3. J1 gives that
O-8 = 0O(8 — L) implies > L. By transitivity , (J2), one gets
a > L. But as the translation of | under any interpretation is always
1, we automatically get O-q.

e The principle J5 reads ¢a > «. It can be seen as an arithmetized
version of the completeness theorem. The consistency of a statement
implies the existence of a model on which this statement holds. As
the theories we consider are strong enough to encode the whole Henkin
construction, one can prove within that very theory T+ Cong(a)>T+
a. This coding can be done in a really weak theory, Ty C T, so actually
something stronger can be proven as well: Ty + Congp(a)>T + «. This
strengthening of J5 is essentially used in establishing the arithmetical
validity of the new principle P, in paragraph 6.5.



All these principles are collected together in a modal logic. This modal logic
is properly defined in chapter 3. It will be referred to as IL.

2.3 The other principles

If the theory under consideration is P A with full induction, more principles
hold. We consider Montagna’s principle M : al>f — aAo> Ao for every
o € %9. This can be seen to hold for P A using the following fact. Over PA
one knows that o> g iff every P A-model of o has an end extension which is
a P A-model of 3. So if the ¥:¢-sentence o holds in a PA-model M of o, there
must be a witness in this model for o. This witness serves as a witness as well
in any end extension of M. We say that o is being preserved under taking
end extensions. So there exists an end extension for SA o, hence aAo>GA0.

If T, the theory under consideration, is finitely axiomatizable, the situation
gets a lot easier. The sentence Vy(Azr(y) — O(a — y”)) can just be
replaced by O(a — 77), where 7 is the conjunction of all the axioms of 7.
Consequently the sentence (+), expressing formal interpretability, becomes
a Y{-sentence and hence can be “boxed up”, using so-called provable %9-
completeness already used by Godel. By doing so one obtains the so-called
persistence principle P : al>f — O(al>f). As I%, is finitely axiomatizable
for all n € w, we have that P is an interpretability principle for I3, for all
n c w.

3 The modal logic of interpretability

3.1 The basic interpretability logic

The language of the modal interpretability logic is the language of prov-
ability logic extended with a binary modality >. So we have at our dis-
posal an enumerable supply of propositional variables, a unary modality
O and a binary modality >. We can either use all the Boolean connec-
tives or just constrain ourselves to A and —. We adhere to some reading
conventions as to omit parentheses without introducing ambiguities. The
negation, the diamond and the box bind stronger than A and V, which in
turn bind stronger then > and —. Finally we say that > binds stronger
than —». So A> B — AAOCD> B A OC, for example, is short for
(A B) > (AA (3C) > (B A (3C))).

Definition 3.1 The basic interpretability logic IL has the following axiom



schemes:
L,: O(A— B)— (0A—0OB)
Lo,: DA — 0O0OA4
Ly: O(0OA— A)— DA
Jl: OA—-B)—A>B
J2: ADBABB>C—AD>C
J3: A CAB>C—>AVB>C
Ji: Ap> B— (©CA— ©OB)
Js: CApD A

The rules of inference are modus ponens and necessitation, that is, if one
hast A — B and - A, then also + B, resp. - A = F OA.

Just as with provability logic, a Kripke-like semantics is given for IL.

Definition 3.2 An IL-frame (also Veltman-frame) is a triple
(W,R,{Sw | w € W}) such that:

1. (W, R) is an L-frame, that is, W is a non empty set and R is a tran-
sitive conversely well-founded relation on W?2.

2. Sy Cwt xwt (wh={x €W | wRz}).
3. (RNw1) C Sy.

4. Sy is reflezive.

5. 8, is transitive.

By S we mean U{S,, | w € W}. The elements of W will also be called
worlds or nodes.

Definition 3.3 An IL-model is an IL-frame together with a forcing relation
I between worlds and propositional letters. |+ is extended to formulas by
defining I to commute with the Boolean connectives and defining

- wlk 04 & Vo' (wRw' — w' Ik A),

-wlk Ap B & Yo' (wRw Aw' IF A — Fw” (w'Syw” Aw” IF B)).

One could also first define I and later determine the conditions on the binary
relations S,,. In this manner one notices some frame correspondences. We
see that J4 imposes 2, J1 corresponds with 4, J2 corresponds with 5 and
J5 corresponds with 3. The axiom J3 has a special status as it does not
impose anything on the frames.



Definition 3.4
o M,wlk A and w - A are equivalent expressions.
e M = A means that for all w in M, M,w |- A.
o If F is a Veltman-frame, F = A means that for any I+, (F,IF) = A.

We say that A holds as a scheme on a frame F if all instantiations of
A hold at F'.

Let K be a class of Veltman-frames. We define K |= A iff
VF e K F E A.

As every axiom of IL is valid on every Veltman-frame, and this validity is
preserved under the rules of inference, we see that IL is sound w.r.t. Veltman-
frames. That is, all IL-derivable formulas hold on all Veltman-frames. The
logic is modally complete as well. See [JV91]. So if a formula holds on
all II-frames, it must be derivable in IL. This completeness result is also
presented for example in [JdJ98].

Throughout this paper we will use some very basic results of IL. Most of
them are very easy to verify. In the next lemma we expose some facts of IL.

Lemma 3.5

ILFAp> 1+ 0-4

-ILFO-A—- A> B
-ILFAVOAD A
-ILFAD AANO-A

These facts are indeed easy to verify as is partly done in [JdJ98]. Formal
proofs in IL are quite laborious to write down. A Gentzen proof system is
most likely hard to find.



3.2 More principles and frame correspondences

Other axioms we will consider are:

P : A B—0OAD B)
M : ApB— AANOC>BAOC
W : ApB—s Ap BAO-A

My : ApxB— OAANOC>BAOC
w* . ApB—BAOCD>BAOCAO-A
P, : A><OB-—O(A>B)

Definition 3.6 The logic ILX is a modal logic in the language O, >. All
tautologies in this language are theorems of ILX. Further are all the aziom
schemes of IL plus X itself, axiom schemes of ILX. The rules of inference
are modus ponens and the rule of necessitation. X can be taken to be one of
the above axiom schemes. The logic ILXY 1is the logic where we add both
X andY as axiom schemes.

The logic ILW™ is known to be precisely ILMyW. See for example [Vis97].
All the logics we will consider over IL, will have the deduction theorem.
The principle Py is introduced here for the first time. The principles P, M,
etc., do not hold on every IL-frame. One can examine which condition the
frame should satisfy in order to have the principle to hold. We obtain the
following list of frame correspondences:

P : zRx'RyAyS.y — ySpy'.

M : yS:y ANy'Rz — yRz.

W : Ro S is conversely well-founded.

My : xRa'Rx"S,yRy — 2'Ry'.

W* . Both the conditions of W and of M.
Py : zRx'Ra"S,yRy — 2"Spvy.

Instead of the formula one could read its universal closure. The frame con-
dition of W is not first-order expressible though. The general problem of
first order definability of a frame condition is known to be undecidable even
in pure modal logic, and presumably even for extensions of Lobs logic, see
Chagrova [Cha91], and is conjectured by van Benthem to be much worse. In
[Ben84] he shows that the first-order definability for monadic second-order
I1} sentences of a restricted form is non-arithmetically definable. The situa-
tion with interpretability logic is likely to be at least as complex. In a joint
paper, Carlos Areces, Dick de Jongh and Eva Hoogland establish the inter-
polation property for IL, see [AdJH98]. As IL is a “nice” logic and as it has
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interpolation, they show, it must have the Beth property and hence fixed
points; so any logic ILX has fixed points and thus, generalizing a result of
Maksimova, also the Beth property.

3.3 Modal and arithmetical completeness results

Definition 3.7 By the class of ILX -frames we mean the class of IL-frames
where X hold as a scheme. This class is often also referred to as the class
of characteristical ILX -frames.

The Veltman semantics yields a uniform soundness theorem, that is, all
ILX are sound w.r.t. their corresponding class of characteristical frames.
So every derivable formula holds on every characteristical frame of that
logic. One can ask if the reverse also holds. So if a formula holds on all
ILX-frames, is it then automatically provable in ILX? No uniform method
is known to settle this modal completeness problem and with every new
logic a new proof has to be found. The logics ILM, ILP and ILW are
known to be modally complete. The completeness proof of ILW of Dick
de Jongh and Frank Veltman is to be published soon ([dJV]). For a long
time the modal completeness of ILM, has been an open problem. In this
thesis the question is answered positively. All modal completeness results
in provability logic look alike a little. One works with maximal consistent
subsets of a certain adequate set. With these maximal consistent sets as
construction material, one makes up a countermodel for some statement A4
which is not provable in the logic. With any new logic, one has to re-consider
the notion of adequateness. Adequate means large enough to do the required
mathematics and small enough to have the countermodel finite. So in one
stroke one proves modal completeness and decidability. (That is, if the logic
is r.e. axiomatizable.) Miraculously this method work for most logics in this
area. In this paper a method is developed by which only completeness is
established without necessarily decidability.

Definition 3.8 Given ILX. An arithmetical translation is a function x,
assigning arithmetical formulas to formulas in the language O, I> in such a
way that x commutes with all the connectives and moreover:

- (J-)* = J—;

- (OA)* = an intensional formalization of “A* is provable in ILX 7, for
example the standard 3z Proof(x,” A*7),

11



- (A> B)* = an intensional formalization of “ILX +A* interprets ILX +
B*”. One can use (+) for this purpose.

Once this translation is introduced, one can ask for the logic of all prin-
ciples proved by PA under this translation. In 2.2 and 2.3 we have already
seen all the principles of ILM to be provable under the translation *. But
something stronger holds. Solovay’s first completeness theorem can be gen-
eralized to interpretability logic to obtain the arithmetical completeness of
ILM w.r.t. PA.

Theorem 3.9 (Berarducci [Ber90], Shavrukov [Sha88]) ILM - A < V* PAF
A*.

Actually ILM is the interpretability logic of any essentially reflexive the-
ory. It turns out that also in this situation adding the reflexion principle
is sufficient to obtain a generalization of Solovay’s second completeness re-
sult. See [Ber90]. All principles of ILP have been seen to be arithmetically
valid in every reasonable finitely axiomatizable arithmetical theory. We also
have I LP arithmetically complete w.r.t. any such theory. So ILP is the in-
terpretability logic of I3, for all n € w as every I3, is finitely axiomatizable.

We have a notion of reasonable arithmetical theory. For the time being this
notion can be thought of as IAy + SUPEXP. Up until today it is unknown
what the interpretability logic of all reasonable arithmetical theories is. For a
long time it was conjectured to be ILW. See [Vis91]. Until M, was seen to be
arithmetically valid. Also in [Vis91]. Since then ILW*(= ILW Mj) has been
conjectured to be the interpretability logic of all reasonable arithmetical
theories. From now on we will abbreviate this target logic by GIL, for
general interpretability logic. We will not write /LG as we do not want
to insinuate that we would know the relevant principle. A priori it is not
even known if GIL is axiomatizable at all! In this paper the conjecture that
ILW* is GIL is falsified.

Definition 3.10 T" is I1Y-conservative over T means that T' & 7 implies
T+ m for every m € TIY.

The definition could be generalized by fixing different sets I of sentences
instead of just II9. One can also translate A > B to an intensional formal-
ization of “T' + B is T1{-conservative over T + A”. The logic corresponding
to this translation is the logic of I1{-conservativity. It is known that ILM is
the logic of I19-conservativity for any arithmetical theory containing I%;. If

12



an arithmetical theory is essentially reflexive the notion of I1{-conservativity
coincides with the notion of interpretability.

3.4 The aim of this paper

We will present a method for establishing modal modal completeness re-
sults which uncouples the completeness result from the finite model prop-
erty. This method is first applied to ILM. So a new proof of the modal
completeness of ILM is provided. There is an option built in in this con-
struction method to also obtain the finite model property and hence the
decidability of a certain logic. By this option we obtain the decidability of
ILM in chapter 4. This construction method is then applied in chapter 5 to
obtain the completeness of ILM. In this case however, we did not succeed
in proving decidability. In chapter 6 we present a new modal principle and
use generalized Veltman semantics to subject it to a modal study.

4  The modal completeness and decidability of
ILM via the construction method

4.1 The general construction of the proof

The general philosophy to a modal completeness result is always the same.
In order to show the completeness of some logic L w.r.t. its class of charac-
teristic frames K one has to prove that

VA[VMEK MEA—LFA]

or equivalently

VA[LFA-—IMeKk MEA]

Thus the main approach is clear: given a modal sentence A that is not
derivable in L, one has to provide a model M and a node m that forces —.A,
that is, M, m IF = A. Moreover one wants the frame of this model to be
in the class of characteristic frames. We reserve the symbol A to designate
a formula that is not derivable over ILM. (The font of the symbol A is a
little unusual in the modal setting, but we want to have the A free to use
in the course of this chapter.) In all completeness proofs the basic material
for the construction of a countermodel consists of maximal consistent sets
of sentences. So a world of such a countermodel will comprise a copy of a
maximal consistent set of sentences. One combines these sets in such a way
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that eventually one obtains a so-called truth lemma, correlating member-
ship of a sentence to a set, to the forcing of that sentence in that particular
world /set. In our approach presented below we will do exactly this. Dis-
tinctions though can be found in the way the countermodel is provided and
the material that is used.

In modal completeness results one often wants, in addition, to prove the
decidability of that logic. If an r.e. axiomatizable logic has the finite model
property it automatically is decidable. For this reason one always looks for
a finite countermodel in the completeness proof. One essential ingredient for
obtaining finiteness in provability logic is to not work with full maximal con-
sistent sets of modal sentences, but with sufficiently large truncated parts
of them instead. These truncated parts are maximal consistent subsets of
a so-called adequate set of sentences. In choosing the adequate set one is
driven by two opposite motives. One does not want the adequate set too
large, because of the finiteness and hence the decidability. It is generally
speaking also more difficult to match the consistent sets in a proper way if
they contain more sentences. Nor does one wants the adequate set too small
because one wants to have the truth lemma for sufficiently many sentences,
which therefore must be in the set. Once the adequate set is chosen, the
relations between the maximal consistent subsets of the adequate set are
defined. By doing so, one obtains the so-called canonical model for which
you prove the truth lemma.

In our approach we will not define in one blow the canonical model but
instead we will inductively build up a model. Further we will adhere to
the method of “adequate set abuse”. This means that your adequate set
is very large but we only want the truth lemma for a finite set of so-called
relevant sentences. We also use a different finite set for ensuring that our
R-relation is conversely well-founded. In the old method one single set had
to take care of all the jobs that are here done by three different sets. Our
model (M, R, S,IF) will be built up in stages out of copies of maximal ILM -
consistent sets of modal sentences in such a way that eventually the following
truth lemma holds:

VA€eR VmeM [ml-FAs Acem).

R is the set of relevant sentences. It is the minimal set containing —.A that
is closed under taking subformulas and single negation. Since ILM ¥ A
there is a maximal ILM -consistent set mg with =4 € mgy. By building an
ILM-model “containing” mg we obtain a countermodel to .A.

The proof of the truth lemma will run as follows:

14



M,m Ik P & P € m by definition of I for propositional variables P.

MmlF-Ae MmFASA¢Eme -Acm.

e MmlFAAB&M,mlFAand M,mIFBs ABem& AAB em.

M,m - A>B < A B € m by the construction of M . Actually the
two directions are separately taken care of in the construction.

“<” If A> B € m then we will have constructed the model so that
indeed M, m |- A > B.

“=” If A> B ¢ m then by the maximality of m we have that —(A >
B) € m. This is also a relevant formula. Therefore the construction is
such that one has M, m |- =(A > B).

The countermodel must be an ILM-model. The M axiom states A> B —
AANOCT>BADC and it demands the characteristic ILM -frames to satisfy the
following condition: zSyRz — xRz. Thus in the construction of our model
we want that every possible R-successor of such a world y, can consistently
be taken to be an R-successor of z. This can be done if we demand = Cp y.
(This means OA € z — OA € y.) We will prove a lemma that guarantees
one can always incorporate this condition. It is now time to prepare for the
construction and develop some tools.

4.2 Tools

Definition 4.1 With a fixed sentence A we associate a corresponding set
of relevant sentences R(A), or sometimes written just as R. This is the
smallest set of sentences containing = A which is closed under taking single
negation and subformulas.

Definition 4.2 We say Prop(B) is the set of propositional variables occur-
ring in B and define M := {T | T' mazimal ILM -consistent set of modal
sentences s.t. YA € I', Prop(A) C Prop(A)}.

Definition 4.3 BR(A) is defined to be the smallest set including the rele-
vant sentences R(A), such that if A> B € R(A) then both O—-A and O-B
are in BR(A).

Definition 4.4 We define for I'; A € M
I'<A&VA(ODAel = A 0A€A) and JOA € (A\T)N BR(A)
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Definition 4.5 We define for T', A € M
I'<p AT < Aandforall A>B el one has -A,0-A € A. We say
that A is a B-critical successor of I.

The following three lemmas form the mathematical fundaments of the modal
completeness proof of ILM.

Lemma 4.6 Let T € M and ~(A1> B) € T N R. There exists A such that
I' <p A and A € A. Moreover, A can be chosen to be mazimal w.r.t. the
number of O-formula‘s.

PROOF OF LEMMA 4.6. It is good to note the clause concerning the maxi-
mality of A. This is a new subtlety and has been added to enable us to keep
the model finite. It will prevent us from endlessly having to repeat actions
because at some stage we can be sure that a previously obtained maximal
consistent set will do the job we want it to do. The same holds for lemma
4.8. So, let I satisfy the conditions of the lemma. The following set

{c,0C |0C e€T}U{-D,0-D|D>Bel}U{A,0-4}
is ILM -consistent. For suppose it were not, then
{C,0C |0C eT}U{=-D,0-D|D>BeT}U{A,O0-A}+ L

(F means ks in this setting.) Then, by compactness, for some finite
selection of sentences one obtains:

Ci,...,Cn,0C,...,0C,,~Dq,...,mDy,,0-Dy,...,0-Dp, A,0-AF L
Ci,...,Cn,0C,...,0C,,A,0-AF (/X\:ll =D; A /X\;ll 0-D;) —» L
Ci,...,Cp,0C,...,0C,, A,0-AF \X/;il D; Vv \X/;ll OD;
C,...,Cy,0C,...,0C,FANA DﬁA%\X/gllDiV\X/;lloDi
0C,,...,0C, F O(A A O-4 — W™, D; v \W™, ©D;)

ach,...,ad, l_A/\D_‘AD\X/gilDiV\X/;ZlODi

acy,...,0c, }—AD\X/ZIDZV\X/:iloDZ

But as for each 7 : D; > B € I, one obtains

FF\X?DZ‘V\xm/ODiDB
=1 =1

hence I' - A > B. But this would imply A > B € T', quod non.
It has thus been shown that the former set of sentences is ILM -consistent
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and hence it is included in some element A’ € M. Note that 0-A €
(A"\T) N BR(A), so that really one has I' < A’. Now A’ can be chosen to
be maximal with respect to O-inclusion. For if one has a chain

AI:AO CoAiColAyCo... (Az Co Aj means DAEA¢Z>DAEA]'),

with ' <g A;, one can consider Ay :=J72,{0A | OA € A;}.
Clearly {A}UA,U{=C,0-C | C>B}U{D | OD €T} is now a consistent
set. For suppose it were not, then

A, A, {~C,0-C |C>B},{D|OD €T} L

and by compactness you see that Ay, can be replaced by some finite part.
But this finite part of A is then contained in some A;,. However since
A€ Aj, and {-C,0-C | C>B}U{D | 0OD €T} C A;, we would have that
A, F L, which is not the case. So {A} U Ay U{-C,0-C |C > B}U{D |
OD € T'} is consistent and can thus be extended to a maximal consistent set
which is an upper bound of the chain. By Zorn’s Lemma we get a maximal
element A p> T

QED

Lemma 4.7 LetT € M with A>B €T and let A € M be such thatT < A
and A € A. There exists A" ¢ =T, with B € A'.

PROOF OF LEMMA 4.7. The proof of this lemma is quite similar to that
of lemma 4.6. Suppose A, B,C,T", and A satisfy the assumptions of the
lemma, and suppose there were no such A’. Tt would then follow again by
compactness that there exist ODq,...,0D,, € ' and E:1>C,...,E,>C €T
such that

Di,...,Dy,, 0Dy, ..., 0Dy, ~Er,...,~Ey, 0-E,,...,0-E, A, O0-AF L

By reasoning completely analogously as in the proof of lemma 4.6 one again
obtains I' - B > C and therefore also B > C € I'. By transitivity we have
Ap C €T as well. In view of the fact that A is supposed to be a C-critical
successor of I', it should hold that —A as well as O—-A are in A. This is
clearly contradictory to the fact that A is already in A. The existence of
the required A’ is thereby demonstrated.

QED

Lemma 4.8 LetT € M with AbB €T and let A € M be such thatT <c A
and A € A. There exists A' ¢ =T , B € A’ and moreover

OF € A = 0OF € A’. Again A" can be chosen to be mazimal with respect
to O-inclusion.
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PROOF OF LEMMA 4.8. We again suppose the lemma to be false and note
that therefore the set

{D,0D |0OD € T}U{OE | OF € A}U{~F,0-F | F>C € T} U{A,0-A}

must be inconsistent. And thus, by compactness, one obtains for some finite
selection of sentences

Dq,...,D;,0D4,...,0D;,0F,...,0F,, (1)
-F,...,nF,, 0-F,...,0-F,, A,0-4 oL

I' is a maximal ILM-consistent set. So, as A> B € I', one also has A A
A, OE;> BAN",0OF; € T. Because A and Ej for i = 1,...,m are all
in A, also AN A2, OF; is in A . Now it is possible to apply lemma 4.7 to
ANNZ, OE;>BAN[L, OF; . This yields a C-critical successor A’ of " with
B A AL, OF; € A'. The consistency of A’ conflicts with (1), because all
the premises of the derived contradiction are in A’. The argument showing
that the A’ can be chosen to be maximal with respect to the O-inclusion is
completely the same as in lemma 4.6.

QED

4.3 The construction

We have now provided ourselves with enough tools to start with the actual
construction. Our construction material will consist of copies of elements of
the earlier defined set M. Step by step we will paste them together by means
of defining the R and the S relation. So, again consider an A for which we
have ILM ¥ A. Since A is not provable in ILM, there exists an mg in M
containing = A. This mg will be the starting point of the construction.

In order to be able to talk about the model under construction it is
convenient to first introduce some ad hoc nomenclature.

Definition 4.9 For any world = of the model we define the order of this
world to be the number of bozed formulas in x N BR(A) minus the number
of bozed formulas in moN BR(A). A bozed formula is a formula of the form
OA.

Definition 4.10 A problem in x is a relevant sentence =(A > B) € x such
that there is no y with tRBy and A € y. The RE relation is just a special
case of the R relation and will be introduced and treated later on. When we
talk of the order of some problem we mean the order of the world in which
the problem “lives”.
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Definition 4.11 A deficiency in x w.r.t. y is a relevant sentence Ct>D € x
such that C € y and xRy but there is no y' with ySyy' and D € y.

Definition 4.12 For any world x in the model we define C2, the B-critical
cone of x, to be the smallest set of worlds such that xtRBy — y € CB and
yeCBAySy — o € CB.

The model will be built up in stages. At every stage an ILM-model is made
out of the ILM-model of the previous stage. Eventually a model is obtained
in which the desired truth lemma will hold. For example the R relation is not
defined all at once but will be expanded as the construction proceeds. The
only entity that will be globally defined is the I relation. It will be defined
as in all modal completeness proofs: z I P iff P € x for propositional
variables P. (Of course, we somewhat sloppily write A € x if A belongs
to m of which x is a copy.) The construction method can schematically be
represented by the following:

e The first approach to our final model will be to set M = {mo}, R = @
and S = @. Then enter the following loop:

begin
As long as problems still exist in the model, execute the following two steps:

e Locate a problem of minimal order and eliminate it. This should be
done in such a way that no new problems of the same or lower order
will be created. Close off under the ILM frame conditions in a minimal
way. (In order to have the ILM frame condition, R C S, transitivity
of both R and S, etcetera.)

e By having eliminated one problem, probably loads of deficiencies have
emerged as a side-effect. Eliminate all these deficiencies. Again the
resolving of these deficiencies should not create new problems of the
same or lower order.

end

If termination of this process can be established then it is clear that the
truth lemma holds. For the only part of the truth lemma which involves >
and hence the only part of the truth lemma that needs a proof could be for-
mulated as “there are no problems nor deficiencies”. After the initialization
of the procedure, no deficiencies exist because in the model with just one
node and no relations also O holds. At the end of each loop no deficiencies
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exist either. So if the process terminates there will be no more deficien-
cies. But if the process terminates this means that all problems have been
eliminated. Now if the truth lemma holds, the observation that = A € myg
concludes the completeness proof.

So it remains to show that both problems and deficiencies can be elimi-
nated in such a way that termination is guaranteed.

4.3.1 Problems

Easiest to deal with are the problems. Say that —(A > B) is a problem
for some world m. To eliminate this problem is to provide this m with an
R-successor m’ where A holds, in such a way that from m’ it is impossi-
ble to reach some world where B holds via an Sj,-transition. As B should
not hold in m' nor at any possible R-successor of m', we should take m’
to lie B critically above m. We also must take care that starting in m/'
with an Sp,-transition, it will never be possible to reach a world where B
holds. We should so to say “fence the S;,-scope of m’ in”. This fencing in
is performed by the so-called B-critical cone of m. We write CE. So the
whole B-critical cone of m will lie B-critically above m, and the definition
will insure that it will not be possible to leave the B-critical cone of m with
an R or an S,, transition. By doing so, we are sure that this particular
problem —(A > B) € m will never re-emerge.

The existence of a B-critical successor of m containing A is guaranteed by
lemma 4.6. In our construction we thus define this entity m' to be an R,
successor of m. We write R, instead of R because we want to be able to
distinguish essential R relations which are added to eliminate a problem,
from non-essential R relations (we write R,) which are added either to
restore the ILM frame conditions or to eliminate deficiencies. By R we
mean the transitive closure of R, U R,,. Sometimes we write Rf to indicate
that the added R, transition is an intended B-critical one. It will turn
out to be useful to have the maximality w.r.t. O-inclusion of m/. By this
the finiteness of the construction can be guaranteed. All the R-successors
of this m/ will automatically be B-critical successors of m. It is therefore
sufficient to ensure that by an S,,-transition it is impossible to leave the
B-critical cone of m. This is incorporated in the construction and expressed
by incariant 3 below.
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4.3.2 Deficiencies

Deficiencies are harder to deal with and they demand an inductive treat-
ment. Eliminating a problem was done by just defining some R successor.
In this part we need to define the S transitions. They will be defined in
such a way that one always has

ySyz = (OA €y —>OA€2) (%)

By doing so, the special M frame condition can readily be incorporated.
Actually (x) should properly be verified. One way of doing so is by means
of invariants. The construction can roughly be seen as an initialization
followed by a loop. An invariant is a property which holds after the ini-
tialization and after every execution of the loop. One of the invariants has
already been encountered: “there are no deficiencies”. Other useful invari-
ants are:

1. The model is a finite /LM -model.

2. zRy=z < y.

3.yeCB sz <py.

4. B#B - CPnCE =w.

5. ord(z) = ord(y) ANz £y — CEN C’f' =g.

All these properties can easily be checked while going through the construc-
tion. It should be made clear that these invariants hold at the beginning
and after every execution of the loop.

The problem —(A > B) in m was taken care of by defining a B-critical
successor m/ to be its RZ successor. The thus obtained extension is closed
off under the frame conditions of ILM in a minimal way. By this we mean
that the new S is taken to be the reflexive transitive closure of the previous
one plus (m,m’), and the new R is taken to be the transitive closure of
“new S” o R. This again yields an ILM-frame.

If there are deficiencies in m with respect to m’ we will prove by induction
on ord(m) that all these deficiencies can be eliminated. More generally
we prove by induction on ord(z) that all deficiencies in x w.r.t. y can be
eliminated without new deficiencies occurring.
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e ord(x) = 0. This means x = myg. It follows from the invariants that
y € CB  for at most one B. Our task is to eliminate all deficiencies in
mg w.r.t. y while preserving all invariants and in particular invariant
3. All deficiencies in = (in this case x = mg) w.r.t. y are dealt with by
the so-called process of making an S3-block. It is described below how
this proceeds precisely. The main idea of this process is to provide y
with a whole net of S;-successors insuring that no deficiencies exist
in x w.r.t. y or w.r.t. any other element 3y’ in the Sj-block. Formally
speaking, the term S;-successor is somewhat misleading, suggesting a
successor relation. We will not worry too much about this formally
wrong name. The whole block is created in such a way that it lies
B-critically above . By doing so, at least in this step, no old, already
dealt with, problems will re-emerge. This is the general philosophy
behind the process of making an Sy-block.

e ord(x) =n+1. We could eliminate all the deficiencies in x w.r.t. y by
again making an Sy-block. This however could create new deficiencies
of order n + 1 in other worlds. For example if ’Sx. The typical M
frame condition demands the whole S¥-block to be above z'. If also
ord(z') = n + 1, we probably have loads of new deficiencies of order
n + 1 by eliminating some in . The induction hypothesis does not
apply to them. For this reason not only the deficiencies in x are elim-
inated at this stage, but at the same time the deficiencies of all the
worlds ' Ry with ord(z’') = n+ 1. We call the set of all these worlds
NZ. The procedure now consists of three parts.

Because of invariant 5 one has that y can only be in some Cf, for at
most one z’ in N. We call this world x¢, and start by making an Sy,-
block to resolve the deficiencies in zy w.r.t. y. By doing so we have
eliminated all deficiencies in zy while conserving the B-criticality. So
if moRf y, we make the whole S4,-block lie B-critically above xg. If no
such x( exists we just omit this part.

For every =/ € Ni we have to eliminate deficiencies if any, w.r.t. all
elements of the S¥,-block. The process of doing so is called the proces
of making an S%-block. This is discussed in more detail below. N is
some set of worlds, wich in our case we take to be Ni. So for each
' in the S¥,-block, an S?\;go -block is made to eliminate all deficiencies

in NY w.r.t. that world /. Note that N} = Ng,. If one leaves the
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B-critical cone of xg, this can only be done by an S,,,-successor. So
again the B-critical cones are respected. After having done all this
there are no more deficiencies in Nj w.r.t. the just created blocks.

For x’ # xg there might still be some deficiency w.r.t. y though. These
are dealt with by making an vay -block. All deficiencies in N are thus

eliminated. By doing so only new deficiencies of lower order may have
arisen, but the induction hypothesis takes care of them.

4.3.3 The details of constructing the blocks

Making an S7-block. “Making an S-block” is the process which is
applied to eliminate all deficiencies in = w.r.t. y, when y € CZ for some
B. Eliminating a deficiency in x w.r.t. y is nothing but providing an S,-
successor of y that suits the job. If we want to respect invariant 3 we must
ensure that every S,-successor of y is B-critical as well. It turns out to
be possible to define a finite construction of S;-successors of y such that
no deficiency remains in x w.r.t. ¥y and w.r.t. the whole S%-block, and such
that moreover this whole construction lies B-critically above z. This is our
so-called process of “making an Sy-block”, and it proceeds as follows.

o We first set the S7-block to be empty.

e Now for every deficiency in = w.r.t. y we put a ' in the S¥-block
which repairs the deficiency in a sufficient way. If C' > D € x is such a
deficiency, with C' € y, lemma 4.8 guarantees the existence of a world
y' such that z <g ¢/, D € ¢,y Cno ¢/, and 3 being maximal in this
Cpg-ordering. Note that there is no ambiguity of the B since invariant
4 guarantees its uniqueness. If we define 45,3/, this 3y’ has repaired the
deficiency C' > D € x. We have to add also xRy, etcetera. In other
words we have to close under the ILM frame conditions in a minimal
way. After all this no deficiencies in z exist any more w.r.t. y. There
might be very well a whole lot of deficiencies in x w.r.t. the Sy-block
constucted so far. They are taken care of in the following loop.

Repeat the following steps as long as deficiencies of x w.r.t. the S3-block
still do exist.

e Fix a 3 in the S¥-block such that there is a deficiency of z w.r.t. y'.
Say C'> D is a deficiency of  w.r.t. y/. If there is a y” in the S3-block
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with D € y” and VE(OF € 3y — OF € y"), then define y/S,y". If
there is no such y” then use lemma 4.8 to obtain a B-critical successor
y" of x with D € y" such that VE(OF € ' — OF € y") and moreover
such that y” is maximal with respect to this O-inclusion. Again define

yl my”-

e Close off under the frame conditions of /LM in a minimal way.

It is evident that the process of making an Sy-block will terminate. There
is only a finite number of possible deficiencies of x w.r.t. any specific .
This implies that every world in the S¥-block needs only a finite number of
Sg-successors. An arbitrary chain (without loops) of Sy-successors is limited
in length due to the maximality of all worlds w.r.t. the O-inclusion. By the
clause “If there is a y” in the SZ-block with ..., we are forced to use the same
y" again if it is approppiate. These two ingredients ensure the finiteness of
the S¥-block.

Making an S%-block. The procedure of “making an S%-block” is quite
similar to that of “making an Sy-block”. The main difference is that we are
eliminating deficiencies here of a whole bunch of worlds at the same time.
Another thing is that we are not too worried about criticalness. Of all the
worlds in NV, for at most one zg € N, we have that y € Cff) by invariant 5.
The procedure of “making an S%-block” is meant to deal with all deficiencies
in N\ {zo} w.r.t. y in such a way that no new deficiencies in N w.r.t. the
S%-block occur. But where we do not take zg into account while eliminating
the deficiencies in N w.r.t. y, we might need to take x( into account while
eliminating the deficiencies in N w.r.t. the S%-block. Invariant 3 is not
violated though, because it is not possible to enter the Sﬁ’v—block from y via
an Sy,-successor. Therefore if some worlds in S%; lie above zy (and this is
possible if we eliminate a deficiency in x with z¢Sx), they will not be in
the B-critical cone of xy and hence we will not need to worry about their
B-criticality. Their successors however end up in the B-critical cone anyway
via the ILM-condition (So R C R). But this is alright, since, if z’ <g z < ¢/
with € N and ¢ in the S¥-block we automatically have z' <g y'. So at
this stage of the construction we need not be concerned about the criticality
w.r.t. lower order nodes. The procedure of “making an S¥;-block” is now
described in detail.

e Find z such that 29 € N and zoRZy for some B. This g is unique
if it exists and will be fixed in the sequel.
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o At the start the S¥-block is nothing but the empty set.

e Provide every z’ in N \ {zo} for which there is some deficiency of z’
with respect to y, with a 3’ that resolves that particular deficiency in a
way that y Co v'. This can be done seeing that z <, y and applying
lemma 4.6 for a L-critical successor. Again ¢’ is chosen to be maximal
w.r.t. O-inclusion. Include this y' in the S%-block and define moreover

ySyry' .

e Close off under the ILM frame conditions in a minimal way.

Repeat the following steps as long as deficiencies wherever in NV with respect
to some element of the S%;-block exist.

e Take a pair 2’ € N and y' in the S%;-block such that 'Ry’ and there
exists some deficiency of ' w.r.t. y'. Say C > D is this deficiency
and C € y'. First look if there is some world y” in the S¥-block
such that D € y” and both z'Ry” and VE(OF € y — OF € y").
If this is so, define 3'S,y” and the deficiency has disappeared. If it
is not possible to find such a y”, it must be created and added to
the S%-block. (Note again that checking whether a relevant y” exists
already is only necessary for establishing the finite model property; if
we are just after completeness we can skip this part.) Using lemma
4.8 and the stipulation that z’ < vy’ guarantees the existence of such
an object. Again we define in this case y'S,y".

e Close off under the ILM frame conditions.

The same observations as before insure the termination of this procedure.

4.3.4 Correctness and termination

Troughout the whole contruction invariants played an important role. It
has not yet been really proved that they indeed are invariants. As the
construction method is inductively defined, we will prove the invariants by
induction on the construction of the model. So, proving the correctness of
an invariant consists of showing that it holds at the basis, i.e. the model
({mo}, 9, a,IF), and show that it is preserved in the inductive steps. Two
inductive steps will be considered: eliminating a problem and eliminating a
deficiency. Eliminating a deficiency in itself is an inductive process but it
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will not be necessary to consider it in total detail while proving the correct-
ness of an invariant.

The proofs of the correctness of the invariants are quite laborious and do
not involve any profound mathematics. We add them though, in order to
provide a complete proof. The already convinced reader can just skip this
part or skim it over.

The first invariant we met was (x) : tSy —  Cg y. To prove this invari-
ant we take the conjunction of this statement with invariant 2: Ry —
x < y. The inductive proof of this conjunction will run as follows.

e In the basis model there are no R or S relations, so both conjuncts
are automatically satisfied.

e Suppose a new y is defined when eliminating a problem, say xR%y, and
the model is closed under the frame conditions in a minimal way. Note
that # Go y and O-B € y \ z. If the frame conditions demand 'Sy,
this can only be because the frame conditions impose ' Ry because of
for example z’Sz. But in this case the induction hypothesis tells us
x' Cpo x, and as = Gp y, it is clear that ' Co y. So 2'Sy — 2’ Coy
is thereby established. As 2’ Co z and = < y, we have OA € z —
A,OA € y. In other words we have < y as well as 2’ < y.

e Suppose now that a new world 3 is created while eliminating a defi-
ciency in z w.r.t. y. The world is chosen so that () holds. As yS,y’,
one is obliged to define xRy’. But as 3’ is chosen by lemma 4.8 one
has x < y'. It is easy to see that if 'Ry’ is imposed by the frame
conditions then either 'Sz or ' Rz (z' # z). If 2’ Rz then 2’ < x and
by the transitivity of <, 2’ < /. If 2/Sx then 2’ Co z and because
of z <y one has 0A € 2/ = 0OA € x = A,0A € y/. Also there is a
0A4 €y \ #/. So indeed 2’ < ¢/'.

Invariant 1 is evidently seen to be true as all the time the finite construc-
tion is closed off under the frame conditions. And the frame conditions
together with the construction method form a consistent process, i.e. never
will one frame condition exclude the other.

Now we come to prove the fact that a B-critical cone of x lies indeed B-
critically above x. For this is what invariant 3 actually says: y € CZ —

T <B Y-
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e Again the basis step is trivially fulfilled.

e Now consider the case that the frame conditions demand y € CZ for
some x and B: y here is the newly defined world, which was introduced
to eliminate a problem in z’, i.e. for some B', 2/R¥'y. Of course we
may assume that x # x’, otherwise things are trivial. We distinguish
two different situations:

— 2’ € CB. This implies z <g ' and combined with 2’ < y this
yields z <5 y.

— x' ¢ CB. That the frame conditions impose y € CZ, must be
because z""Sz’ for some 2" € CE. Hence we have 2" Cq 2. If
now A > B € x then =A,0-A4 € z” and so O-A € 2’ (because
of 2"Sz') and thus —A,0-A4 € y (2’ < y). Thus z <g y. (It is
also possible that = 2’ and B = B’ so that one trivially obtains
T <BY.)

e Suppose now y is introduced while eliminating a deficiency, and y €
CB. We again distinguish two situations:

— 32’ € CB 2’Ry. Then the induction hypothesis applies to z’ so
z <g 7'. But because ' < y, the required z <g y is herewith
confirmed.

— =(32' € CB 2’Ry). In this situation one must have yoS,y for
some yo € CP. By scrutinizing the process by which a deficiency
is eliminated one must conclude that at some stage y has been
added to the model by applying lemma 4.8 in making an Sé/—
block. This means that y indeed lies B-critically above z.

Instead of proving invariant 4: B # B’ — CP N CP = @, we will prove
something stronger. First we define a new set CZ, of successors of z. We
take é’f the smallest set such that: :ERfy -y € é’f and y € C’f ANySy' —
y € C’f . It is quite easy to show with induction on this definition that the
invariant actually holds for C’f . That is B # B’ — C’f N C’f, =g.

e The basis model again is trivial.

e Suppose that y is added to the model while eliminating a problem
in ' and the frame conditions force y to be in C’f . If z # 2 this
can only be the case if for some z" € CZ one has 2" Sz’ and /'Ry is
thus forced. This also implies that 2/ € CB. By the same means one
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concludes z’ € C’f' ify e C’f'. The induction hypothesis then gives
B = B'. If z = 2’ and the frame conditions impose y € CP then this
can only be because of zRPy. It is clear then that y can’t be in C’f’
for B' #+ B.

e Consider a new world 3" which is added to eliminate a deficiency in
' w.r.t. y and suppose that the frame conditions demand 3’ € C’f .
Close inspection of the process of eliminating a deficiency yields the
conclusion that y already must have been in C’f . The induction hy-
pothesis tells us that y can not be in C’fl for another B’. So the same
holds for 7.

Instead of invariant 5: ord(z) = ord(y) Az #y — CBn Cf' = & we will
prove the stronger invariant obtained by replacing CZ by C’f in 5.

e The invariant is obviously satisfied in the basic model.

e Suppose that y is introduced to eliminate a problem in z” and suppose
moreover that the frame conditions demand y € C’f If 2" € C’f then
the induction hypothesis tells us that z” ¢ 6’5' for any =’ # x and
ord(z') = ord(x). So the same holds for y. If 2 ¢ CPZ and yet y € CF
is obligatory, it must be that z” = z and xRZy. ord(z') = ord(x)
implies = ¢ 6’5' for any B'. Soy € C’ﬁl for x # '’ is not possible.

e The case when a deficiency is introduced is completely analogous to
the previously treated invariant 4.

Overall correctness and termination By proving the correctness of
the invariants we have also justified the claims based on them. It remains
to show that the construction is overall correct. Indeed problems and defi-
ciencies are eliminated successively, but is this sufficient? Once a deficiency
in x w.r.t. ¢ is eliminated, it is clear that it will never turn up again. Every
new stage of the model is properly extending the previous one. So yS.y’,
once there, will never disappear. A problem —(A > B) in z is eliminated
by creating a B-critical successor y where A holds. Invariant 3 implies that
Vy'(ySyy’ — = <g y'). This means that at every new stage of the model no
problems that have already been dealt with will reoccur.

The construction can be seen as repeatedly eliminating a problem and
then all the new deficiencies that emerge by tackling the problem. It should
be noted that, during all of this process, the new worlds that are added are of
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higher order then the order of the world in which the problem occurred. This
gives an inductive flavor. And indeed one can show that the order has an
upper bound. For if ord(z) = |BR(A)|, one has 0-A € BR(A) — O-A € z.
But as O-AF A> B, also A> B € x. This also holds for all relevant for-
mulas, so no problems will exist once ord(z) = |BR(A)|. In the model every
non-circular path (using R and S transitions) will finally end up in such a
top node. So the processs will indeed stop. (In other words, the strictly
monotonic increase of the order function together with the upper bound on
the function enforces the termination of the process.)

5 The modal completeness of ILM, via the con-
struction method

5.1 General outline of the proof

By the same means by which the modal completeness of ILM was verified,
we now obtain a new result: the modal completeness of ILM,. Again a
countermodel is built by successively eliminating problems and deficiencies.
Since in this case we have not succeeded in proving the finite model property
we will not strive for termination of the construction. In the new case we
have to end up with an ILMj-frame. Let us recall the My-axiom and its
corresponding frame condition. My is the axiom A>B — CAAOC>BAOC
and its frame condition is:

vRwRzS,yRz — wRz

In order to obtain this property in our model consisting of copies of maximal
ILMy-consistent sets of modal sentences, it suffices to choose y such that
w Cp y. It turns out to be possible to do so. Fix again an 4 such that
ILMy ¥ A. (Again this font is a little unusual in the modal setting, but we
again want to have the A free to use in the course of this chapter.) The set
of relevant formulas R is as before, the smallest set of formulas containing
A and closed under taking subformulas and single negations. As A is not
derivable in ILM, there exists a maximal ILMj-consistent set mg containing
-A. A model M is built above this mg so that the truth lemma will hold for
all relevant formulas, and thus M, mg IF =.4. We have to provide ourselves
with some tools before we can start with the actual construction.
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5.2 Tools

Definition 5.1 M := {T | T mazimal ILMy-consistent set of modal
sentences s.t. YA € I' Prop(A) C Prop(A)}. Prop(B) is the set of propo-
sitional variables occurring in B.

The definitions of < and I' <g A are precisely as before.
In perfect analogy with the case of ILM we have the following two lemmas:

Lemma 5.2 Let x € My and —(A> B) € x N R. There exists y such that
x <gy and A € y. Moreover, y can be chosen to contain a “maximal
amount” of O-formulas.

Lemma 5.3 Letx € J\A/.fo with Ar>B € © and lety € J\A/.fo be such that x <¢y
and A € y. There exists z ¢ x , with B € z.

The Mjp-axiom is essentially used only in the next lemma.

Lemma 5.4 Consider w <gp x < vy, all in ]\%, such that C > D € w, and
C € vy. Then there exists z p> x with both D € z and x Cq z. This z can
be chosen to be mazimal w.r.t. the O-inclusion.

PrOOF OF LEMMA 5.4. Consider the following set:
X :={A,0A|0A cw}U{-E,0-E | E>Bcw}U{OF |OF € z}U{D}.

We will prove that X is consistent. For suppose it were not, then by com-
pleteness we have for a certain finite subset of X that

Aq,... A, OA,...,04,,0F,...,0F,, )
-Fi,...,nE,,0=-F,...,0-E, D oL

AsC>D cwandw € J\Ajo, we also have CCAAL, OF;>DANA, OF; € w.
Because z < y and C' € y, one also has ¢C' € z and hence also OCC A
Niv, OF; € z. Now applying lemma 5.3 yields a z € My with DAA[Y, OF; €
z while w <p z, but this certainly conflicts with (2). As before one can see
that the z can be chosen to be maximal w.r.t. O-inclusion. QED
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5.3 The construction

The main body of the construction procedure for obtaining our required
ILMjy-model is quite analogous to the case of ILM. One difference is that
we now deal with copies of maximal ILMy-consistent sets, and that we have
to satisfy another frame condition. The nomenclature will thus be exactly
the same. In the case of ILM, we will not have “there are no deficiencies”
as an invariant. We start again with an ILMj-consistent set mg containing
-A. If ILMy ¥ A. Again the only entity that can be defined globally is the
forcing relation I-. We set x IF P < P € x, for the propositional variables.
The body of the procedure will now be as follows:

e As a first approximation of the required model, set its domain to be
{mp}and R=S5=2.

begin
As long as problems or deficiencies still do exist in the model, enter this
loop:

e If a problem does exist, then pick one of lowest order and eliminate
this very problem. After having done so, close off under the frame
conditions.

e If some deficiency exist somewhere, then fix an = and a y, such that
deficiencies in x w.r.t. y do exist. Eliminate all these deficiencies and
close off under the frame conditions.

end

We choose the way of eliminating problems, respectively deficiencies, clev-
erly so as to have some useful properties in the model. The useful properties
that we need in our model are stated again as invariants as they hold at the
beginning and at the end of each loop.

1. The frame is an ILM,-frame.
2. zRy -z < y.

3. R'RyS,y' — =’ Co y.

4. ye CB w5z <y y.

5. B#B = CEncP =o.
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6. tRyRz — [3 vy xRy'Rz AVy"(xRy"Rz — " Co v/')].

Again one should run through the whole construction checking that these
are indeed invariants. Surely they hold at the beginning of the loop. So we
have to make sure that after every execution of the loop all the invariants
hold.

5.3.1 Problems

A problem is dealt with just as before. If the problem in z is =(A > B) you
find a world y applying lemma 5.2 such that z <g y, A € y and y is such
that it is also maximal w.r.t. the O-inclusion. You then define zRPy and
close off in a minimal way under the ILMy-frame conditions.

5.3.2 Deficiencies

Again the deficiencies are harder to deal with. A first difficulty you en-
counter is in incorporating the ILMj-frame condition. So, if you eliminate
a deficiency in x w.r.t. y by defining yS,y’, you should make sure that every
possible successor of 3’ can also be a successor of some intermediate z’ (in-
termediate means zRx'Ry). This is done, as stated before, by demanding
' Co y'. Lemma 5.4 tells us that this is indeed possible. So for every y”
with 3/ < 3", you immediately have ' < y”. A closer examination brings
us to the second difficulty, that is, that there might be more intermediate
worlds between x and y. But the invariant 6 tells us that there is always
an intermediate world that is maximal w.r.t. the O-inclusion relation. This
settles the second difficulty if we just apply lemma 5.4 every time to the
O-maximal intermediate world. A third difficulty is found when realiz-
ing that the S-relation must be transitive. Say C > D is a deficiency in z
w.r.t. y and we have x <p =’ Ry. We want to create a B-critical successor
y' of x with D € 3 and 2’ Cp /. By doing so, every successor of y' can
automatically be defined a successor of =’ and the ILM,-frame condition
is satisfied. Invariant 6 tells us that without loss of generality we can take
this 2’ to be maximal w.r.t. the O-inclusion relation. Creating 3’ containing
D, to eliminate the deficiency C' > D in = w.r.t. y is done in such a way
that ' Co 9. The existence of this required entity is guaranteed by lemma
5.4. Automatically we now have zRx" Ry — x" Cp v'. We accordingly set
ySzy'. The general frame conditions demand zRy'. Now it may happen
that C' > D' is a deficiency in x w.r.t. y'. It is easy to find a world y” with
D’ in it and being B-critical above x. The transitivity of S, forces us to
also have yS,y”, but by no means we can ensure that ' Cg y”. Somehow
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we have to relate the possible deficiencies to each other. As we have only
finitely many relevant sentences of the form C > D, the following lemma
helps us out.

Lemma 5.5

Ey> Fy,...,E, > F, I_ILMO OEy A DOCD> (Fo/\ﬂEl/\...—!En/\DC) \%
V(Fi A=EsAN...mE, AOC) V

V(F, AOC).

PROOF OF LEMMA 5.5. By simple propositional logic we have - Fy> Fy —
Ey> (FoAN=E1N...AN=Ep)V(FoANE1) V...V (FyANE,). As each E; > F; is
assumed, we obtain Ey> (FgA—E1A...A=Ey)VF1 V...V F,. Again we split
up Fi into (Fi A—EaA.. . A=Ep)V(Fi1ANE2)V(FiANE3)V...V(F1AEy). Then
we note that F; AE;> F; so we obtain Eo> (FoA—E1A...A—Ey)V (Fi A-EaA
. A=ER)VFyV...VF,. Proceeding like this yields Fy > (Fg A=E1 A... A
=E)V(FIAN-EaA. . . AN=E,)V...VF,. Now we apply the M, axiom to obtain
the required result: CEqAOC > (Fy A—E;...—~E, ANOC) V...V (F,ADOC).
QED

As the difference between the various E;’s is not essential, one has the lemma
for any permutation of the indices. If one encounters a deficiency in = w.r.t.
1y, say Fo > Fy, one proceeds as follows. First a list is made of all relevant
sentences of the form C > D. Let this list be Ey > Fy,...,E, > F,. You
can consider these as the possible deficiencies. Let ' be such that xRz’ Ry
and zRx" Ry — z" Cp 2'. All deficiencies in x w.r.t. y will be eliminated in
such a way that no new deficiencies will occur in  w.r.t. the newly created
worlds. Again this process shall henceforth be referred to as the process of
making an S3-block. The O-inclusion of 2’ shall be taken into account while
creating this Sy-block.

As stated before lemma 5.5 actually represents a manifold of statements.
All of them will be used in eliminating the deficiency Ey > Fy. Let 7 be
a permutation of {1,2,...,n}. With any 7 a series of sets AT is defined.

(i€{0,1,...,n})

0 ={Bn,..., En}, Al = AT\ {Erqyn)}-

For the sake of convenience we define Vrr : w(0) = 0. The notation —AT
stands for the sentence /X\ B;ear ~Ej. With this terminology one can easily
write down the n! useful variants of lemma 5.5.
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Py i= 0By AOC > \N/_ (Fay A ~AT ATC).

For any P, lemma 5.3 can be applied. Recall our situation, zRZz' Ry with
Ey > Fy,...,E, > F, the possible deficiencies in z w.r.t. y. So applying
lemma 5.3 to any P, gives a maximal ILMy-consistent set containing one
of the disjuncts of the consequent of P,. Note that P, € x because z I P;.
We now form a set of disjuncts D as follows. For every P, you choose the
leftmost disjunct of the consequent which is realizable by applying lemmas
5.3 and 5.5.

Lemma 5.6 Consider the above situation. Let F;,,...,F;, be all the for-
mulas that do not occur in any of the n! disjuncts in D, and let F; be an
arbitrary formula of the possible F’s which does occur in some disjunct in

D. There must be some disjunct in D where both F; and —E;,...,~F;
hold.

PROOF OF LEMMA 5.6. In order to show this, let P.o be a sentence from
which a disjunct containing F; was chosen for D. If all the Fj’s occur
in the disjunct on the right hand side of F}, one also has E; € A%O for
Il =1,...,k. Here m is such that 7%(m) = j. Thus the disjunct under
consideration already contains F; and all of the ~E;,’s.

Now suppose there is some Fj, in a disjunct of the consequent (or we just
say disjunct) of Pro, left from the disjunct where F; occurs. We claim that
interchanging the disjunct where the Fj, occurs, with its direct neighbour to
the right, does not essentially change the sentence w.r.t. D. Two sentences
are said to not essentially differ w.r.t. D if the disjuncts they add to D
contain the same F;. By interchanging two disjuncts we mean here a slightly
different process thaen usual. Py is the sentence obtained by interchanging
the i-th and the i + 1-th disjunct in the consequent of P, if 7’ satisfies the
following conditions:

mla+1) ifa=i
w(a)={ wa—-1) ifa=i+1
m(a) otherwise

It is quite obvious that interchanging the disjunct containing the F;, and its
direct right neighbor does not essentially matter w.r.t. D. Say 7°(i) = ;.
Now all the disjuncts remain the same except for the i¢-th and the 7 + 1-th
after interchanging. But clearly ILMy = Fiy A ﬁAf’ = Frogiy1) A ﬁAﬁl.
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Soif mO(i+1) # j, Frog /\—Af’ will certainly not be realizable. (Recall that
this Fj, appeared on the left-hand side of F}!) Fr(iy1) = Fiy and F; is not
in D, so does not occur realizably in P,s. So, still the leftmost disjunct in
P, that is realizable is the one containing Fj. It is clear that by repeatedly
interchanging disjuncts like this, all the F;’s can be pushed to the right
of the disjunct containing F;. The sentence P; finally obtained will still
add a disjunct containing F; to D. In P; all the Fj’s occur to the right
of Fj. So the disjunct containing F} also contains —F;; A ... A -E; . So
indeed for every F} that occurs in D there is also a disjunct in D containing
Fj/\_‘Eil---/\_‘Eik- QED

Eliminating deficiencies: the complete picture. We now prove by
induction on the number of possible deficiencies that every deficiency in
x w.r.t. y can be eliminated in an adequate way. (For the time being we
only consider the harder case when intermediate worlds do exist.) Adequate
means that all the S, successors of y that are defined for this purpose contain
all the O-formulas of #’ (zRZ ' Ry). The new worlds should not provoke new
deficiencies in z. And all of them should lie B-critically above z.

e If you only have Ey> Fj as possible deficiency in x and this is indeed a
deficiency, i.e. Ey € y, you can apply lemma 5.4. This yields a 1’ such
that Fy € v/, x <g v and 2’ Cp /. This y is taken to be maximal
w.r.t. the O-inclusion. You can thus safely define yS,y’ and no new
deficiencies will emerge in x w.r.t. y, for they have to be amongst the
possible deficiencies. The model is closed under the frame conditions.

e If the possible deficiencies are Fy > Fy, ..., E, > F,, one can make use
of lemma, 5.5 to derive n! useful sentences. Also the corresponding set
D is formed by the same method as before. Let again F; ,..., F; be
all the F’s that do not occur as such in D. Lemma 5.6 guarantees the
existence of a subset D’ which has, for every F} that occurs in D, one
disjunct that contains both F; and —E;,,...,~E;, . For every disjunct
in D' a corresponding world can be found where that very disjunct
holds. This world will also lie B-critically above x.

But one does not meet all the requirements like this. For the worlds
only contain a finite part of the box formulas in 2/, namely the OC that
was included in all the n! formulas. This calls for compactness again.
Let OC1,0C%,0Cs3,. .. be an enumeration of all the box formulas in z.
Let OX; := O /)(\;-:1 C;. For every OX; a set D' as above is formed.
As only a finite number of partitions is possible for D', one specific
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partition must show up infinitely many times. With respect to every
individual world of this (or better corresponding to this) partition the
compactness theorem can be applied to obtain a set of worlds. All of
these worlds will contain some F}, all of —F;,,. F;, , and all the
OC € z'. They can also be taken maximal w.r. t D 1nclu31on This
set of worlds is called DY ,. So Fj,,..., F;, do not occur in DY ,. For
these remaining k p0551ble deﬁ(nenmes you can apply the 1nduct10n
hypothesis while ignoring the n — k 4+ 1 other possible deficiencies.
Note that if ¥ = n 4+ 1 the whole situation becomes very trivial. So,
without loss of generality, we can assume that ¥ < n 4+ 1. Applying
the induction hypothesis yields a whole net of B-critical successors of
z solving all the k deficiencies disregarding the other n — k+ 1 possible
deficiencies. Every world in this net contains all the O-formulas of z'.
All the individual members of this net are maximal w.r.t. O-inclusion.
By “attaching” this B-critical net to y, k deficiencies are solved but
some deficiencies among the other n — k + 1 possible ones may “have
become active”. You eliminate these deficiencies by defining an S
arrow from every world in the B-critical net to every world in DY gy Sy
on DMC, is defined such that DMC, is completely S,-connected. After
having done so, no deficiency in x remains w.r.t. any of the newly
defined worlds. If E; > F; belongs to the group of k it is, if necessary,
eliminated in the B-critical net. If E; > F; belongs to the group of
n — k + 1, there is always an Sg-arrow to a world in D o Where Fj
holds. In this world F; cannot hold for any E; > F from the group of
k. So indeed all the deﬁc1en(:1es are ehmlnated Moreover transitivity
of the S, relation is guaranteed. The process described here will be
referred to as the process of making an S%-block.

If there is a deficiency in x w.r.t. y and there is no intermediate world,
the situation becomes even easier. Again the process of eliminating this
deficiency in x w.r.t. y shall be referred to as the process of making an Sy-
block. If in a general setting the process of making an S3-block is mentioned,
either one of these two is meant, depending on the presence of intermediate
worlds. The process of making an S¥-block in the case of no intermediate
worlds can inductively be described as follows.

e Let y be in the S¥-block.

e begin As long as deficiencies in x exist w.r.t. some world y in the

S¥-block, apply lemma 5.2 to obtain y” such that y” resolves this
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deficiency by setting y'S,y" and xRy". As the whole Sy-block is in at
most one B-critical cone of z, there is no ambiguity in applying lemma
5.2. Now make the whole S3-block completely S,-connected.

end

As there is only a finite number of possible deficiencies, this process must
come to an end.

The actual construction. All the above ingredients make sure that the
logic is complete. However there is no ingredient that would yield the finite-
ness of the model. In proving the completeness of ILM an infinite model is
thus provided as the limit of an iterative process. In the limit neither prob-
lems nor deficiencies should be present. Most likely, eliminating a problem
or a deficiency will create many new problems and deficiencies as a side
effect. It should be made sure that every problem or deficiency is at some
stage eliminated. This can be done by adequate labeling as is also done in
[MVar]. By means of a set I, the set of imperfections we will keep track of
all the problems and deficiencies which have not yet been eliminated. The
model construction can thus be represented by the following procedure.

e The first approach to the model will be to take the domain {mg} and
R =S = @. All the problems of mg are stored in I.

As long as I is nonempty repeat the following actions.

e Select the oldest member of I. If this is not uniquely defined, just
pick arbitrarily one of the oldest. Old refers of course to how many
repetitions the element has already been in I.

— If this oldest member of I is a problem —(A > B) in some world
r, eliminate it by defining zRZy for an adequate y. This y is
provided by lemma 5.2 and as usual is chosen such that x <g y
and A € y.

— If the oldest member of [ is a deficiency in some world = w.r.t.
some world 7, then eliminate it by making an Sy-block.

e Close off under the ILM, frame conditions in a minimal way. Add the
new freshly born problems and deficiencies to I.
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This construction method produces a whole series of ILMy-models My C
My C M3 C .... With each execution of the repeat loop the previous model
is extended. In general, for no n € w, M,, = M4 will hold. But one can
consider My, := J;c,, M. It is clear that in My, neither problems nor de-
ficiencies hold. This of course under the assumption that all the invariants
we used throughout the construction are indeed invariants, and also hold for
the infinite model. If this is true, then problems that have been eliminated
will never re-emerge. This is reflected by invariant 4. The main strategy for
proving the invariants will be to prove their correctness for all M,,, and then
show that this extends to the infinite model. Before doing so it is useful to
note some features of the chain of models My C M1 C M3 C .... First of
all one can say there is a uniform upper bound to the height of the model.
(The height is defined as the maximal length of some chain zgRz1R... Rz,
in the model.) Therefore M, also has finite height. Thus M is conversely
well-founded when it comes to the R-relation. Second and also important,
one can see that M, ;1 is sort of an “end extension” of M,, in the sense that
no intermediate worlds will be added. So, if Ty € M,, and z € M 11\ My,
then for no z, 2T2Ty for both T = S,, as well as for T = R. Further it
is clear that all defined notions like R, S, CZ, etc. are weakly monotonic
increasing entities.

Correctness. It is quite clear that the model M, is an ILMy-model. To
be an ILMj-model, the frame induced by My, must be an ILM -frame, i.e.
it must be an I L-frame and it must satisfy the typical ILM, frame condition.
The model My, has already seen to be conversely well-founded w.r.t. the
R-relation. Actually the well-foundedness is the only frame condition which
is not expressible by a first order quantor rank four formula. (Of course it
is not at all f.o. expressible.) So if one of the other frame conditions were
not true, some witnesses could be found. Now suppose there were w, x,y
and z which falsify one of the frame conditions. Then already for some ng
one has w, z,y, 2 € My,. But just as before, it is easy to see that every M,,
defines an ILMj-frame hence also M,,. This conflicts the assertion that
M would not be an ILMy-model. So indeed M, defines an ILM,-frame.

Invariants 2, 3 and 6 are proved inductively together. It is shown they hold
in every M.

e It is trivial as usual that all the invariants hold in the basis model.
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e Suppose a new world y is added by eliminating a problem in z by
setting xRBy.

— It is clear that x < y. If 'Ry then either 2'Rx, z’ = z or o’ is
incomparable to z. In the first case it is easy to see that =’ < y.
In the latter case it must be so that &' Rz” S,z for some z/, z"
and xg. Note that this zg is uniquely defined. We can take z”
such that = was introduced to eliminate a deficiency in xy w.r.t.
z” while taking intermediate points into account. So z’ Cp z.
(Here we use the induction hypothesis for invariant 6.) But as
xRy and thus z < y, also 2’ < y.

— Invariant 3 is preserved while eliminating a problem, for the only
new S relation that is added, is by the closure under the frame
conditions: 'Ry’ — x'Sy’; but then clearly ' Co v/

— Now consider invariant 6 after the new world y has been added to
eliminate a problem in x. The only new and interesting case to
consider will be if these worlds & and y are involved, for example
when zgRz1 Ry for some zg and x1. Close inspection of the situa-
tion results in concluding x1 Co «. If 1 Rx or 1 = x this is clear.
If neither of these is true, it must be so that z'RxiRx" Sy x for
some x”" and unique z’. z” can be chosen such that z has been in-
troduced in the model to resolve a deficiency in =’ w.r.t. . This
has been done by the procedure of making an ng,”—block. So the
intermediate world with the highest amount of O formulas has
been used in this procedure (Induction!). Consequently x; Co x.
Indeed z is the world maximal w.r.t. O inclusion.

e Now suppose a new world 3 is added by eliminating a deficiency in x
w.r.t. some world y.

— If for some world z¢, zoRy' is demanded, it can only be the case
that zgRx. Clearly z < ¢’ and, by induction zy < x, so ¢ < /.

— Consider the case when xRz’ RyS,y’ with x,y, and 3’ still stand-
ing for the same designated symbols. As y’ was introduced by
applying the procedure of making an S¥-block, we can be sure
that the intermediate world z” maximal w.r.t. O-inclusion has
been used in applying this procedure (induction again), so that
z" Co y'. Consequently o’ C y/'.

— Invariant 6 is easily seen to be true. zoRy' can occur only when
zgRz. So every “R path” ending up in 3’ must pass through z.
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Consequently x is maximal w.r.t. the O-inclusion in this particu-
lar case.

This concludes the proof that invariants 2, 3 and 6 hold in every M,,. It is
easy to see that invariants 2 and 3 extend to the infinite model. Recalling
our earlier consideration of “end extensions”, forces us to conclude that in-
variant 6 extends to the infinite model as well.

It is quite easy to see that invariant 4 holds in every M,,. The basic model
trivially satisfies 4. If some y is added to the model to eliminate a problem in
#', either 2’ is in CZ or it is not. Only the latter case needs some argument.
Ify € CB and x ¢ CB, there must be some z1, x5 € CF and some xgRz such
that xgRx1Rxo and 229S5,2". x2 can be chosen so that x was introduced to
eliminate a deficiency in x¢ w.r.t. 5. Hence 77 Co 2'. As x1 Cp 2’ and
x' <y, one has  <g y. (Recall that x <g z1.) The situation is very easy if
a new world is added by eliminating a deficiency. Thus every M,, satisfies
invariant 4. The notion of criticalness also extends to the infinite model.
Analogously invariant 5 is seen to be true. (For example one could apply
the same strategy as in the case of ILM.) The verification of the invariants
concludes the completeness proof.

5.4 Some remarks on decidability

Our result on ILM, does not include a decidabilty result. Some attempts
have been made though. The finite model property would be sufficient for
the decidability. In order to keep the model finite one should re-use worlds
as was done in the completeness proof of ILM. Attention should be payed
at the invariants. They must be preserved! Probably it will be necessary to
also label the S,-transitions throughout the construction.

6 A new principle

6.1 The birth of a new principle: F,

When the research to the modal completeness of ILM, was renewed by the
author, it was suggested that ILM, might be modally incomplete. Certainly
this would not be the first modally incomplete principle. Albert Visser tried
to strengthen the frame condition of ILM, to arrive at a stronger principle.
The frame condition of ILM, is:

xoRx1Rx2S:,yRy — =1 Ry’
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Instead of demanding an R-relation between x; and %', one can demand
an Sy, -relation between xo and y'. As we have x2S;,y’, we must also have
xz1Ry', so indeed the frame condition is hereby strengthened. The corre-
sponding principle is readily found and baptized with the lyrical name of
Py.

Py : A OB —0O(AD B).

At first M7 was suggested as a name, but at second thought P, seemed
to be more appropriate. The reason is given below. As P, turns out to
be an arithmetically valid principle one is obliged to subject it to a modal
and comparative analysis. The target logic is the interpretability logic of all
reasonable arithmetical theories, abbreviated GIL. As P, is a new generally
valid principle, it brings us one step closer to GIL.

6.2 The enclosure of GIL

The new principle was finally named P, by Frank Veltman. He called it
thus for its similarity with P : A> B — O(A > B). Py as he noticed can
be seen as a weakening of P. Strengthening the antecedent of a conditional
weakens it. And indeed -, Ar><OB — A B. Similarly M can be weakened
to obtain Mj. This calls for a general approach. On the one hand we have
principles whose corresponding logic is too weak to be GIL, and on the other
hand we have the logics ILM and ILP which are clearly too strong to be
a candidate for GIL. The general approach would be to weaken the logics
which are too strong and to strengthen the logics which are too weak. We
can alter our logics in three different aspects:

e On an arithmetical basis one can appropriately vary the principles.
This way of enclosing GIL is the most direct. It is quite difficult to
think of candidate principles though and is outside the realm of this
thesis.

e Another possibility can be to strengthen for example the frame-conditions
of some principle which is too weak. ILP, was found like this. For
example one might try to strengthen the frame condition of W to de-
mand S o R conversely well-founded.

e The other possibility would be syntactical modulation. Many state-
ments in interpretability logic take the form of a valid conditional.
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Even the > operator can be considered as a conditional. Weakening
a conditional can be done by weakening the consequent or strength-
ening the antecedent. For weakening or strengthening for example a
consequent, one can use implications. The antecedent of a conditional
is stronger than the consequent. All the axioms of IL can be written
as an implicational statement and hence can be used to modify the
other principles. .JJ5 can be written in the equivalent form:

J5: Ap B— <A B.

Using this form of J5 to modify other statements gives interesting
results. My can be obtained as a right weakening of M and Py can
be seen as a left weakening of P. It has not yet been systematically
investigated if new interesting principles can be found proceeding like
this.

6.3 Independence results concerning P,

In this paragraph the new principle will be compared to the previous princi-
ples from a modal viewpoint. Our modal semantics, Veltman models, does
not provide a sufficiently strong tool for our analysis. As far as Veltman
models are concerned Py implies M. But without modal completeness for
ILPy we do not know whether the notion of semantical consequence coin-
cides with the notion of derivable consequence. In other words we can say
nothing about the derivability of My in ILPy on these grounds. And there
was no reason for conjecturing ILPy - My. On the contrary, the odds were
against this inference. A nice comparison leads the intuition. ILM is known
to be modally complete with respect to its class of characteristic frames.
Another principle sometimes called KMy, see [Vis90], has the same frame
condition, but is not equivalent to M over IL. Here KM; is the formula
Ap> OB — O(A — ©B). Indeed, below ILP; will be shown to be incom-
plete.

1L is known to be sound w.r.t. Veltman semantics. That is, every derivable
principle holds on all Veltman frames. Close inspection of the soundness
proof shows the enormous amount of freedom one has in defining the se-
mantics for IL. Various generalizations of Veltman semantics are known.
(See e.g. [Sve91].) We will introduce here the notion of an IL,y-frame, an
idea of Dick de Jongh for catching Svejdar’s models in a general notion, as
it was presented by Rineke Verbrugge in an unpublished document [Ver]. In
the classical Veltman semantics there is the S relation. One can have xS5;,y.
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The y here is another world in the model. The main idea in the ILg se-
mantics is to replace this y with a set of worlds. So, we could have S, {y}
for example. One can now define z IF A> B < Vy(zRy — 3Y (yS, Y AVY' €
Y(y' + B))) and still have IL sound w.r.t. the new semantics. As we
work with an existential quantifier in the old definition we will exclude the
empty set as a possible S-successor: the axiom A > B — (CA — OB)
demands S; C =z T x(p(z 1)\ {@}). Again the axiom ©A > A demands
that R can somehow be seen as embedded in S;. In our case this reads
zRyRz — ySy{z}. The axiom O(A — B) — A > B imposes a sort of re-
flexivity on our semantics; that is yS,{y}. The transitivity clause leaves a
lot of choice. The axiom states: A> BA B> C — A C. There is no first
choice in how to adapt transitivity in the new semantics. It is sufficient to
set yoS;Y — Ty € Y(VY'(yy'S, Y’ — 49S;Y")). One could also replace the
existential quantor by a universal quantor to obtain the definition of [Ver].
This will be our choice as well. Another possibility would be to demand
ySY - VZ(Nz(z € Z + Fy e YIV'(YS,Y' ANy € Y Az e Y')) » yS, 7).
The axiom A>CABP>C — AV B> C did not impose anything on the old
semantics and the axiom maintains this special status. Thus we have:

Definition 6.1 An ILg.-frame is a triple (W, R,{Sy | w € W}) satisfying
the following properties.

o (W,R) is an L-frame, that is, W is a nonempty set and R C W x W
s such that R is transitive, irreflexive and conversely well-founded.

o For each w in W we have

Sw Cw T X(p(w 1)\ {2})

— wRx — =Sy, {x}

— wRzRy — zS,{y}

— 905, = Vy' € Y VY (¢S, Y — 1S Y) (%)

Definition 6.2 An ILs;-model is a pair (F,IF) where F is an ILge-frame
and - a forcing relation between worlds and proposition letters. The forcing
relation is extended to sentences in the usual way when it comes to connec-

tives or bozes. Furthermore the [>-operator is incorporated by x |F A> B <
Vy(zRy Ay lF A — 3Y (yS;Y AVY € Y(y' IF B))).

This new semantics yields strong enough a tool to allocate the principle F
in the landscape of other interpretability principles. It turns out that Py has
the highest possible degree of independence with respect to the principles
My and W. This result is stated in the next theorem.
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Theorem 6.3 The principles My, W and Py are mazimally incomparable,
that is to say it is not possible to derive one of the principles over IL using
the remaining two as axiom schemes.

PROOF OF THEOREM 6.3. We split the proof up in (3) = 3 different parts
and make extensive use of countermodels. In depicting these models only
the essential vertices will be shown. The relations imposed by the frame
conditions (transitivity, reflexivity, etc.) will be omitted. The R-relation is
represented by straight arrows, whereas the Sp-relation is represented by
curly indexed arrows. Subsets of the universe are represented by encircling
its members by a continuous closed curve. So by depicting a model we ac-
tually mean the smallest extension of the picture satisfying all the frame
conditions. This is uniquely defined. Here the choice for the universal quan-
tor in (*) becomes clear. Of course we will use classical Veltman semantics
if the principles characterize different properties on the frame. This is so in
the first two cases.

o ILMyW ¥ Py.
Suppose ILMy W = ILW* would prove P,.

Figure 1. gives a countermodel using classical se-
mantics to this implication. As it is an
ILW*-frame, W* = MyW is automatically ful-
filled in w. We also have w IF p><q. But clearly
whk¥Op>q)aszH¥prq.

w

Figure 1.

o ILPyMyW¥ W.
This is shown similarly.
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The model in figure 2. serves as a countermodel

for this implication. It is in the characteristic
v class of Py and My. One has w IF pD>q. But
clearly w ¥ p > g A O-p. (Alternatively, the

q observation that the model is not in the charac-

/

o w
Figure 2.

o ILPyW ¥ Mj.

teristic class of ILW would suffice.)

This independence result makes essential use of the ILg; models.
Again a model is provided where at some world Py and W hold and M
fails. As P, semantically implies M, using classical frames, we have
to move on to ILs; models. Figure 3. shows an ILgs; countermodel
for ILWPy - My. In order to show that this is indeed a counter-
model, it would be sufficient to note that the frame is in the class of
characteristic ILW respectively ILPy frames, but not in the class of
characteristic ILM, frames. For doing so, one first has to specify the
respective classes of characteristic frames.

o w

Figure 3.

That however yields rather awk-
ward conditions in this setting.
So we will show that in the world
w of this specific model, Py and
W hold as a scheme, whereas M
fails. First we will see that P,
holds as a scheme in w. Suppose
therefore w I A > GB. We must
conclude w IF O(A > B).

<&B can only hold in z and in b.
In the other worlds ¢B can not
hold because of the absence of R-
successors. But both {z} and {b}
can only be accessed with an S,-
transition by x, respectively b it-
self.

So if A OB holds, A can only hold at x or b in which case ¢B
should hold at the same world where A holds. In particular we see
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that OO-A holds at w. So definitely O(A > B) holds at w. Likewise
it is seen that W holds as a scheme at w. We now have to find an
instantiation of A A OC > B A OC which does not hold at w. We
take C = A = p and B = ¢ to do the job. We have w IF p > ¢ because
ySwY, y Ik p and for all elements ' of Y (a and b) one has ¢’ I ¢q. At
x, Op A Op holds. But it is impossible to go by an S,, transition to
a set of worlds for all of which g A Op holds. So indeed M, does not
hold at w.

QED

In order to have a complete comparison we note that ILM + Py and ILP +
Py. Py holds on every ILM respectively ILP, frame. This fact combined
with the modal completeness results gives the derivability of Py over both
ILM and ILP. Of course the odds are for ILW*P, to be an incomplete
logic, but we have not been able to prove this due to the lack of a candidate
for a valid but underivable principle.

6.4 A relation between M, and W

The W-axiom looks quite different from the others. It is easily seen to
follow semantically from both M and P. M has been weakened to M
and W is no longer derivable over M as was seen in theorem 6.3. My does
however semantically imply something similar to W. The frame condition of
My excludes the possibility of descending (w.r.t. the R-relation) two worlds
with an S;-relation. This is reflected by a principle Wy, which can be seen
as a weakening of the consequent of W.

Wo: A B — A BAOO-A.

As My is modally complete we must have ILMy + Wy. Indeed a pure
syntactical proof exists. This proof can be extracted from the application
of the construction method to this very case. So suppose ILMy ¥ Wy, and
apply the construction method. We have to construct a model where some
instantiation of Wy does not hold. For that we first consider a maximal
ILMj-consistent set wgy containing —(p > ¢ — p > ¢ A OO=p). Specifically
p>q € wy and —(p > g A OO-p) € wy. So in wy we have the problem
—=(p > g A DOO-p). We solve this problem by introducing a ¢ A OO-p critical
successor wi of wg, where p holds. See the figure below. Now we have a

deficiency in wg. So conform the construction method, we add we where ¢
holds.
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g ANOO "p -critical
cone

p>aq, '(p> gADO O p

o

This we also lies ¢ A OO—-p-critically above wg, but as ¢ € wy we must have
wo IF OOp. So OOp is a problem of wy (note that GOp 7, =(Cpr>_L1)), and
will be eliminated by adding an R-successor ws of wy such that ws IF p.
But also we have ws IF O-<p, i.e. wy IF OO-p. This was built into lemma
5.3. As w3 IF Op we must now introduce the R-successor wy of ws with
wy IF p. So now we have a deficiency in wy w.r.t. ws. This would be solved
by introducing wy, still in the ¢ A OO=p-cone of wy, such that wy IF q. We
have w3 Co ws, so O0-p € ws. But as wg <¢gAoo-p ws and ws I g, we
should have —O0O-p € ws. This can not be the case so indeed W must
hold. This argument can be captured in a purely syntactical proof.

Suppose A> B. (A B € wy.) Then one has A> (B AOO-A)V (B A
OO A).(The last disjunct holds at ws.) But BA OOA D> GA.(We have ws |-
AL, soalso BAOOAD> OAANTO-CA. (This trick is incorporated in lemma
5.3.) Under the assumption of A > B, by M we have CAAOO-A> B A
O0O-A. (This is the translation of w3 Cgo ws.) Using transitivity we obtain:
Ap> B — BAOOAD> BADOO-A. So we can derive A B — A BAOO-A
in ILM,.

6.5 The arithmetical validity of F,

The new principle Py is next seen to be arithmetically valid. The argument
is due to Albert Visser and can be presented in five basic steps. We will use
here standard notation and well-known facts of arithmetization. For a good
background one can consult very clear texts like for example [Vis90], [JdJ98].
In the sequel of this paragraph O and > will stand again for formalized
provability and interpretability respectively. These notions are dependent
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on the base theory in which they are formalized. In case of possible confusion
we will write this base theory by indexing the operator, e.g. Op. We have
to prove that in any reasonable arithmetical theory A><B — O(A > B) is
derivable.

For any reasonable arithmetical theory 7"

1.

Suppose A > ©B and reason within the theory. We thus have (7" +
A)> (T + OB).

We can now take a finite subtheory Ty of T" which is sufficiently strong.
We will not be too precise about this. The actual constraints on T can
be distilled from the following argument. It seems natural to demand
that Ty can code the Henkin construction used in the completeness
theorem. By this one can obtain a stronger variant of J5 as is outlined
later on. We have (T + A) > (Ty + ©B), which turns out to be a 39-
sentence as Tp is a finite theory. The II-sentence (modulo notational
inaccuracies) Vy(Az, (y) — Or(A — y”?)) can be replaced by the ©¢-
sentence O7(A — 77), where J is the interpretation used in 1 an 7 is
the conjunction of all the axioms of Tj.

We can thus conclude Or((T + A) > (Tp + ©B)). This follows from 2
and the provable Z?—completeness of T.

. The axiom J5 : OB > B reflects the completeness theorem. As the

whole Henkin construction can be coded within 7', in T" one can prove
(T + Con(T + B)) > (T + B). But actually something stronger holds
as well. The finite theory Ty is chosen strong enough to perform the
Henkin construction for 7. So within T' one can prove

(To+ Con(T+ B)) > (T'+ B). With necessitation one obtains Op(Tp+
Con(T + B) > (T + B)).

The final step consists of combining 3 and 4. The transitivity of >
under the O yields the desired result, that is O(A > B).

7 Concluding

7.1

The new situation

In this paper we have seen the logic ILMy to be modally complete. The
decidability is unknown so far. Furthermore a new logic ILP, is introduced
which is seen to be modally incomplete. It remains unknown whether ILW*
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is modally complete or not. The author and Dick de Jongh conjecture ILW*
to be modally complete, but the logic ILPyW™* to be modally incomplete,
and to have GIL somewhere in between ILPyW* and the meet of ILM and
ILP. GIL is assumed to be stronger than I LPyW* since this logic is likely
to be incomplete and the situation that GIL is incomplete is to ghastly to
imagine. On the other hand GIL cannot be the meet of ILM and ILP
because this does not have the disjunction property: H OA Vv OB =+ A or
F B. Theorem 6.3 tells us that the new situation is as depicted below.

/ILW\ :
* *
|L% ILw ILPW™— GIL
IL

ILM

7

F(’) ILP

7.2 Spin off

e Modal completeness of ILW*.

The main approach to a modal completeness result is always the same.
However for every distinct logic a special ingredient is required to
incorporate the frame condition of the added principle into the model
construction. One new ingredient used for ILM) is given by lemmas
5.5 and 5.6. Another novelty is the local character of the construction
method. Instead of defining the model in one blow and defining the S
and R relations, we adhere to locally defining all entities to gradually
build up the model. Dick de Jongh and Frank Veltman have given
a completeness proof of ILW* in [dJV]. It might be the case that
both ingredients of ILMy and ILW can be combined resulting in a
completeness proof of ILW*. We conjecture ILW* to be decidable
and modally complete. If both completeness proofs can be combined,
the decidability will very likely be easier to establish than for ILM,
by itself.

¢ Essentially ¥{-ness.
In an article by Dick de Jongh and Duccio Pianigiani a theorem about
essentially 9-ness is proved. A sentence A in for example the language
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7.3

of Lobs logic is essentially XY in PA if for any *, there is some o € X9
such that PAF A* & 0.

Theorem 7.1 (Visser [Vis89], de Jongh [dJD90]) A sentence A in
the language of Lobs logic is essentially 39 iff A is provably equivalent
to some formula of the form \/, OA;.

Most likely this result can be extended to for example ILM. De Jongh
uses the fact that o is £9 in PAiff PAF a>3 — aAo> B Ao for all
a, 3. Now suppose A is essentially ¢ but not provably equivalent to
some \X/, OA;. A model of pt>¢q and =(pAAD>gAA) is made. It seemed
quite difficult to extend this method to ILM. The author and Rosalie
Iemhoff have payed some effort to do so. With the construction method
presented in this paper it might be possible to reduce the problem to
an easier statement.

Further research

For the O-modality we know many readings. We have treated in this
paper the interpretation of O as the provability predicate. But also
other readings are possible. The most prominent (and also the orig-
inal) reading is that of necessity. Modalities can often have various
interpretations. (Think of epistemic logic, temporal logic, etc. ) It
is always an interesting venture to try to vary the interpretation of a
logic in a certain way to then study the purport of the logic under this
new interpretation. One obvious variation is to go back to the original
inspiration for the semantics of interpretability logics, namely to read
the >-modality as a conditional in the setting of entailment logics as
in Veltman’s dissertation. See [Vel85]. As far as we know this has
never been done.

Understanding the relation between Veltman semantics and the arith-
metical properties.

The Veltman semantics have proved to be a very fruitful tool. How-
ever, there is no clear understanding about what is the precise relation
between Veltman frames and the arithmetics. Neither is there a clear
intuitive way of thinking about frame conditions in terms of the in-
tended arithmetic. It might be interesting to investigate if such a clear
connection can be described.
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e Understanding why certain principles are not complete w.r.t. their cor-
responding class of characteristic frames.
When the principle Py was found, it was immediately conjectured to be
modally incomplete. The grounds for this conjecture were the similar-
ities with an earlier investigated modally incomplete principle K W4,
and a general intuition. It might be interesting to try to capture this
intuition by a general theorem about incompleteness.

e Performing a schematic enclosure of GIL as proposed.
In paragraph 6.2 a general approach is proposed for the enclosure of
GIL. As far as we know, such a systematic approach has not yet been
executed. Within this program various other questions fit in well, like

for example can one say something about nice principles in the meet
of ILP and ILM?
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